Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Construction of a molecular prime link by interlocking two trefoil knots

Abstract

Simple and efficient synthetic routes to topologically complex mechanically interlocked molecules remain scarce owing to the sophisticated three-dimensional entanglement of their structures. We report herein the coordination-driven self-assembly from a trefoil knot to a structure comprising two interlocked homochiral trefoil knots by increasing the length of the ligands. The quadruple interlocking of two trefoil knots of the same handedness gives the resulting molecular prime double trefoil link with a total of 14 crossings. Molecular trefoil knots of single topological chirality are formed via enantiopure ligands. Likewise, a pair of topological enantiomers of the double trefoil link are separately and stereoselectively constructed through chirality transfer from the constituent ligands. The synthesis and topological chirality of the trefoil knot and the double trefoil link have been confirmed using single-crystal X-ray diffraction, mass spectrometry, NMR spectroscopy and circular dichroism spectroscopy. Construction of molecular links from non-trivial knots rather than just trivial macrocycles provides a synthetic strategy for topologically complex mechanically interlocked molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Realization of the interlocking of two trefoil knots imitating a Hopf link.
Fig. 2: Stereoselective syntheses of topologically chiral trefoil knots and double trefoil links.
Fig. 3: X-ray crystal structures of Δ-1, Λ2-2 and Δ2-2.
Fig. 4: The NMR characterization (400 MHz, CD3OD, 298 K) of Λ2-2 and the CD spectra of Δ/Λ-1 and Λ22-2.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article are available from the Cambridge Crystallographic Data Centre with the following codes: Δ-1 (CCDC 2143574), Λ2-2 (CCDC 2143575) and Δ2-2 (CCDC 2143576). Other data that support the findings of this study are available in the paper and Supplementary Information.

References

  1. Lu, C. H., Cecconello, A. & Willner, I. Recent advances in the synthesis and functions of reconfigurable interlocked DNA nanostructures. J. Am. Chem. Soc. 138, 5172–5185 (2016).

    Article  CAS  Google Scholar 

  2. Dabrowski-Tumanski, P. & Sulkowska, J. I. Topological knots and links in proteins. Proc. Natl Acad. Sci. USA 114, 3415–3420 (2017).

    Article  CAS  Google Scholar 

  3. Ashley, C. W. The Ashley Book of Knots (Faber and Faber, 1993).

  4. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  5. Siegel, J. S. Driving the formation of molecular knots. Science 338, 752–753 (2012).

    Article  CAS  Google Scholar 

  6. Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017).

    Article  CAS  Google Scholar 

  7. Sawada, T. & Fujita, M. Folding and assembly of metal-linked peptidic nanostructures. Chem 6, 1861–1876 (2020).

    Article  CAS  Google Scholar 

  8. Frank, M., Johnstone, M. D. & Clever, G. H. Interpenetrated gage structures. Chem. Eur. J. 22, 14104–14125 (2016).

    Article  CAS  Google Scholar 

  9. Inomata, Y., Sawada, T. & Fujita, M. Metal-peptide torus knots from flexible short peptides. Chem 6, 294–303 (2020).

    Article  CAS  Google Scholar 

  10. Leigh, D. A. et al. A molecular endless (74) knot. Nat. Chem. 13, 117–122 (2021).

    Article  CAS  Google Scholar 

  11. Mahadevi, A. S. & Sastry, G. N. Cooperativity in noncovalent interactions. Chem. Rev. 116, 2775–2825 (2016).

    Article  CAS  Google Scholar 

  12. Jamieson, E. M. G., Modicom, F. & Goldup, S. M. Chirality in rotaxanes and catenanes. Chem. Soc. Rev. 47, 5266–5311 (2018).

    Article  CAS  Google Scholar 

  13. Fenlon, E. E. What tangled webs we weave. Nat. Chem. 10, 1078–1079 (2018).

    Article  CAS  Google Scholar 

  14. Carpenter, J. P. et al. Controlling the shape and chirality of an eight-crossing molecular knot. Chem 7, 1534–1543 (2021).

    Article  CAS  Google Scholar 

  15. Gil-Ramírez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015).

    Article  Google Scholar 

  16. Zhang, L. et al. Stereoselective synthesis of a composite knot with nine crossings. Nat. Chem. 10, 1083–1088 (2018).

    Article  CAS  Google Scholar 

  17. Sawada, T., Inomata, Y., Shimokawa, K. & Fujita, M. A metal–peptide capsule by multiple ring threading. Nat. Commun. 10, 5687 (2019).

    Article  CAS  Google Scholar 

  18. Gao, W. X., Feng, H. J., Guo, B. B., Lu, Y. & Jin, G. X. Coordination-directed construction of molecular links. Chem. Rev. 120, 6288–6325 (2020).

    Article  CAS  Google Scholar 

  19. Forgan, R. S., Sauvage, J. P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 111, 5434–5464 (2011).

    Article  CAS  Google Scholar 

  20. Perret-Aebi, L. E., von Zelewsky, A., Dietrich-Buchecker, C. & Sauvage, J. P. Stereoselective synthesis of a topologically chiral molecule: the trefoil knot. Angew. Chem. Int. Ed. 43, 4482–4485 (2004).

    Article  CAS  Google Scholar 

  21. Feigel, M., Ladberg, R., Engels, S., Herbst-Irmer, R. & Frohlich, R. A trefoil knot made of amino acids and steroids. Angew. Chem. Int. Ed. 45, 5698–5702 (2006).

    Article  CAS  Google Scholar 

  22. Leigh, D. A., Pirvu, L. & Schaufelberger, F. Stereoselective synthesis of molecular square and granny knots. J. Am. Chem. Soc. 141, 6054–6059 (2019).

    Article  CAS  Google Scholar 

  23. Greenfield, J. L. & Nitschke, J. R. Self-assembly of double-helical metallopolymers. Acc. Chem. Res. 55, 391–401 (2022).

    Article  CAS  Google Scholar 

  24. Zhang, D. et al. Templation and concentration drive conversion between a FeII12L12 pseudoicosahedron, a FeII4L4 tetrahedron, and a FeII2L3 helicate. J. Am. Chem. Soc. 144, 1106–1112 (2022).

    Article  CAS  Google Scholar 

  25. Sun, Y., Chen, C., Liu, J. & Stang, P. J. Recent developments in the construction and applications of platinum-based metallacycles and metallacages via coordination. Chem. Soc. Rev. 49, 3889–3919 (2020).

    Article  CAS  Google Scholar 

  26. Ponnuswamy, N., Cougnon, F. B., Clough, J. M., Pantos, G. D. & Sanders, J. K. Discovery of an organic trefoil knot. Science 338, 783–785 (2012).

    Article  CAS  Google Scholar 

  27. Caprice, K. et al. Diastereoselective amplification of a mechanically chiral [2]catenane. J. Am. Chem. Soc. 143, 11957–11962 (2021).

    Article  CAS  Google Scholar 

  28. Fenlon, E. E. Open problems in chemical topology. Eur. J. Org. Chem. 2008, 5023–5035 (2008).

    Article  Google Scholar 

  29. Katsonis, N. et al. Knotting a molecular strand can invert macroscopic effects of chirality. Nat. Chem. 12, 939–944 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (22031003 and 21720102004 (G.-X.J.)) and the Shanghai Science Technology Committee (19DZ2270100 (G.-X.J.)).

Author information

Authors and Affiliations

Authors

Contributions

Z.C. and G.-X.J. designed the experimental protocol. Z.C. performed the synthesis and characterization studies, solved the crystal structure and wrote the manuscript. G.-X.J. directed the research. Z.C. and G.-X.J. analysed the experimental results and revised the manuscript.

Corresponding author

Correspondence to Guo-Xin Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Kari Rissanen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2, Figs. 1–55, experimental details, X-ray crystallographic details and refs. 1–41.

Supplementary Data 1

Crystallographic data for Δ-1 (CCDC 2143574).

Supplementary Data 2

Crystallographic data for Λ2-2 (CCDC 2143575).

Supplementary Data 3

Crystallographic data for Δ2-2 (CCDC 2143576).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, Z., Jin, GX. Construction of a molecular prime link by interlocking two trefoil knots. Nat. Synth 1, 635–640 (2022). https://doi.org/10.1038/s44160-022-00094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00094-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing