Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanochemical techniques for the activation and use of zero-valent metals in synthesis

This article has been updated

Abstract

Activating raw, zero-valent metals is an essential capability for chemical processes, which include synthesis and catalysis. In recent years there has been the discovery and growing intensity in the use of mechanical action, through the utility of ball mills, to facilitate the activation of zero-valent metals. The complexity of the synthetic reaction systems in which these processing techniques can be used has now reached a tipping-point, with, among others, cross-electrophile coupling, radical reactions and new modes of zero-valent reactivity demonstrated. In addition, the technique of ball milling is synonymous with solvent minimization for the reaction component of a synthetic process. In this review, we demonstrate that, together, these developments paint an intriguing picture in which the combination of the technique of ball milling and chemical synthesis mediated by zero-valent metals could deliver a sustainable platform for chemical synthesis, catalysis and new reaction discovery for the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Use of zero-valent metals for chemical synthesis.
Fig. 2: Use of magnesium(0) in mechanochemistry.
Fig. 3: Use of magnesium(0) in mechanochemistry continued.
Fig. 4: Use of manganese(0) in mechanochemical synthesis.
Fig. 5: Use of nickel(0) in mechanochemical synthesis.
Fig. 6: Use of zinc(0) in mechanochemistry.
Fig. 7: Further examples of the use of zinc(0) in mechanochemistry.
Fig. 8: Use of silver(0) and bismuth(0) in mechanochemistry.

Similar content being viewed by others

Change history

  • 12 August 2022

    In the version of this article initially published, the first author name listed in ref. 54 was spelt incorrectly and the name has been corrected in the HTML and PDF versions of the article.

References

  1. Knochel, P. in Comprehensive Organic Synthesis (eds Trost, B. M. & Fleming, I.) 211–229 (Pergamon, 1991).

  2. Knochel, Paul & Singer, R. D. Preparation and reactions of polyfunctional organozinc reagents in organic synthesis. Chem. Rev. 93, 2117–2188 (1993).

    Article  CAS  Google Scholar 

  3. Berk, S. C., Yeh, M. C. P., Jeong, N. & Knochel, P. Preparation and reactions of functionalized benzylic organometallics of zinc and copper. Organometallics 9, 3053–3064 (1990).

    Article  CAS  Google Scholar 

  4. Langer, F., Schwink, L., Devasagayaraj, A., Chavant, P.-Y. & Knochel, P. Preparation of functionalized dialkylzincs via a boron−zinc exchange. Reactivity and catalytic asymmetric addition to aldehydes. J. Org. Chem. 61, 8229–8243 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Krasovskiy, A., Malakhov, V., Gavryushin, A. & Knochel, P. Efficient synthesis of functionalized organozinc compounds by the direct insertion of zinc into organic iodides and bromides. Angew. Chem. Int. Ed. 45, 6040–6044 (2006).

    Article  CAS  Google Scholar 

  6. Picotin, G. & Miginiac, P. Activation of zinc by trimethylchlorosilane. An improved procedure for the preparation of β-hydroxy esters from ethyl bromoacetate and aldehydes or ketones (Reformatsky reaction). J. Org. Chem. 52, 4796–4798 (1987).

    Article  CAS  Google Scholar 

  7. Kimura, M. & Seki, M. A novel procedure for the preparation of zinc reagents: a practical synthesis of (+)-biotin. Tetrahedron Lett. 45, 1635–1637 (2004).

    Article  CAS  Google Scholar 

  8. Knochel, P. & Normant, J. F. Addition of functionalized allylic bromides to terminal alkynes. Tetrahedron Lett. 25, 1475–1478 (1984).

    Article  CAS  Google Scholar 

  9. Newman, S. Enolization in the Reformatsky reaction. J. Am. Chem. Soc 64, 2131–2133 (1942).

    Article  CAS  Google Scholar 

  10. Ikegami, R., Koresawa, A., Shibata, T. & Takagi, K. Functionalized arylzinc compounds in ethereal solvent: direct synthesis from aryl iodides and zinc powder and application to Pd-catalyzed reaction with allylic halides. J. Org. Chem. 68, 2195–2199 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Huo, S. Highly efficient, general procedure for the preparation of alkylzinc reagents from unactivated alkyl bromides and chlorides. Org. Lett. 5, 423–425 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Baker, K. V., Brown, J. M., Hughes, N., Skarnulis, A. J. & Sexton, A. Mechanical activation of magnesium turnings for the preparation of reactive Grignard reagents. J. Org. Chem. 56, 698–703 (1991).

    Article  CAS  Google Scholar 

  13. Tanaka, K., Kishigami, S. & Toda, F. Reformatsky and Luche reaction in the absence of solvent. J. Org. Chem. 56, 4333–4334 (1991).

    Article  CAS  Google Scholar 

  14. Howard, J. L., Cao, Q. & Browne, D. L. Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem. Sci. 9, 3080–3094 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan, D. & García, F. Main group mechanochemistry: from curiosity to established protocols. Chem. Soc. Rev. 48, 2274–2292 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Kubota, K. & Ito, H. Mechanochemical cross-coupling reactions. Trends Chem. 2, 1066–1081 (2020).

    Article  CAS  Google Scholar 

  17. Porcheddu, A., Colacino, E., De Luca, L. & Delogu, F. Metal-mediated and metal-catalyzed reactions under mechanochemical conditions. ACS Catal. 10, 8344–8394 (2020).

    Article  CAS  Google Scholar 

  18. Friščić, T., Mottillo, C. & Titi, H. M. Mechanochemistry for synthesis. Angew. Chem. Int. Ed. 59, 1018–1029 (2020).

    Article  Google Scholar 

  19. Ardila-Fierro, K. J. & Hernández, J. G. Sustainability assessment of mechanochemistry by using the twelve principles of green chemistry. ChemSusChem 14, 2145–2162 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Pérez-Venegas, M. & Juaristi, E. Mechanoenzymology: state of the art and challenges towards highly sustainable biocatalysis. ChemSusChem 14, 2682–2688 (2021).

    Article  PubMed  Google Scholar 

  21. Leitch, J. A. & Browne, D. L. Mechanoredox chemistry as an emerging strategy in synthesis. Chem. Eur. J. 27, 9721–9726 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Michalchuk, A. A. L., Boldyreva, E. V., Belenguer, A. M., Emmerling, F. & Boldyrev, V. V. Tribochemistry, mechanical alloying, mechanochemistry: what is in a name? Front. Chem. 9, 685789 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Głowniak, S., Szczęśniak, B., Choma, J. & Jaroniec, M. Mechanochemistry: toward green synthesis of metal–organic frameworks. Mater. Today 46, 109–124 (2021). Review on the synthesis of metal organic frameworks.

    Article  Google Scholar 

  24. Kubota, K., Pang, Y., Miura, A. & Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 366, 1500–1504 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Schumacher, C., Hernández, J. G. & Bolm, C. Electro-mechanochemical atom transfer radical cyclizations using piezoelectric BaTiO3. Angew. Chem. Int. Ed. 59, 16357–16360 (2020).

    Article  CAS  Google Scholar 

  26. Seo, T., Toyoshima, N., Kubota, K. & Ito, H. Tackling solubility issues in organic synthesis: solid-state cross-coupling of insoluble aryl halides. J. Am. Chem. Soc. 143, 6165–6175 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Kralj, M., Lukin, S., Miletić, G. & Halasz, I. Using desmotropes, cocrystals, and salts to manipulate reactivity in mechanochemical organic reactions. J. Org. Chem. 86, 14160–14168 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Ortiz-Trankina, L. N., Crain, J., Williams, C. & Mack, J. Developing benign syntheses using ion pairs via solvent-free mechanochemistry. Green Chem. 22, 3638–3642 (2020).

    Article  CAS  Google Scholar 

  29. Nicholson, W. I. et al. Direct amidation of esters by ball milling. Angew. Chem. Int. Ed. 60, 21868–21874 (2021).

    Article  CAS  Google Scholar 

  30. Wang, G.-W., Muruta, Y., Komatsu, K. & Wan, T. S. M. The solid-phase reaction [60]fullerene: novel addition of organozinc reagents. Chem. Commun. 1996, 2059–2060 (1996).

    Article  Google Scholar 

  31. Wada, S., Hayashi, N. & Suzuki, H. Noticeable facilitation of the bismuth-mediated Barbier-type allylation of aromatic carbonyl compounds under solvent-free conditions. Org. Biomol. Chem. 1, 2160–2163 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Haley, R. A., Zellner, A. R., Krause, J. A., Guan, H. & Mack, J. Nickel catalysis in a high-speed ball mill: a recyclable mechanochemical method for producing substituted cyclooctatetraene compounds. ACS Sustain. Chem. Eng. 4, 2464–2469 (2016).

    Article  CAS  Google Scholar 

  33. Cao, Q., Howard, J. L., Wheatley, E. & Browne, D. L. Mechanochemical activation of zinc and application to Negishi cross-coupling. Angew. Chem. Int. Ed. 57, 11339–11343 (2018).

    Article  CAS  Google Scholar 

  34. Su, W., Yu, J., Li, Z. & Jiang, Z. Solvent-free cross-dehydrogenative coupling reactions under high speed ball-milling conditions applied to the synthesis of functionalized tetrahydroisoquinolines. J. Org. Chem. 76, 9144–9150 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Cook, T. L., Walker, J. A. & Mack, J. Scratching the catalytic surface of mechanochemistry: a multi-component CuAAC reaction using a copper reaction vial. Green Chem. 15, 617–619 (2013).

    Article  CAS  Google Scholar 

  36. Tan, D., Štrukil, V., Mottillo, C. & Friščić, T. Mechanosynthesis of pharmaceutically relevant sulfonyl-(thio)ureas. Chem. Commun. 50, 5248–5250 (2014).

    Article  CAS  Google Scholar 

  37. Fulmer, D. A., Shearouse, W. C., Medonza, S. T. & Mack, J. Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem. 11, 1821–1825 (2009).

    Article  CAS  Google Scholar 

  38. Vogt, C. G., Oltermann, M., Pickhardt, W., Grätz, S. & Borchardt, L. Bronze age of direct mechanocatalysis: how alloyed milling materials advance coupling in ball mills. Adv. Energy Sustain. Res 2, 2100011 (2021).

    Article  Google Scholar 

  39. Tireli, M. et al. Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole. Beilstein J. Org. Chem. 13, 2352–2363 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vogt, C. G. et al. Direct mechanocatalysis: palladium as milling media and catalyst in the mechanochemical Suzuki polymerization. Angew. Chem. Int. Ed. 58, 18942–18947 (2019).

    Article  CAS  Google Scholar 

  41. Sawama, Y. et al. Stainless steel-mediated hydrogen generation from alkanes and diethyl ether and its application for arene reduction. Org. Lett. 20, 2892–2896 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Rieke, R. D., Li, P. T.-J., Burns, T. P. & Uhm, S. T. Preparation of highly reactive metal powders. New procedure for the preparation of highly reactive zinc and magnesium metal powders. J. Org. Chem. 46, 4323–4324 (1981).

    Article  CAS  Google Scholar 

  43. Tilstam, U. & Weinmann, H. Activation of Mg metal for safe formation of Grignard reagents on plant scale. Org. Process Res. Dev. 6, 906–910 (2002).

    Article  CAS  Google Scholar 

  44. Ley, S. V. & Low, C. M. R. in Ultrasound in Synthesis (eds Ley, S. V. & Low, C. M. R.) 33–38 (Springer, 1989).

  45. Baig, R. B. N. & Varma, R. S. Alternative energy input: mechanochemical, microwave and ultrasound-assisted organic synthesis. Chem. Soc. Rev. 41, 1559–1584 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Rieke, R. D. & Hudnall, P. M. Activated metals. I. Preparation of highly reactive magnesium metal. J. Am. Chem. Soc. 94, 7178–7179 (1972).

    Article  CAS  Google Scholar 

  47. Rowlands, S. A. et al. Destruction of toxic materials. Nature 367, 223–223 (1994).

    Article  Google Scholar 

  48. Birke, V., Mattik, J. & Runne, D. Mechanochemical reductive dehalogenation of hazardous polyhalogenated contaminants. J. Mater. Sci. 39, 5111–5116 (2004).

    Article  CAS  Google Scholar 

  49. Birke, V., Schütt, C., Burmeier, H. & Ruck, W. K. L. Defined mechanochemical reductive dechlorination of 1,3,5-trichlorobenzene at room temperature in a ball mill. Fresenius Environ. Bull. 20, 2794–2805 (2011).

    CAS  Google Scholar 

  50. Waddell, D. C., Clark, T. D. & Mack, J. Conducting moisture sensitive reactions under mechanochemical conditions. Tetrahedron Lett. 53, 4510–4513 (2012).

    Article  CAS  Google Scholar 

  51. Harrowfield, J. M., Hart, R. J. & Whitaker, C. R. Magnesium and aromatics: mechanically-induced Grignard and McMurry reactions. Aust. J. Chem. 54, 423–425 (2001).

    Article  CAS  Google Scholar 

  52. Kaupp, G. Mechanochemistry: the varied applications of mechanical bond-breaking. CrystEngComm 11, 388–403 (2009).

    Article  CAS  Google Scholar 

  53. Speight, I. R. & Hanusa, T. P. Exploration of mechanochemical activation in solid-state fluoro-Grignard reactions. Molecules 25, 570 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  54. Pfennig, V., Villella, R., Nikodemus, J. & Bolm, C. Mechanochemical Grignard reactions with gaseous CO2 and sodium methyl carbonate. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202116514 (2022).

    Article  Google Scholar 

  55. Takahashi, R. et al. Mechanochemical synthesis of magnesium-based carbon nucleophiles in air and their use in organic synthesis. Nat. Commun. 12, 6691 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamdouchi, C. & Walborsky, H. M. in Handbook of Grignard Reagents (eds Silverman, G. S. & Rakita, P. E.) 145−218 (Dekker, 1996).

  57. Garst, J. F. & Ungváry, F. in Grignard Reagents: New Developments (eds Richey, H. G. Jr) 185−275 (Wiley, 2000).

  58. Garst, J. F. & Soriaga, M. P. Grignard reagent formation. Coord. Chem. Rev. 248, 623–652 (2004).

    Article  CAS  Google Scholar 

  59. Wu, C. et al. Mechanochemical magnesium-mediated Minisci C–H alkylation of pyrimidines with alkyl bromides and chlorides. Org. Lett. 23, 6423–6428 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Kim, S.-H., Hanson, M. V. & Rieke, R. D. Direct formation of organomanganese bromides using Rieke manganese. Tetrahedron Lett. 37, 2197–2200 (1996).

    Article  CAS  Google Scholar 

  61. Cahiez, G., Duplais, C. & Buendia, J. Chemistry of organomanganese(II) compounds. Chem. Rev. 109, 1434–1476 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Peng, Z. & Knochel, P. Preparation of functionalized organomanganese(II) reagents by direct insertion of manganese to aromatic and benzylic halides. Org. Lett. 13, 3198–3201 (2011).

    Article  CAS  PubMed  Google Scholar 

  63. Nicholson, W. I. et al. Ball-milling-enabled reactivity of manganese metal. Angew. Chem. Int. Ed. 60, 23128–23133 (2021).

    Article  CAS  Google Scholar 

  64. Wu, S., Shi, W. & Zou, G. Mechanical metal activation for Ni-catalyzed, Mn-mediated cross-electrophile coupling between aryl and alkyl bromides. New J. Chem. 45, 11269–11274 (2021).

    Article  CAS  Google Scholar 

  65. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Durandetti, M., Nédélec, J. Y. & Périchon, J. Nickel-catalyzed direct electrochemical cross-coupling between aryl halides and activated alkyl halides. J. Org. Chem. 61, 1748–1755 (1996).

    Article  CAS  PubMed  Google Scholar 

  67. Everson, D. A., Shrestha, R. & Weix, D. J. Nickel-catalyzed reductive cross-coupling of aryl halides with alkyl halides. J. Am. Chem. Soc. 132, 920–921 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Biswas, S. & Weix, D. J. Mechanism and selectivity in nickel-catalyzed cross-electrophile coupling of aryl halides with alkyl halides. J. Am. Chem. Soc. 135, 16192–16197 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Weber, J. M., Longstreet, A. R. & Jamison, T. F. Bench-stable nickel precatalysts with Heck-type activation. Organometallics 37, 2716–2722 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, C. & Szostak, M. Decarbonylative thioetherification by nickel catalysis using air- and moisture-stable nickel precatalysts. Chem. Commun. 54, 2130–2133 (2018).

    Article  CAS  Google Scholar 

  72. Guard, L. M., Beromi, M., Brudvig, G. W., Hazari, N. & Vinyard, D. J. Comparison of dppf-supported nickel precatalysts for the Suzuki–Miyaura reaction: the observation and activity of nickel(I). Angew. Chem. Int. Ed. 54, 13352–13356 (2015).

    Article  CAS  Google Scholar 

  73. Rodrigo, S. K., Powell, I. V., Coleman, M. G., Krause, J. A. & Guan, H. Efficient and regioselective nickel-catalyzed [2 + 2 + 2] cyclotrimerization of ynoates and related alkynes. Org. Biomol. Chem. 11, 7653–7657 (2013).

    Article  CAS  PubMed  Google Scholar 

  74. Leto, J. R. & Leto, M. F. Tetrasubstituted cyclooctatetraenes: catalytic cyclotetramerization of propiolic acid esters with tetrakis-(phosphorus trihalide)-nickel(0) complexes. J. Am. Chem. Soc. 83, 2944–2951 (1961).

    Article  CAS  Google Scholar 

  75. Meriwether, L. S., Colthup, E. C., Kennerly, G. W. & Reusch, R. N. The polymerization of acetylenes by nickel–carbonyl–phosphine complexes. I. Scope of the reaction. J. Org. Chem. 26, 5155–5163 (1961).

    Article  CAS  Google Scholar 

  76. Stathakis, C. I., Manolikakes, S. M. & Knochel, P. TMPZnOPiv·LiCl: a new base for the preparation of air-stable solid zinc pivalates of sensitive aromatics and heteroaromatics. Org. Lett. 15, 1302–1305 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Manolikakes, S. M., Ellwart, M., Stathakis, C. I. & Knochel, P. Air-stable solid aryl and heteroaryl organozinc pivalates: syntheses and applications in organic synthesis. Chem. Eur. J 20, 12289–12297 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Chen, Y.-H., Tüllmann, C. P., Ellwart, M. & Knochel, P. Preparation of solid polyfunctional alkynylzinc pivalates with enhanced air and moisture stability for organic synthesis. Angew. Chem. Int. Ed. 56, 9236–9239 (2017).

    Article  CAS  Google Scholar 

  79. Campos, K. R., Klapars, A., Waldman, J. H., Dormer, P. G. & Chen, C.-Y. Enantioselective, palladium-catalyzed α-arylation of N-Boc-pyrrolidine. J. Am. Chem. Soc. 128, 3538–3539 (2006).

    Article  CAS  PubMed  Google Scholar 

  80. Hevia, E., Chua, J. Z., García-Álvarez, P., Kennedy, A. R. & McCall, M. D. Exposing the hidden complexity of stoichiometric and catalytic metathesis reactions by elucidation of Mg–Zn hybrids. Proc. Natl Acad. Sci. USA 107, 5294–5299 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jin, L. et al. Revelation of the difference between arylzinc reagents prepared from aryl Grignard and aryllithium reagents respectively: kinetic and structural features. J. Am. Chem. Soc. 131, 16656–16657 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Wunderlich, S. H. & Knochel, P. (tmp)2Zn·2MgCl2·2LiCl: a chemoselective base for the directed zincation of sensitive arenes and heteroarenes. Angew. Chem. Int. Ed. 46, 7685–7688 (2007).

    Article  CAS  Google Scholar 

  83. Haas, D., Sustac-Roman, D., Schwarz, S. & Knochel, P. Directed zincation with TMPZnCl·LiCl and further functionalization of the tropolone scaffold. Org. Lett. 18, 6380–6383 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Metzger, A., Schade, M. A. & Knochel, P. LiCl-mediated preparation of highly functionalized benzylic zinc chlorides. Org. Lett. 10, 1107–1110 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Ren, H., Dunet, G., Mayer, P. & Knochel, P. Highly diastereoselective synthesis of homoallylic alcohols bearing adjacent quaternary centers using substituted allylic zinc reagents. J. Am. Chem. Soc. 129, 5376–5377 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. Jubert, C. & Knochel, P. Preparation of new classes of aliphatic, allylic, and benzylic zinc and copper reagents by the insertion of zinc dust into organic halides, phosphates, and sulfonates. J. Org. Chem. 57, 5425–5431 (1992).

    Article  CAS  Google Scholar 

  87. Bose, A. K., Gupta, K. & Manhas, M. S. β-Lactam formation by ultrasound-promoted Reformatsky type reaction. J. Chem. Soc. Chem. Commun. 1984, 86–87 (1984).

    Article  Google Scholar 

  88. Knochel, P., Yeh, M. C. P., Berk, S. C. & Talbert, J. Synthesis and reactivity toward acyl chlorides and enones of the new highly functionalized copper reagents RCu(CN)ZnI. J. Org. Chem. 53, 2390–2392 (1988).

    Article  CAS  Google Scholar 

  89. Zhu, S.-E., Li, F. & Wang, G.-W. Mechanochemistry of fullerenes and related materials. Chem. Soc. Rev. 42, 7535–7570 (2013). A comprehensive review on the solid-state reactivity of fullerenes.

    Article  CAS  PubMed  Google Scholar 

  90. Cao, Q., Stark, R. T., Fallis, I. A. & Browne, D. L. A ball-milling-enabled Reformatsky reaction. ChemSusChem 12, 2554–2557 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Falenczyk, C., Pölloth, B., Hilgers, P. & König, B. Mechanochemically initiated Achmatowicz rearrangement. Synth. Commun. 45, 348–354 (2015).

    Article  CAS  Google Scholar 

  92. Yin, J., Stark, R. T., Fallis, I. A. & Browne, D. L. A mechanochemical zinc-mediated Barbier-type allylation reaction under ball-milling conditions. J. Org. Chem. 85, 2347–2354 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Everson, D. A., Jones, B. A. & Weix, D. J. Replacing conventional carbon nucleophiles with electrophiles: nickel-catalyzed reductive alkylation of aryl bromides and chlorides. J. Am. Chem. Soc. 134, 6146–6159 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Jones, A. C., Nicholson, W. I., Leitch, J. A. & Browne, D. L. A ball-milling-enabled cross-electrophile coupling. Org. Lett. 23, 6337–6341 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Jones, A. C., Nicholson, W. I., Smallman, H. R. & Browne, D. L. A robust Pd-catalyzed C–S cross-coupling process enabled by ball-milling. Org. Lett. 22, 7433–7438 (2020).

    Article  CAS  PubMed  Google Scholar 

  97. Jones, K. D., Power, D. J., Bierer, D., Gericke, K. M. & Stewart, S. G. Nickel phosphite/phosphine-catalyzed C–S cross-coupling of aryl chlorides and thiols. Org. Lett. 20, 208–211 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Thompson, J. L. & Davies, H. M. L. Enhancement of cyclopropanation chemistry in the silver-catalyzed reactions of aryldiazoacetates. J. Am. Chem. Soc. 129, 6090–6091 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Chen, L. et al. An inexpensive and recyclable silver-foil catalyst for the cyclopropanation of alkenes with diazoacetates under mechanochemical conditions. Angew. Chem. Int. Ed. 54, 11084–11087 (2015).

    Article  CAS  Google Scholar 

  100. Chen, L., Leslie, D., Coleman, M. G. & Mack, J. Recyclable heterogeneous metal foil-catalyzed cyclopropenation of alkynes and diazoacetates under solvent-free mechanochemical reaction conditions. Chem. Sci. 9, 4650–4661 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Vilaivan, T. Crush it safely: safety aspects of mechanochemical Grignard synthesis. ACS Chem. Health Saf. 29, 132–134 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the European Union, WEFO, Cardiff University and Cambridge Reactor Design for a Knowledge Economy and Skills Scholarship (KESS2) to A.C.J., the Leverhulme Trust for a research grant (RPG-2019-260) to J.A.L. and Syngenta and EPSRC for an iCASE award (EP/W522077/1) to S.R.B.

Author information

Authors and Affiliations

Authors

Contributions

A.C.J., J.A.L., S.R.B. and D.L.B. created the initial outline for the review. All further drafts were written by contributions from and discussions with all the authors.

Corresponding author

Correspondence to Duncan L. Browne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, A.C., Leitch, J.A., Raby-Buck, S.E. et al. Mechanochemical techniques for the activation and use of zero-valent metals in synthesis. Nat. Synth 1, 763–775 (2022). https://doi.org/10.1038/s44160-022-00106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00106-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing