Abstract
Since the first report on Ti3C2Tx in 2011, the family of two-dimensional transition metal carbides, nitrides, and carbonitrides (MXenes) has increased substantially to include single and multi-element MXenes, with many more yet to be synthesized but predicted to possess attractive properties. To synthesize these elusive MXenes as well as to improve and scale up the manufacturing of known MXenes, a deeper mechanistic understanding of their synthesis processes is necessary, from the precursors to the etching–exfoliation and final intercalation–delamination steps. Here we examine computational modelling and in situ and ex situ characterization data to rationalize the reactivity and selectivity of MXenes towards various common etching and delamination methods. We discuss the effects of MAX phases, the predominant precursor, and other non-MAX layered materials on MXene synthesis and their resultant properties. Finally, we summarize the parameters behind successful (and unsuccessful) etching and delamination protocols. By highlighting the factors behind each step, we hope to guide the future development of MXenes with improved quality, yield and tunable properties.

This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).
Gogotsi, Y. & Anasori, B. The rise of MXenes. ACS Nano 13, 8491–8494 (2019).
VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021).
Gogotsi, Y. & Huang, Q. MXenes: two-dimensional building blocks for future materials and devices. ACS Nano 15, 5775–5780 (2021).
Shayesteh Zeraati, A. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield and enhanced capacitance. Nanoscale 13, 3572–3580 (2021).
Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J. & Zhang, C. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021).
Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).
Lipatov, A. et al. Electrical and elastic properties of individual single‐layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6, 1901382 (2020).
Lim, K. R. G. et al. Rational design of two-dimensional transition metal Carbide/Nitride (MXene) hybrids and nanocomposites for catalytic energy storage and conversion. ACS Nano 14, 10834–10864 (2020).
Saravanan, P., Rajeswari, S., Kumar, J. A., Rajasimman, M. & Rajamohan, N. Bibliometric analysis and recent trends on MXene research—a comprehensive review. Chemosphere 286, 131873 (2022).
Wei, Y., Zhang, P., Soomro, R. A., Zhu, Q. & Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 33, 2103148 (2021).
Anasori, B. & Gogotsi, Y. (eds) 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications (Springer, 2019); https://doi.org/10.1007/978-3-030-19026-2
Wyatt, B. C., Rosenkranz, A. & Anasori, B. 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33, 2007973 (2021).
Hope, M. A. et al. NMR reveals the surface functionalisation of Ti3C2 MXene. Phys. Chem. Chem. Phys. 18, 5099–5102 (2016).
Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).
Naguib, M., Unocic, R. R., Armstrong, B. L. & Nanda, J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides ‘MXenes’. Dalton Trans. 44, 9353–9358 (2015).
Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015).
Nemani, S. K. et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021).
Zhou, J. et al. High-entropy laminate metal carbide (MAX Phase) and its two-dimensional derivative MXene. Chem. Mater. 34, 2098–2106 (2022).
Naguib, M., Barsoum, M. W. & Gogotsi, Y. Ten years of progress in the synthesis and development of MXenes. Adv. Mater. 33, 2103393 (2021).
Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).
Zhang, J. et al. Scalable manufacturing of free‐standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).
Shuck, C. E. et al. Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28, 326–338 (2021).
Verger, L., Natu, V., Carey, M. & Barsoum, M. W. MXenes: an introduction of their synthesis, select properties and applications. Trends Chem. 1, 656–669 (2019).
Shuck, C. E. et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020).
Xu, C. et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nat. Mater. 14, 1135–1141 (2015).
Fan, Y. et al. Recent advances in growth of transition metal carbides and nitrides (MXenes) crystals. Adv. Funct. Mater. 32, 2111357 (2022).
Oyama, S. T. (ed.) The Chemistry of Transition Metal Carbides and Nitrides (Springer, 1996); https://doi.org/10.1007/978-94-009-1565-7
Oyama, S. T. Preparation and catalytic properties of transition metal carbides and nitrides. Catal. Today 15, 179–200 (1992).
Wuchina, E., Opila, E., Opeka, M., Fahrenholtz, B. & Talmy, I. UHTCs: ultra-high temperature ceramic materials for extreme environment applications. Electrochem. Soc. Interface 16, 30–36 (2007).
Han, M. et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 142, 19110–19118 (2020).
Hantanasirisakul, K. et al. Evidence of a magnetic transition in atomically thin Cr2TiC2Tx MXene. Nanoscale Horiz. 5, 1557–1565 (2020).
Zhou, J. et al. Synthesis and electrochemical properties of two-dimensional hafnium carbide. ACS Nano 11, 3841–3850 (2017).
Tao, Q. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017).
Hong, W., Wyatt, B. C., Nemani, S. K. & Anasori, B. Double transition-metal MXenes: atomistic design of two-dimensional carbides and nitrides. MRS Bull. 45, 850–861 (2020).
Sokol, M., Natu, V., Kota, S. & Barsoum, M. W. On the chemical diversity of the MAX phases. Trends Chem. 1, 210–223 (2019).
Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2019).
Weidman, M. C., Esposito, D. V., Hsu, Y.-C. & Chen, J. G. Comparison of electrochemical stability of transition metal carbides (WC, W2C, Mo2C) over a wide pH range. J. Power Sources 202, 11–17 (2012).
Mikeska, K. R., Bennison, S. J. & Grise, S. L. Corrosion of ceramics in aqueous hydrofluoric acid. J. Am. Ceram. Soc. 83, 1160–1164 (2004).
Khaledialidusti, R., Khazaei, M., Khazaei, S. & Ohno, K. High-throughput computational discovery of ternary-layered MAX phases and prediction of their exfoliation for formation of 2D MXenes. Nanoscale 13, 7294–7307 (2021).
Gkountaras, A. et al. Mechanical exfoliation of select MAX Phases and Mo4Ce4Al7C3 single crystals to produce MAXenes. Small 16, 1905784 (2020).
Dahlqvist, M. & Rosen, J. Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases. Nanoscale 12, 785–794 (2020).
Dahlqvist, M., Petruhins, A., Lu, J., Hultman, L. & Rosen, J. Origin of chemically ordered atomic laminates (i-MAX): expanding the elemental space by a theoretical/experimental approach. ACS Nano 12, 7761–7770 (2018).
Khazaei, M. et al. Insights into exfoliation possibility of MAX phases to MXenes. Phys. Chem. Chem. Phys. 20, 8579–8592 (2018).
Urbankowski, P. et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385–11391 (2016).
Magnuson, M. & Mattesini, M. Chemical bonding and electronic-structure in MAX phases as viewed by X-ray spectroscopy and density functional theory. Thin Solid Films 621, 108–130 (2017).
Johnson, D., Qiao, Z., Uwadiunor, E. & Djire, A. Holdups in Nitride MXene’s development and limitations in advancing the field of MXene. Small 18, 2106129 (2022).
Han, M. et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020).
Alhabeb, M. et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene). Angew. Chem. Int. Ed. 57, 5444–5448 (2018).
Meshkian, R. et al. Synthesis of two-dimensional molybdenum carbide, Mo2C, from the gallium based atomic laminate Mo2Ga2C. Scr. Mater. 108, 147–150 (2015).
Halim, J. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 26, 3118–3127 (2016).
Lapauw, T. et al. Synthesis of MAX phases in the Hf-Al-C system. Inorg. Chem. 55, 10922–10927 (2016).
Sun, Z., Zou, Y., Tada, S. & Hashimoto, H. Effect of Al addition on pressureless reactive sintering of Ti3SiC2. Scr. Mater. 55, 1011–1014 (2006).
Perevislov, S. N., Sokolova, T. V. & Stolyarova, V. L. The Ti3SiC2 MAX phases as promising materials for high temperature applications: formation under various synthesis conditions. Mater. Chem. Phys. 267, 124625 (2021).
Mathis, T. S. et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021).
Naguib, M. et al. Two-dimensional transition metal carbides. ACS Nano 6, 1322–1331 (2012).
Chen, W. et al. Synthesis and formation mechanism of high‐purity Ti3AlC2 powders by microwave sintering. Int. J. Appl. Ceram. Technol. 17, 778–789 (2020).
Li, M. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 141, 4730–4737 (2019).
Sychev, A. E., Busurina, M. L., Sachkova, N. V. & Vrel, D. Interaction of graphite with a Ti-Al melt during self-propagating high-temperature synthesis. Inorg. Mater. 55, 780–784 (2019).
Fonseca, A. F. et al. Titanium-carbide formation at defective curved graphene-titanium interfaces. MRS Adv. 3, 457–462 (2018).
Shuck, C. E. et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl. Nano Mater. 2, 3368–3376 (2019).
Riley, D. P. & Kisi, E. H. The design of crystalline precursors for the synthesis of Mn – 1AXn phases and their application to Ti3AlC2. J. Am. Ceram. Soc. 90, 2231–2235 (2007).
Sarycheva, A. et al. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 4, eaau0920 (2018).
Verger, L. et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019).
Li, T. et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T = OH, O) via alkali treatment. Angew. Chem. Int. Ed. 57, 6115–6119 (2018).
Chen, H., Ma, H. & Li, C. Host-guest intercalation chemistry in MXenes and its implications for practical applications. ACS Nano 15, 15502–15537 (2021).
Yang, S. et al. Fluoride‐free synthesis of two‐dimensional titanium carbide (MXene) using a binary aqueous system. Angew. Chem. Int. Ed. 57, 15491–15495 (2018).
Pang, S.-Y. et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019).
Jawaid, A. et al. Halogen etch of Ti3AlC2 MAX phase for MXene fabrication. ACS Nano 15, 2771–2777 (2021).
Shi, H. et al. Ambient‐stable two‐dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem. Int. Ed. 60, 8689–8693 (2021).
Shen, M. et al. One‐pot green process to synthesize MXene with controllable surface terminations using molten salts. Angew. Chem. Int. Ed. 60, 27013–27018 (2021).
Sun, Z. et al. Selective lithiation-expansion-microexplosion synthesis of two-dimensional fluoride-free MXene. ACS Mater. Lett. 1, 628–632 (2019).
Natu, V. et al. 2D Ti3C2Tz MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 6, 616–630 (2020).
Soundiraraju, B. & George, B. K. Two-dimensional titanium nitride (Ti2N) MXene: synthesis, characterization, and potential application as surface-enhanced Raman scattering substrate. ACS Nano 11, 8892–8900 (2017).
Djire, A., Zhang, H., Liu, J., Miller, E. M. & Neale, N. R. Electrocatalytic and optoelectronic characteristics of the two-dimensional titanium nitride Ti4N3Tx MXene. ACS Appl. Mater. Interfaces 11, 11812–11823 (2019).
Chen, J. et al. Molten salt shielded synthesis (MS3) of MXene in air. Energy Environ. Mater. https://doi.org/10.1002/eem2.12328 (2021).
Bärmann, P. et al. Scalable synthesis of MAX phase precursors toward titanium-based MXenes for lithium-ion batteries. ACS Appl. Mater. Interfaces 13, 26074–26083 (2021).
Ma, G. et al. Li-ion storage properties of two-dimensional titanium-carbide synthesized via fast one-pot method in air atmosphere. Nat. Commun. 12, 5085 (2021).
Liu, L. et al. Exfoliation and delamination of Ti3C2Tx MXene prepared via molten salt etching route. ACS Nano 16, 111–118 (2022).
Seredych, M. et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31, 3324–3332 (2019).
Lu, J. et al. Tin + 1Cn MXenes with fully saturated and thermally stable Cl terminations. Nanoscale Adv. 1, 3680–3685 (2019).
Lee, J. T. et al. Covalent surface modification of Ti3C2Tx MXene with chemically active polymeric ligands producing highly conductive and ordered microstructure films. ACS Nano 15, 19600–19612 (2021).
Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013).
Srivastava, P., Mishra, A., Mizuseki, H., Lee, K.-R. & Singh, A. K. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces 8, 24256–24264 (2016).
Ibragimova, R., Erhart, P., Rinke, P. & Komsa, H.-P. Surface functionalization of 2D MXenes: trends in distribution, composition and electronic properties. J. Phys. Chem. Lett. 12, 2377–2384 (2021).
Kim, Y.-J. et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 33, 6346–6355 (2021).
Kim, Y. et al. Elementary processes governing V2AlC chemical etching in HF. RSC Adv. 10, 25266–25274 (2020).
Mashtalir, O., Naguib, M., Dyatkin, B., Gogotsi, Y. & Barsoum, M. W. Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid. Mater. Chem. Phys. 139, 147–152 (2013).
Meng, F. et al. MXene sorbents for removal of urea from dialysate: a step toward the wearable artificial kidney. ACS Nano 12, 10518–10528 (2018).
Li, Y., Huang, S., Wei, C., Wu, C. & Mochalin, V. N. Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nat. Commun. 10, 3014 (2019).
Zhou, X., Guo, Y., Wang, D. & Xu, Q. Nano friction and adhesion properties on Ti3C2 and Nb2C MXene studied by AFM. Tribol. Int. 153, 106646 (2021).
Maleski, K., Mochalin, V. N. & Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017).
Kim, D. et al. Nonpolar organic dispersion of 2D Ti3C2Tx MXene flakes via simultaneous interfacial chemical grafting and phase transfer method. ACS Nano 13, 13818–13828 (2019).
Voigt, C. A., Ghidiu, M., Natu, V. & Barsoum, M. W. Anion adsorption, Ti3C2Tz MXene multilayers, and their effect on claylike swelling. J. Phys. Chem. C 122, 23172–23179 (2018).
Kajiyama, S. et al. Enhanced Li-ion accessibility in MXene titanium carbide by steric chloride termination. Adv. Energy Mater. 7, 1601873 (2017).
Natu, V. et al. Effect of base/nucleophile treatment on interlayer ion intercalation, surface terminations, and osmotic swelling of Ti3C2Tz MXene multilayers. Chem. Mater. 34, 678–693 (2022).
Zhao, X. et al. pH, nanosheet concentration and antioxidant affect the oxidation of Ti3C2Tx and Ti2CTx MXene dispersions. Adv. Mater. Interfaces 7, 2000845 (2020).
Hart, J. L. et al. Control of MXenes’ electronic properties through termination and intercalation. Nat. Commun. 10, 522 (2019).
Shpigel, N. et al. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. J. Am. Chem. Soc. 140, 8910–8917 (2018).
Gao, Q. et al. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ. Sci. 13, 2549–2558 (2020).
Chen, H. et al. Pristine titanium carbide MXene films with environmentally stable conductivity and superior mechanical strength. Adv. Funct. Mater. 30, 1906996 (2020).
Deng, Y. et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions. Adv. Mater. 31, 1902432 (2019).
Chen, H. et al. Pristine titanium carbide MXene hydrogel matrix. ACS Nano 14, 10471–10479 (2020).
Ghidiu, M., Lukatskaya, M. R., Zhao, M.-Q., Gogotsi, Y. & Barsoum, M. W. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature 516, 78–81 (2014).
Zhang, J. et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat. Catal. 1, 985–992 (2018).
Li, G. et al. 2D titanium carbide (MXene) based films: expanding the frontier of functional film materials. Adv. Funct. Mater. 31, 2105043 (2021).
Li, Y. et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A)C (A = Fe, Co, Ni, Mn) for tailoring magnetic properties. Proc. Natl Acad. Sci. USA 117, 820–825 (2020).
Jakubczak, M., Szuplewska, A., Rozmysłowska‐Wojciechowska, A., Rosenkranz, A. & Jastrzębska, A. M. Novel 2D MBenes—synthesis, structure and biotechnological potential. Adv. Funct. Mater. 31, 2103048 (2021).
Kumar, H. et al. Tunable magnetism and transport properties in nitride MXenes. ACS Nano 11, 7648–7655 (2017).
Cao, F. et al. Recent advances in oxidation stable chemistry of 2D MXenes. Adv. Mater. 34, 2107554 (2022).
Cui, W., Hu, Z.-Y., Unocic, R. R., Van Tendeloo, G. & Sang, X. Atomic defects, functional groups and properties in MXenes. Chin. Chem. Lett. 32, 339–344 (2021).
Jolly, S., Paranthaman, M. P. & Naguib, M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater. Today Adv. 10, 100139 (2021).
Seh, Z. W. et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 1, 589–594 (2016).
Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).
Bhardwaj, R. & Hazra, A. MXene-based gas sensors. J. Mater. Chem. C 9, 15735–15754 (2021).
Zamhuri, A., Lim, G. P., Ma, N. L., Tee, K. S. & Soon, C. F. MXene in the lens of biomedical engineering: synthesis, applications and future outlook. Biomed. Eng. Online 20, 33 (2021).
Song, M., Pang, S., Guo, F., Wong, M. & Hao, J. Fluoride‐free 2D niobium carbide MXenes as stable and biocompatible nanoplatforms for electrochemical biosensors with ultrahigh sensitivity. Adv. Sci. 7, 2001546 (2020).
Xuan, J. et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angew. Chem. Int. Ed. 55, 14569–14574 (2016).
Halim, J. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 26, 2374–2381 (2014).
Hantanasirisakul, K. et al. Effects of synthesis and processing on optoelectronic properties of titanium carbonitride MXene. Chem. Mater. 31, 2941–2951 (2019).
Maleski, K., Shuck, C. E., Fafarman, A. T. & Gogotsi, Y. The broad chromatic range of two‐dimensional transition metal carbides. Adv. Opt. Mater. 9, 2001563 (2021).
Anasori, B. et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. Nanoscale Horiz. 1, 227–234 (2016).
Acknowledgements
K.R.G.L. acknowledges financial support from the Agency for Science, Technology and Research (A*STAR) Singapore National Science Scholarship (PhD). B.C.W. acknowledges financial support from the National Defense Engineering & Science Graduate Fellowship Program. M.S. acknowledges financial support from Murata Manufacturing, Japan. B.A. acknowledges funding from the US National Science Foundation (grant no. CMMI-2134607). Y.G. acknowledges funding from the US National Science Foundation (grant no. DMR-2041050). Z.W.S. acknowledges the support of the Singapore National Research Foundation (NRF-NRFF2017-04) and Agency for Science, Technology and Research (Central Research Fund Award).
Author information
Authors and Affiliations
Contributions
K.R.G.L., M.S. and B.C.W. conducted the literature review and wrote the manuscript under the supervision of B.A., Y.G. and Z.W.S. All authors have given approval to the final version of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks Qing Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Table 1 and Fig. 1
Rights and permissions
About this article
Cite this article
Lim, K.R.G., Shekhirev, M., Wyatt, B.C. et al. Fundamentals of MXene synthesis. Nat. Synth 1, 601–614 (2022). https://doi.org/10.1038/s44160-022-00104-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44160-022-00104-6
This article is cited by
-
Functional two-dimensional high-entropy materials
Communications Materials (2023)
-
MXene/graphene oxide nanocomposites for friction and wear reduction of rough steel surfaces
Scientific Reports (2023)
-
Chemical tailoring and stitching
Nature Reviews Chemistry (2023)
-
A novel ReS2–Nb2CTx composite as a sensing platform for ultrasensitive and selective electrochemical detection of dipyramidole from human serum
Graphene and 2D Materials (2023)
-
MXenes-mining: a decade of discovery
Graphene and 2D Materials (2023)