Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of (+)-ribostamycin by catalytic, enantioselective hydroamination of benzene


Aminoglycosides (AGs) represent a large group of pseudoglycoside natural products in which several different sugar moieties are harnessed to an aminocyclitol core. AGs constitute a major class of antibiotics that target the prokaryotic ribosome of many problematic pathogens. Hundreds of AGs have been isolated to date, with 1,3-diaminocyclohexanetriol, known as 2-deoxystreptamine (2-DOS), being the most abundant aglycon core. However, due to their diverse and complex architectures, all AG-based drugs are either natural substances or analogues prepared by late-stage modifications. Synthetic approaches to AGs are rare and lengthy; most studies involve semisynthetic reunion of modified fragments. Here we report a bottom-up chemical synthesis of the 2-DOS-based AG antibiotic ribostamycin, which proceeds in ten linear operations from benzene. A key enabling transformation involves a copper-catalysed, enantioselective, dearomative hydroamination, which sets the stage for the rapid and selective introduction of the remaining 2-DOS heteroatom functionality. This work demonstrates how the combination of a tailored, dearomative logic and strategic use of subsequent olefin functionalizations can provide practical and concise access to the AG class of compounds.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Aminoglycosides and synthetic considerations.
Fig. 2: Design of copper-catalysed 1,2-hydroamination of benzene.
Fig. 3: Enantioselective copper-catalysed 1,2-hydroamination of benzene.
Fig. 4: Computational studies.
Fig. 5: Synthesis of (+)-ribostamycin (2) from benzene (14).

Data availability

The experimental data as well as the characterization data for all the compounds prepared during these studies are provided in the Supplementary Information. Cartesian coordinates of all optimized geometries are provided in a separate file in format. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2113321 (30). Copies of the data can be obtained free of charge via


  1. Schatz, A., Bugle, E. & Waksman, S. A. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55, 66–69 (1944).

    Article  CAS  Google Scholar 

  2. Kirst, H. A. & Marinelli, F. in Antimicrobials: New and Old Molecules in the Fight Against Multi-resistant Bacteria (eds Marinelli, F. & Genilloud, O.) 193–209 (Springer, 2014).

  3. Becker, B. & Cooper, M. A. Aminoglycoside antibiotics in the 21st century. ACS Chem. Biol. 8, 105–115 (2013).

    Article  CAS  Google Scholar 

  4. Shomura, T. et al. Studies on antibiotic SF-733, a new antibiotic. I. Taxonomy, isolation and characterization. J. Antibiot. 23, 155–161 (1970).

    Article  CAS  Google Scholar 

  5. Waksman, S. A. & Lechevalier, H. A. Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109, 305–307 (1949).

    Article  CAS  Google Scholar 

  6. Weinstein, M. J. et al. Antibiotic 6640, a new Micromonospora-produced aminoglycoside antibiotic. J. Antibiot. 23, 551–554 (1970).

    Article  CAS  Google Scholar 

  7. Magnet, S. & Blanchard, J. S. Molecular Insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–498 (2005).

    Article  CAS  Google Scholar 

  8. Borovinskaya, M. A. et al. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. Nature Struct. Mol. Biol 14, 727–732 (2007).

    Article  CAS  Google Scholar 

  9. Garneau-Tsodikova, S. & Labby, J. K. Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Med. Chem. Comm 7, 11–27 (2016).

    Article  CAS  Google Scholar 

  10. Ramirez, M. S. & Tolmasky, M. E. Aminoglycoside modifying enzymes. Drug Resist. Updat. 13, 151–171 (2010).

    Article  CAS  Google Scholar 

  11. Wargo, K. A. & Edwards, J. D. Aminoglycoside-induced nephrotoxicity. J. Pharm. Pract. 27, 573–577 (2014).

    Article  Google Scholar 

  12. Chandrika, N. T. & Garneau-Tsodikova, S. Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chem. Soc. Rev. 47, 1189–1249 (2018).

    Article  Google Scholar 

  13. Abdul-Mutakabbir, J. C., Kebriaei, R., Jorgensen, S. C. J. & Rybak, M. J. Teaching an old class new tricks: a novel semi-synthetic aminoglycoside, plazomicin. Infect. Dis. Ther. 8, 155–170 (2019).

    Article  Google Scholar 

  14. Umezawa, S. Recent advances in the synthesis of aminoglycoside antibiotics. Pure Appl. Chem. 50, 1453–1476 (1978).

    Article  CAS  Google Scholar 

  15. Usui, T. & Umezawa, S. Total synthesis of neomycin B. Carbohydr. Res. 174, 133–143 (1988).

    Article  CAS  Google Scholar 

  16. Fukami, H., Kitahara, K. & Nakajima, M. Total synthesis of ribostamycin. Tetrahedron Lett. 17, 545–548 (1976).

    Article  Google Scholar 

  17. Yoshikawa, M., Ikeda, Y., Takenaka, K., Torihara, M. & Kitagawa, I. Synthesis of ribostamycin. an application of a chemical conversion method from carbohydrate to aminocyclitol. Chem. Lett. 13, 2097–2100 (1984).

    Article  Google Scholar 

  18. Busscher, G. F., Rutjes, F. P. J. T. & van Delft, F. L. 2-Deoxystreptamine: central scaffold of aminoglycoside antibiotics. Chem. Rev. 105, 775–792 (2005).

    Article  CAS  Google Scholar 

  19. Busscher, G. F., Rutjes, F. P. J. T. & van Delft, F. L. Synthesis of a protected enantiomerically pure 2-deoxystreptamine derivative from d-allylglycine. Tetrahedron Lett. 45, 3629–3632 (2004).

    Article  CAS  Google Scholar 

  20. Kitagawa, I., Yoshikawa, M., Ikeda, Y. & Kayakiri, H. Reductive one-step elimination of an acetoxyl residue at β-position of a nitro group: syntheses of (−)-shikimic acid from d-mannose and 2-deoxystreptamine pentaacetate from N-acetyl-d-glucosamine. Heterocycles 17, 209–214 (1982).

    Article  Google Scholar 

  21. Trost, B. M. & Malhotra, S. Asymmetric stereodivergent strategy towards aminocyclitols. Chem. Eur. J. 20, 8288–8292 (2014).

    Article  CAS  Google Scholar 

  22. Roche, S. P. & Porco, J. A. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

    Article  CAS  Google Scholar 

  23. Müller, T. E., Hultzsch, K. C., Yus, M., Foubelo, F. & Tada, M. Hydroamination: direct addition of amines to alkenes and alkynes. Chem. Rev. 108, 3795–3892 (2008).

    Article  Google Scholar 

  24. Bryce-Smith, D., Gilbert, A. & Manning, C. 1,2-Photoaddition of primary and secondary amines to benzene. Angew. Chem. Int. Ed. 13, 341–342 (1974).

    Article  Google Scholar 

  25. Southgate, E. H., Pospech, J., Fu, J., Holycross, D. R. & Sarlah, D. Dearomative dihydroxylation with arenophiles. Nature Chem 8, 922–928 (2016).

    Article  CAS  Google Scholar 

  26. Liu, R. Y. & Buchwald, S. L. CuH-catalyzed olefin functionalization: from hydroamination to carbonyl addition. Acc. Chem. Res. 53, 1229–1243 (2020).

    Article  CAS  Google Scholar 

  27. Langlois, J.-B. & Alexakis, A. in Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis (ed. Kazmaier, U.) 235–268 (Springer, 2012).

  28. Xi, Y. & Hartwig, J. F. Mechanistic studies of copper-catalyzed asymmetric hydroboration of alkenes. J. Am. Chem. Soc. 139, 12758–12772 (2017).

    Article  CAS  Google Scholar 

  29. Yang, Y., Shi, S. L., Niu, D., Liu, P. & Buchwald, S. L. Catalytic asymmetric hydroamination of unactivated internal olefins to aliphatic amines. Science 349, 62–66 (2015).

    Article  CAS  Google Scholar 

  30. Lodh, R. S., Borah, A. J. & Phukan, P. Synthesis of bromohydrins using NBS in presence of iodine as catalyst. Indian J. Chem. 53B, 1425–1429 (2014).

    CAS  Google Scholar 

  31. Malik, G., Ferry, A., Guinchard, X. & Crich, D. Synthesis of β-hydroxy O-alkyl hydroxylamines from epoxides using a convenient and versatile two-step procedure. Synthesis 45, 65–74 (2013).

    CAS  Google Scholar 

  32. Shimomura, N. & Mukaiyama, T. Catalytic synthesis of β-d-ribofuranosides from d-ribofuranose and alcohols. Chem. Lett. 22, 1941–1944 (1993).

    Article  Google Scholar 

  33. Glibstrup, E. & Pedersen, C. M. Scalable synthesis of anomerically pure orthogonal-protected GlcN3 and GalN3 from d-glucosamine. Org. Lett. 18, 4424–4427 (2016).

    Article  CAS  Google Scholar 

  34. Dey, R. T. & Sarkar, T. K. On the [3 + 2] annulation of cyclic allylsilanes with N-phenyltriazolinedione: an enantio- and diastereoselective synthesis of cis-1,3-diaminocyclitols. J. Org. Chem. 75, 4521–4529 (2010).

    Article  CAS  Google Scholar 

  35. Clique, B. et al. Synthesis of a library of stereo- and regiochemically diverse aminoglycoside derivatives. Org. Biomol. Chem. 3, 2776–2785 (2005).

    Article  CAS  Google Scholar 

Download references


Financial support for this work was provided by the University of Illinois, the University of Pittsburgh, and the NIH/National Institute of General Medical Sciences (GM122891 to D.S. and R35 GM128779 to P.L.). Bristol-Myers Squibb, Amgen, Eli Lilly and FMC are acknowledged for unrestricted research support. We thank D. Olson and L. Zhu for NMR spectroscopic assistance, D. L. Gray and A. S. Shved for X-ray crystallographic analysis assistance and F. Sun for mass spectrometric assistance. Density functional theory calculations were performed at the Center for Research Computing of the University of Pittsburgh and the Extreme Science and Engineering Discovery Environment (XSEDE) supported by the National Science Foundation. We thank S. E. Denmark and C. J. Huck for critical proofreading of this manuscript.

Author information

Authors and Affiliations



C.N.U. and D.S. conceived the idea, designed the experiments, analysed the data and prepared the manuscript with the input of all authors. P.G. assisted with optimization and screening efforts involving dearomative hydroamination. Y.Z. carried out the computational studies with P.L. providing guidance. S.L., K.S.L. and J.M.N. assisted with preparation of key intermediates.

Corresponding authors

Correspondence to Peng Liu or David Sarlah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Floris Rutjes and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Photographs 1 and 2, and Tables 1–5.

Supplementary Data 1

Crystal structure of intermediate compound 30 CCDC 2113321.

Supplementary Data 2

Cartesian coordinates of all optimized geometries.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ungarean, C.N., Galer, P., Zhang, Y. et al. Synthesis of (+)-ribostamycin by catalytic, enantioselective hydroamination of benzene. Nat. Synth 1, 542–547 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing