Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration

Abstract

The integration of two-dimensional semiconductors and arbitrary materials or architectures offers the possibility to enhance the functionality of a material and improve device performance. However, the traditional vertical epitaxy process requires a lattice-matched planar substrate, which limits the scope of heterogeneous integration. Bottom-up heteroepitaxial growth of single-crystal thin films on arbitrary materials with a large lattice mismatch typically results in highly defective interfaces. Here we report a general synthesis route for heteroepitaxial growth of semiconducting 2H-MoTe2 films on arbitrary substrates with different crystal symmetries, lattice constants and three-dimensional architectures, which overcomes the limitation of the substrate. The in-plane two-dimensional epitaxy process through phase transition enables the direct synthesis of single-crystal semiconducting 2H-MoTe2 films on arbitrary single-crystal substrates (including silicon, GaN, 4H-SiC, sapphire, SrTiO3 and Gd3Ga5O12) and three-dimensional architectures without the limitation of lattice matching and a planar surface. This heteroepitaxial method provides a way of heterogeneous integration of semiconducting 2H-MoTe2 films with other functional materials or architectures for the fabrication of integrated devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integration of single-crystal 2H-MoTe2 semiconductor with arbitrary architectures.
Fig. 2: Epitaxy of single-crystal 2H-MoTe2 domains on arbitrary single-crystal substrates not limited by lattice matching.
Fig. 3: 2D epitaxy of single-crystal 2H-MoTe2 domain on 3D fin architectures.
Fig. 4: Wafer-scale 2H-MoTe2/Si heterojunction device array synthesized through the heteroepitaxy method.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available at https://doi.org/10.6084/m9.figshare.20071661.v1.

References

  1. Liu, J., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  Google Scholar 

  2. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    Article  CAS  Google Scholar 

  3. Markov, I. L. et al. Limits on fundamental limits to computation. Nature 512, 147–154 (2014).

    Article  CAS  Google Scholar 

  4. Shulaker, M. M. et al. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 547, 74–78 (2017).

    CAS  PubMed  Google Scholar 

  5. Marpaung, D., Yao, J. P. & Capmany, J. Integrated microwave photonics. Nat. Photon. 13, 80–90 (2019).

    Article  CAS  Google Scholar 

  6. Tan, C., Chen, J., Wu, X. & Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 512, 17089 (2018).

    Article  Google Scholar 

  7. Patton, G. L., Iyer, S. S., Delage, S. L., Tiwari, S. & Stork, J. M. C. Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy. IEEE Electron Device Lett. 9, 165–167 (1988).

    Article  CAS  Google Scholar 

  8. Takagi, S. et al. Carrier-transport-enhanced channel CMOS for improved power consumption and performance. IEEE Electron Device Lett. 55, 21–39 (2008).

    Article  CAS  Google Scholar 

  9. Liu, H. Y. et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat. Photon. 5, 416–419 (2011).

    Article  CAS  Google Scholar 

  10. Chen, K. J. et al. GaN-on-Si power technology: devices and applications. IEEE Trans. Electron Devices 64, 779–795 (2017).

    Article  Google Scholar 

  11. Kim, J. Y. J. et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer. Nature 544, 340–343 (2017).

    Article  CAS  Google Scholar 

  12. Kum, J. H. S. et al. Heterogeneous integration of single-crystalline complex-oxide membranes. Nature 578, 75–81 (2020).

    Article  CAS  Google Scholar 

  13. Kum, J. H. et al. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2, 439–450 (2019).

    Article  CAS  Google Scholar 

  14. Sheng, J. X. et al. Printing-based assembly of quadruple-junction four-terminal microscale solar cells and their use in high-efficiency modules. Nat. Mater. 13, 593–598 (2014).

    Article  CAS  Google Scholar 

  15. Justice, J. et al. Wafer-scale integration of group III–V laser on silicon using transfer printing of epitaxial layers. Nat. Photon. 6, 610–614 (2012).

    Article  Google Scholar 

  16. Wilson, D. J. et al. Integrated gallium phosphide nonlinear photonics. Nat. Photon. 14, 57–62 (2020).

    Article  CAS  Google Scholar 

  17. Li, N. et al. Integrated gallium phosphide nonlinear large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    Article  CAS  Google Scholar 

  18. Xu, X. L. et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. J. Am. Chem. Soc. 141, 2128–2134 (2019).

    Article  CAS  Google Scholar 

  19. Xu, X. L. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article  CAS  Google Scholar 

  20. Keum, D. H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 11, 482–486 (2015).

    Article  CAS  Google Scholar 

  21. Flory, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020).

    Article  Google Scholar 

  22. Maiti, R. et al. Strain-engineered high-responsivity MoTe2 photodetector for silicon photonic integrated circuits. Nat. Photon. 14, 578–584 (2020).

    Article  CAS  Google Scholar 

  23. Hwang, J. Y. et al. Te monolayer-driven spontaneous van der Waals epitaxy of two-dimensional pnictogen chalcogenide film on sapphire. Nano Lett. 17, 6140–6145 (2017).

    Article  CAS  Google Scholar 

  24. Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    Article  CAS  Google Scholar 

  25. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  Google Scholar 

  26. Wang, J. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2021).

    Article  Google Scholar 

  27. Kong, J. W. et al. Polarity governs atomic interaction through two-dimensional materials. Nat. Mater. 17, 999–1004 (2018).

    Article  CAS  Google Scholar 

  28. Furchi, M. M. et al. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

    Article  CAS  Google Scholar 

  29. Wu, E. et al. In situ fabrication of 2D WS2/Si type-II heterojunction for self-powered broadband photodetector with response up to mid-infrared. ACS Photon. 6, 565–572 (2019).

    Article  CAS  Google Scholar 

  30. Cho, S. et al. Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625–628 (2015).

    Article  CAS  Google Scholar 

  31. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  32. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  33. Zhang, Y. & Yang, W. Comment on “generalized gradient approximation made simple”. Phys. Rev. B 80, 890 (1998).

    CAS  Google Scholar 

  34. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  35. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant nos. 2017YFA0206301 and 2018YFA0306900 to Y.Y., no. 2018YFA0305800 to W.Z. and no. 2018YFA0703700 to J.H.), the Key Research Program of Frontier Sciences, CAS (grant nos. ZDBS-LY-JSC015 to Y.Y. and QYZDB-SSW-JSC019 to W.Z.), the National Natural Science Foundation of China (grant no. 11974024 to J.C., and nos. 51872285 and 61875001 to A.W.), the Research Program of the Chinese Academy of Science (grant no. XDB33010400 to J.C.), the China Postdoctoral Science Foundation (grant no. 2020TQ0015 to X.X.), the Beijing Natural Science Foundation (grant no. JQ21018 to Y.Y.), the Beijing Outstanding Young Scientist Program (grant no. BJJWZYJH01201914430039 to W.Z.) and the Fundamental Research Funds for the Central Universities (grant no. E1E40209 to R.G.). We are grateful for the computational resources provided by the TianHe-1A supercomputer at the Shanghai Supercomputer Center, the Computing Platform of Peking University and the Songshan Lake Materials Lab. We thank the Integrated Circuit Advanced Process Center of IMECAS for its efforts in fabrication of fin architecture.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. and Y.P. conceived the project, designed the experiments and wrote the manuscript. Y.P. and X.X. prepared the samples, fabricated the devices and performed Raman, EBSD and AFM characterizations, as well as electrical measurements. R.G. performed STEM characterizations under the supervision of W.Z.. S.L. conducted the DFT calculations under the supervision of J.C. R.G., W.Z., J.H., A.W. and X.X. provided useful analysis and discussions. W.X. performed magnetron sputtering. Y.L. helped set up the CVD growth system. N.T. supplied the single-crystal substrates. H.Y. provided the 3D fin architectures. Y.Y. supervised the project. All of the authors contributed to discussions.

Corresponding authors

Correspondence to Ji Chen, Wu Zhou, Xiaolong Xu or Yu Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17.

Source data

Source Data Fig. 2b

Statistical Source Data.

Source Data Fig. 2f

Statistical Source Data.

Source Data Fig. 3k

Statistical Source Data.

Source Data Fig. 4c

Statistical Source Data.

Source Data Fig. 4d

Statistical Source Data.

Source Data Fig. 4g

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Guzman, R., Li, S. et al. Heteroepitaxy of semiconducting 2H-MoTe2 thin films on arbitrary surfaces for large-scale heterogeneous integration. Nat. Synth 1, 701–708 (2022). https://doi.org/10.1038/s44160-022-00134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00134-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing