Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of a highly aromatic and planar dehydro [10]annulene derivative


Aromaticity is a phenomenon that is linked to the improved stability of organic compounds. Its occurrence is predicted by Hückel’s rule, which states that an aromatic compound must be flat, fully conjugated and have (4n + 2) π electrons. The most encountered aromatic structure is the benzenoid ring, which is observed in a wide variety of pharmaceuticals and organic materials. Expanded monocyclic structures are also of substantial interest as they would allow one to experimentally investigate the relationships between aromaticity, stability, reactivity and ring size. However, larger rings such as [10]annulene are often non-planar and non-aromatic due to angle strain present in their planar conformation. Inspired by earlier computational work, we show here that the presence of both a fused cyclopropane and an internal alkyne in a [10]annulene framework provides a planar and highly aromatic structure. The resulting dehydro[10]annulene is bench stable and can be stored for extended periods of time.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: [10]Annulenes previously synthesized or calculated.
Fig. 2: Synthetic strategy towards a planar dehydro[10]annulene and key aromatization reaction.
Fig. 3: Synthetic efforts towards the generation of the suitably functionalized cyclodecane precursor.
Fig. 4: Final preparation of the aromatic dehydro[10]annulene 7.
Fig. 5: Experimental and calculated 1H NMR spectra of dehydro[10]annulene 7.
Fig. 6: AICD map for dehydro[10]annulene 7.

Data availability

General information, experimental procedures, compound characterization data, X-ray crystallographic data, 1H NMR/13C NMR spectra, HPLC data, computational details and xyz coordinates of computed structures are all available in the Supplementary Information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2092414 (cocrystal of trans-22 and 23). Copies of the crystallographic data can be obtained free of charge via


  1. Schleyer, P. V. R. Introduction: aromaticity. Chem. Rev. 101, 1115–1118 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Schleyer, P. V. R., Wu, J. I., Cossío, F. P. & Fernández, I. Aromaticity in transition structures. Chem. Soc. Rev. 43, 4909–4921 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Peart, P. A., Repka, L. M. & Tovar, J. D. Emerging prospects for unusual aromaticity in organic electronic materials: the case for methano[10]annulene. Eur. J. Org. Chem. 2008, 2193–2206 (2008).

    Article  CAS  Google Scholar 

  4. Hückel, E. Zur Quantentheorie der Doppelbindung. Z. Phys. 60, 423–456 (1930).

    Article  Google Scholar 

  5. von E. Doering, W. & Detert, F. L. Cycloheptatrienylium oxide. J. Am. Chem. Soc. 73, 876–877 (1951).

    Article  Google Scholar 

  6. Spitler, E. L., Johnson, C. A. & Haley, M. M. Renaissance of annulene chemistry. Chem. Rev. 106, 5344–5386 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Feixas, F., Matito, E., Poater, J. & Solà, M. Quantifying aromaticity with electron delocalisation measures. Chem. Soc. Rev. 44, 6434–6451 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Gershoni-Poranne, R. & Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 44, 6597–6615 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Cyrański, M. K. Energetic aspects of cyclic pi-electron delocalization: evaluation of the methods of estimating aromatic stabilization energies. Chem. Rev. 105, 3773–3811 (2005).

    Article  PubMed  CAS  Google Scholar 

  10. Breslow, R., Hover, H. & Chang, H. W. The synthesis and stability of some cyclopropenyl cations with alkyl substituents. J. Am. Chem. Soc. 84, 3168–3174 (1962).

    Article  CAS  Google Scholar 

  11. Olah, G. A., Bollinger, J. M. & White, A. M. Stable carbonium ions. LXXXIX. Tetramethylcyclobutenium dication, an aromatic 2.pi.-electron system. J. Am. Chem. Soc. 91, 3667–3669 (1969).

    Article  CAS  Google Scholar 

  12. Boche, G., Etzrodt, H., Marsch, M. & Thiel, W. The dianion 1,2,3,4-tetraphenylcyclobutadienediide. Angew. Chem. Int. Ed. Engl. 21, 133–133 (1982).

    Article  Google Scholar 

  13. Peters, D. 349. The cyclopentadienyl anion. Part I. 1,2-dimethoxycarbonylcyclopentadienylsodium, a stabilised cyclopentadienyl anion. J. Chem. Soc. (Resumed) 1757–1760 (1959).

  14. Von E.Doering, W. & Knox, L. H. The cycloheptatrienylium (tropylium) ion. J. Am. Chem. Soc. 76, 3203–3206 (1954).

    Article  Google Scholar 

  15. Olah, G. A., Staral, J. S. & Paquette, L. A. Novel aromatic systems. III. The 1,3,5,7-tetramethylcyclooctatetraene dication, the first 8C-6.pi. Hueckeloid system. J. Am. Chem. Soc. 98, 1267–1269 (1976).

    Article  CAS  Google Scholar 

  16. Katz, T. J. The sycloöctatetraenyl dianion. J. Am. Chem. Soc. 82, 3784–3785 (1960).

    Article  CAS  Google Scholar 

  17. Sondheimer, F., Wolovsky, R. & Amiel, Y. Unsaturated macrocyclic compounds. XXIII.1 The synthesis of the fully conjugated macrocyclic polyenes cycloöctadecanonaene ([18]annulene),2 cyclotetracosadodecaene ([24]annulene), and cyclotriacontapentadecaene ([30]annulene). J. Am. Chem. Soc. 84, 274–284 (1962).

    Article  Google Scholar 

  18. Ermer, O. Concerning the structure of [18]annulene. Helv. Chim. Acta 88, 2262–2266 (2005).

    Article  CAS  Google Scholar 

  19. Lungerich, D. et al. [18]Annulene put into a new perspective. Chem. Commun. 52, 4710–4713 (2016).

    Article  CAS  Google Scholar 

  20. Baldridge, K. K. & Siegel, J. S. Correlation of empirical δ(TMS) and absolute NMR chemical shifts predicted by ab initio computations. J. Phys. Chem. A. 103, 4038–4042 (1999).

    Article  CAS  Google Scholar 

  21. Kwan, E. E. & Liu, R. Y. Enhancing NMR prediction for organic compounds using molecular dynamics. J. Chem. Theory Comput. 11, 5083–5089 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Peeks, M. D., Claridge, T. D. W. & Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 541, 200–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Masamune, S. & Seidner, R. T. [10]Annulenes. J. Chem. Soc. D. 542–544 (1969).

  24. Masamune, S. & Darby, N. [10]Annulenes and other (CH)10 hydrocarbons. Acc. Chem. Res. 5, 272–281 (1972).

    Article  CAS  Google Scholar 

  25. Castro, C., Karney, W. L., McShane, C. M. & Pemberton, R. P. [10]Annulene: bond shifting and conformational mechanisms for automerization. J. Org. Chem. 71, 3001–3006 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Farnell, L., Kao, J., Radom, L. & Schaefer, H. F. Structures and stabilities of isomeric [10]annulenes. J. Am. Chem. Soc. 103, 2147–2151 (1981).

    Article  CAS  Google Scholar 

  27. Xie, Y., Schaefer, H. F., Liang, G. & Bowen, J. P. [10]Annulene: the wealth of energetically low-lying structural isomers of the same (CH)10 connectivity. J. Am. Chem. Soc. 116, 1442–1449 (1994).

    Article  CAS  Google Scholar 

  28. Sulzbach, H. M., Schaefer, H. F., Klopper, W. & Lüthi, H. P. Exploring the boundary between aromatic and olefinic character: bad news for second-order perturbation theory and density functional schemes. J. Am. Chem. Soc. 118, 3519–3520 (1996).

    Article  CAS  Google Scholar 

  29. King, R. A., Crawford, T. D., Stanton, J. F. & Schaefer, H. F. Conformations of [10]annulene: more bad news for density functional theory and second-order perturbation theory. J. Am. Chem. Soc. 121, 10788–10793 (1999).

    Article  CAS  Google Scholar 

  30. Sulzbach, H. M., Schleyer, P. V. R., Jiao, H., Xie, Y. & Schaefer, H. F. A [10]annulene isomer may be aromatic, after all!. J. Am. Chem. Soc. 117, 1369–1373 (1995).

    Article  CAS  Google Scholar 

  31. Myers, A. G. & Finney, N. S. Synthesis of 1,6-didehydro[10]annulene. Observation of its exceptionally facile rearrangement to form the biradical 1,5-dehydronaphthalene. J. Am. Chem. Soc. 114, 10986–10987 (1992).

    Article  CAS  Google Scholar 

  32. Vogel, E. & Roth, H. D. The cyclodecapentaene system. Angew. Chem. Int. Ed. Engl. 3, 228–229 (1964).

    Article  Google Scholar 

  33. Dewey, H. J. et al. Excited states of methano-bridged [10]-, [14]-, and [18]annulenes. Evidence for strong transannular interaction, and relation to homoaromaticity. J. Am. Chem. Soc. 102, 6412–6417 (1980).

    Article  CAS  Google Scholar 

  34. Caramori, G. F., de Oliveira, K. T., Galembeck, S. E., Bultinck, P. & Constantino, M. G. Aromaticity and homoaromaticity in methano[10]annulenes. J. Org. Chem. 72, 76–85 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Scott, L. T., Brunsvold, W. R., Kirms, M. A. & Erden, I. Homoazulene. J. Am. Chem. Soc. 103, 5216–5220 (1981).

    Article  CAS  Google Scholar 

  36. Schleyer, Pv. R., Jiao, H., Sulzbach, H. M. & Schaefer, H. F. Highly aromatic planar all-cis-[10]annulene derivatives. J. Am. Chem. Soc. 118, 2093–2094 (1996).

    Article  CAS  Google Scholar 

  37. Billups, W. E., Blakeney, A. J. & Chow, W. Y. A benzocyclopropene synthesis. J. Chem. Soc. D. 1461–1462 (1971).

  38. Davalian, D., Garratt, P. J., Koller, W. & Mansuri, M. M. Strained aromatic systems. Synthesis of cyclopropabenzocyclobutenes, cyclopropanaphthocylobutenes, and related compounds. J. Org. Chem. 45, 4183–4193 (1980).

    Article  CAS  Google Scholar 

  39. Moore, W. R. & Ward, H. R. The formation of allenes from gem-dihalocyclopropanes by reaction with alkyllithium reagents1,2. J. Org. Chem. 27, 4179–4181 (1962).

    Article  CAS  Google Scholar 

  40. Castillo, A. M., Patiny, L. & Wist, J. Fast and accurate algorithm for the simulation of NMR spectra of large spin systems. J. Magn. Reson. 209, 123–130 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Schleyer, P. V. R., Maerker, C., Dransfeld, A., Jiao, H. & van Eikema Hommes, N. J. R. Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118, 6317–6318 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Báez-Grez, R., Ruiz, L., Pino-Rios, R. & Tiznado, W. Which NICS method is most consistent with ring current analysis? Assessment in simple monocycles. RSC Adv. 8, 13446–13453 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Geuenich, D., Hess, K., Köhler, F. & Herges, R. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. Chem. Rev. 105, 3758–3772 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Glendening, E. D., Landis, C. R. & Weinhold, F. Resonance theory reboot. J. Am. Chem. Soc. 141, 4156–4166 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Siegel, J. S. Mills—Nixon effect: wherefore art thou? Angew. Chem. Int. Ed. Engl. 33, 1721–1723 (1994).

    Article  Google Scholar 

Download references


We thank the Natural Sciences and Engineering Research Council of Canada (grant no. RGPIN-2017–06230 to M.G.), the Canada Foundation for Innovation and the Province of Saskatchewan (Saskatchewan Innovation and Opportunity Scholarship to K.P.) for financial support. We thank the Saskatchewan Structural Sciences Centre and J. Zhu. We thank D. Ward and S. Langdon for helpful discussions and suggestions.

Author information

Authors and Affiliations



K.P., C.S.B., B.E.L. and S.N.G. performed the experiments. K.P. and C.S.B. performed the computations. The project was conceptualized by K.P. and M.G., who also cowrote the manuscript.

Corresponding author

Correspondence to Michel Gravel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

General information, experimental procedures, compound characterization data, X-ray crystallographic data, 1H NMR/13C NMR spectra, HPLC data, computational details and xyz coordinates of computed structures.

Supplementary Data 1

X-ray data for trans-22/23 cocrystal, CCDC 2092414.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parmar, K., Blaquiere, C.S., Lukan, B.E. et al. Synthesis of a highly aromatic and planar dehydro [10]annulene derivative. Nat. Synth 1, 696–700 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing