Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Constructing ambivalent imidazopyridinium-linked covalent organic frameworks

Abstract

Covalent organic frameworks (COFs) are dynamic covalent porous organic materials synthesized from molecular organic building blocks. However, the chemical linkages used to construct COFs are limited by the dynamic bond formation needed to ensure crystallinity. Thus, there is a continual search for new, chemically stable linkages that tailor both the chemical properties and topologies of COFs. As opposed to electrophilic linkages used to construct COFs, nucleophilic linkages that can react with electron-deficient species are rare. Here we report the synthesis of picolinaldehyde-derived imine-linked COFs that can be transformed into imidazopyridinium-linked COFs (IP-COFs) with a Lieb-like lattice. IP-COFs serve as precursors to ambivalent N-heterocyclic carbenes that can dissociate disulfide bonds to form carbon–sulfur bonds. IP-COFs exhibit a vastly improved sulfur redox chemistry when used as cathode materials in lithium–sulfur batteries, as they achieve a rate performance of 540 mAh g−1 (10 C) and a high areal capacity of 6.2 mAh cm−2 with a high sulfur loading of 9 mg cm−2 and a low electrolyte-to-sulfur ratio of 6 µl mg−1. In addition, the ionicity of the linkages enables the cleavage of IP-COFs into highly crystalline flakes with well-defined fringes, as resolved by atomic force microscopy and transmission electron microscopy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and construction of chemically ambivalent COFs.
Fig. 2: Synthesis of IP-COF-1 and IP-COF-2.
Fig. 3: Characterizations of Im-COF-1 and IP-COF-1.
Fig. 4: Microscopic structure characterization of IP-COFs by cryo-TEM.
Fig. 5: AFM study of IP-COF-1.
Fig. 6: Sulfur-reactive IP-COFs.
Fig. 7: Promoting sulfur redox chemistry via IP-COFs.
Fig. 8: Performance of Li-S batteries.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2132342 (IP-model-1) and 2150060 (IP-model-2). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures. Source data are provided with this paper. All other data supporting the findings of this study are available within the paper and its Supplementary Information. Data are also available from the corresponding author upon reasonable request.

References

  1. Lyle, S. J., Waller, P. J. & Yaghi, O. M. Covalent organic frameworks: organic chemistry extended into two and three dimensions. Trends Chem. 1, 172–184 (2019).

    Article  CAS  Google Scholar 

  2. Segura, J. L., Royuela, S. & Mar Ramos, M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 48, 3903–3945 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Rodríguez-San-Miguel, D. & Zamora, F. Processing of covalent organic frameworks: an ingredient for a material to succeed. Chem. Soc. Rev. 48, 4375–4386 (2019).

    Article  PubMed  Google Scholar 

  4. Li, X., Yadav, P. & Loh, K. P. Function-oriented synthesis of two-dimensional (2D) covalent organic frameworks—from 3D solids to 2D sheets. Chem. Soc. Rev. 49, 4835–4866 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Springer, M. A., Liu, T.-J., Kuc, A. & Heine, T. Topological two-dimensional polymers. Chem. Soc. Rev. 49, 2007–2019 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Freund, R. et al. 25 years of reticular chemistry. Angew. Chem. Int. Ed. 60, 23946–23974 (2021).

    Article  CAS  Google Scholar 

  8. Das, S., Feng, J. & Wang, W. Covalent organic frameworks in separation. Annu. Rev. Chem. Biomol. Eng. 11, 131–153 (2020).

    Article  PubMed  Google Scholar 

  9. Li, Y. et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving. Nat. Commun. 11, 599 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhao, S. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20, 1551–1558 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Fenton, J. L., Burke, D. W., Qian, D., Olvera de la Cruz, M. & Dichtel, W. R. Polycrystalline covalent organic framework films act as adsorbents, not membranes. J. Am. Chem. Soc. 143, 1466–1473 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Li, X. et al. Covalent-organic-framework-based Li–CO2 batteries. Adv. Mater. 31, 1905879 (2019).

    Article  CAS  Google Scholar 

  13. Zhang, K. et al. Covalent organic frameworks: emerging organic solid materials for energy and electrochemical applications. ACS Appl. Mater. Interfaces 12, 27821–27852 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Yu, M. et al. A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-ion energy storage devices. J. Am. Chem. Soc. 142, 19570–19578 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, X. et al. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 141, 6623–6630 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Gong, Y.-N. et al. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 142, 16723–16731 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Han, X. et al. Chiral covalent organic frameworks: design, synthesis and property. Chem. Soc. Rev. 49, 6248–6272 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, S. et al. Proton-filtering covalent organic frameworks with superior nitrogen penetration flux promote ambient ammonia synthesis. Nat. Catal. 4, 322–331 (2021).

    Article  CAS  Google Scholar 

  20. Evans, A. M. et al. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science 361, eaar7883 (2018).

    Google Scholar 

  21. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Smith, B. J. & Dichtel, W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 136, 8783–8789 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Karak, S. et al. Constructing ultraporous covalent organic frameworks in seconds via an organic terracotta process. J. Am. Chem. Soc. 139, 1856–1862 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Li, X. et al. Rapid, scalable construction of highly crystalline acylhydrazone two-dimensional covalent organic frameworks via dipole-induced antiparallel stacking. J. Am. Chem. Soc. 142, 4932–4943 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Li, X. et al. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks. Nat. Commun. 9, 2998 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zhang, B. et al. Crystalline dioxin-linked covalent organic frameworks from irreversible reactions. J. Am. Chem. Soc. 140, 12715–12719 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Wei, P.-F. et al. Benzoxazole-linked ultrastable covalent organic frameworks for photocatalysis. J. Am. Chem. Soc. 140, 4623–4631 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Lyu, H., Diercks, C. S., Zhu, C. & Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 141, 6848–6852 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Guan, X. et al. Chemically stable polyarylether-based covalent organic frameworks. Nat. Chem. 11, 587–594 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, P.-L., Ding, S.-Y., Zhang, Z.-C., Wang, Z.-P. & Wang, W. Constructing robust covalent organic frameworks via multicomponent reactions. J. Am. Chem. Soc. 141, 18004–18008 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Li, X.-T. et al. Construction of covalent organic frameworks via three-component one-pot Strecker and Povarov reactions. J. Am. Chem. Soc. 142, 6521–6526 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Gropp, C., Ma, T., Hanikel, N. & Yaghi, O. M. Design of higher valency in covalent organic frameworks. Science 370, eabd6406 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Zhao, C. et al. Urea-linked covalent organic frameworks. J. Am. Chem. Soc. 140, 16438–16441 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, C., Lyu, H., Ji, Z., Zhu, C. & Yaghi, O. M. Ester-linked crystalline covalent organic frameworks. J. Am. Chem. Soc. 142, 14450–14454 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Ning, G.-H. et al. Salicylideneanilines-based covalent organic frameworks as chemoselective molecular sieves. J. Am. Chem. Soc. 139, 8897–8904 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Li, X. et al. Molecular engineering of bandgaps in covalent organic frameworks. Chem. Mater. 30, 5743–5749 (2018).

    Article  CAS  Google Scholar 

  37. Jhulki, S. et al. Humidity sensing through reversible isomerization of a covalent organic framework. J. Am. Chem. Soc. 142, 783–791 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Dalapati, S., Jin, E., Addicoat, M., Heine, T. & Jiang, D. Highly emissive covalent organic frameworks. J. Am. Chem. Soc. 138, 5797–5800 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Li, X. et al. Tuneable near white-emissive two-dimensional covalent organic frameworks. Nat. Commun. 9, 2335 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Jin, E. et al. Designed synthesis of stable light-emitting two-dimensional sp2 carbon-conjugated covalent organic frameworks. Nat. Commun. 9, 4143 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jin, E. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 357, 673 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Wang, M. et al. High-mobility semiconducting two-dimensional conjugated covalent organic frameworks with p-type doping. J. Am. Chem. Soc. 142, 21622–21627 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Wei, S. et al. Semiconducting 2D triazine-cored covalent organic frameworks with unsubstituted olefin linkages. J. Am. Chem. Soc. 141, 14272–14279 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Jiang, S.-Y. et al. Aminal-linked covalent organic frameworks through condensation of secondary amine with aldehyde. J. Am. Chem. Soc. 141, 14981–14986 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Yang, Z. et al. Arylamine-linked 2D covalent organic frameworks for efficient pseudocapacitive energy storage. Angew. Chem. Int. Ed. 60, 20754–20759 (2021).

    Article  CAS  Google Scholar 

  46. Arduengo, A. J., Harlow, R. L. & Kline, M. A stable crystalline carbene. J. Am. Chem. Soc. 113, 361–363 (1991).

    Article  CAS  Google Scholar 

  47. Hutt, J. T. & Aron, Z. D. Efficient, single-step access to imidazo[1,5-a]pyridine N-heterocyclic carbene precursors. Org. Lett. 13, 5256–5259 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Ma, H. et al. Cationic covalent organic frameworks: a simple platform of anionic exchange for porosity tuning and proton conduction. J. Am. Chem. Soc. 138, 5897–5903 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. Mi, Z. et al. Stable radical cation-containing covalent organic frameworks exhibiting remarkable structure-enhanced photothermal conversion. J. Am. Chem. Soc. 141, 14433–14442 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Du, Y. et al. Ionic covalent organic frameworks with spiroborate linkage. Angew. Chem. Int. Ed. 55, 1737–1741 (2016).

    Article  CAS  Google Scholar 

  51. Li, Z. et al. Three-dimensional ionic covalent organic frameworks for rapid, reversible, and selective ion exchange. J. Am. Chem. Soc. 139, 17771–17774 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Roeser, J. et al. Anionic silicate organic frameworks constructed from hexacoordinate silicon centres. Nat. Chem. 9, 977 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Zhang, Y. et al. Three‐dimensional anionic cyclodextrin‐based covalent organic frameworks. Angew. Chem. Int. Ed. 56, 16313–16317 (2017).

    Article  CAS  Google Scholar 

  54. Zhang, Y. et al. Molecularly soldered covalent organic frameworks for ultrafast precision sieving. Sci. Adv. 7, eabe8706 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hu, Y. et al. Crystalline lithium imidazolate covalent organic frameworks with high Li-ion conductivity. J. Am. Chem. Soc. 141, 7518–7525 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. Kong, Y. et al. Tight covalent organic framework membranes for efficient anion transport via molecular precursor engineering. Angew. Chem. Int. Ed. 60, 17638–17646 (2021).

    Article  CAS  Google Scholar 

  57. Li, X. et al. Solution-processable covalent organic framework electrolytes for all-solid-state Li–organic batteries. ACS Energy Lett. 5, 3498–3506 (2020).

    Article  CAS  Google Scholar 

  58. Huang, N., Wang, P., Addicoat Matthew, A., Heine, T. & Jiang, D. Ionic covalent organic frameworks: design of a charged interface aligned on 1D channel walls and its unusual electrostatic functions. Angew. Chem. Int. Ed. 56, 4982–4986 (2017).

    Article  CAS  Google Scholar 

  59. Ying, Y. et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 142, 4472–4480 (2020).

    Article  CAS  PubMed  Google Scholar 

  60. Uribe-Romo, F. J. et al. A crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570–4571 (2009).

    Article  CAS  PubMed  Google Scholar 

  61. Kandambeth, S. et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. Begtrup, M. Reactions of 4-halogeno- and 4-methylthio-imidazolium salts with sulphide and methanethiolate ions. J. Chem. Soc. Perkin Trans. I 1979, 521–524 (1979).

    Article  Google Scholar 

  63. Zeng, Q. et al. Long-chain solid organic polysulfide cathode for high-capacity secondary lithium batteries. Energy Storage Mater. 12, 30–36 (2018).

    Article  Google Scholar 

  64. Wang, X. et al. Dense-stacking porous conjugated polymer as reactive-type host for high-performance lithium sulfur batteries. Angew. Chem. Int. Ed. 60, 11359–11369 (2021).

    Article  CAS  Google Scholar 

  65. Ye, J. C. et al. Strategies to explore and develop reversible redox reactions of Li–S in electrode architectures using silver–polyoxometalate clusters. J. Am. Chem. Soc. 140, 3134–3138 (2018).

    Article  CAS  PubMed  Google Scholar 

  66. Yan, H. et al. In situ generated Li2S–C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading. Nano Lett. 19, 3280–3287 (2019).

    Article  CAS  PubMed  Google Scholar 

  67. Yu, B. et al. Outstanding catalytic effects of 1T′-MoTe2 quantum dots@3D graphene in shuttle-free Li–S batteries. ACS Nano 15, 13279–13288 (2021).

    Article  CAS  Google Scholar 

  68. Du, Z. et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium–sulfur batteries. J. Am. Chem. Soc. 141, 3977–3985 (2019).70

    Article  CAS  PubMed  Google Scholar 

  69. Li, B.-Q. et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium–sulfur batteries. InfoMat 1, 533–541 (2019).

    Article  CAS  Google Scholar 

  70. Zhang, P. et al. Covalent organic framework nanofluidic membrane as a platform for highly sensitive bionic thermosensation. Nat. Commun. 12, 1844 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.P.L. acknowledges the NRF-CRP grant ‘Two-Dimensional Covalent Organic Framework: Synthesis and Applications,’ grant no. NRF-CRP16-2015-02, funded by the National Research Foundation, Prime Minister’s Office, Singapore. U.M. acknowledges support from the Singapore Ministry of Education, grant no. MOE-MOET2EP10120-0004. J.L. acknowledges support from the National Natural Science Foundation of China (grant no. 11974156), the Guangdong International Science Collaboration Project (grant no. 2019A050510001), the Guangdong Innovative and Entrepreneurial Research Team Program (grant no. 2019ZT08C044), the Shenzhen Science and Technology Program (no. KQTD20190929173815000 and no. 20200925161102001), the Science, Technology and Innovation Commission of Shenzhen Municipality (no. ZDSYS20190902092905285). The TEM/scanning transmission electron microscopy characterization was performed at the Cryo-EM Center and Pico Center from SUSTech Core Research Facilities that receives support from the Presidential Fund and Development and Reform Commission of Shenzhen Municipality. We thank S. Garaj (National University of Singapore) for kindly allowing access to the Asylum Cypher ES AFM.

Author information

Authors and Affiliations

Authors

Contributions

Under the supervision of K.P.L., X.L. conceived the project and designed the experiments. X.L. conducted the experiments and analysed the data. K.Z. performed the battery tests and analysed the results. G.W. measured the high-resolution TEM of the COFs under the supervision of J.L. Y.Y. helped to synthesize the COF building units, confirm the melting point and grow the single crystals of the COF model compounds. G.Z. performed the AFM measurements. T.G. measured the TEM images of COFs under the supervision of U.M. W.P.D.W. collected and resolved the single crystal data of the COF model compound. X.L. discussed the project with F.C. and H.-S.X. K.X. provided the battery testing platform during the revision of the manuscript. X.L. and K.P.L. co-wrote the manuscript.

Corresponding authors

Correspondence to Junhao Lin or Kian Ping Loh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

experimental details, Figs. 1–50 and Tables 1–5.

Supplementary Data 1

X-ray crystallographic data of IP-model-1.

Supplementary Data 2

X-ray crystallographic data of IP-model-2.

Source data

Source Data Fig. 3b

Solid-state UV-vis absorption of Im-COF-1 and IP-COF-1.

Source Data Fig. 3c

N2 sorption results for Im-COF-1 and IP-COF-1.

Source Data Fig. 5c

AFM profiles of IP-COF-1.

Source Data Fig. 8

Performance of Li-S batteries including battery cycling and rate capability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, K., Wang, G. et al. Constructing ambivalent imidazopyridinium-linked covalent organic frameworks. Nat. Synth 1, 382–392 (2022). https://doi.org/10.1038/s44160-022-00071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00071-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing