Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of γ-graphyne using dynamic covalent chemistry

An Author Correction to this article was published on 14 July 2022

This article has been updated

Abstract

Most attempts to synthesize graphynes are limited to using irreversible coupling reactions, which often result in the formation of nanometre-scale materials that lack long-range order. Here the periodically spsp2-hybridized carbon allotrope, γ-graphyne, was synthesized in bulk via a reversible dynamic alkyne metathesis of alkynyl-substituted benzene monomers. The balance between kinetic and thermodynamic control was managed through the simultaneous use of two different hexa-alkynyl-substituted benzenes as the comonomers to yield crystalline γ-graphyne. Additionally, the ABC staggered interlayer stacking of the graphyne was revealed using powder X-ray and electron diffraction. Finally, the folding behaviour of the few-layer graphyne was also observed on exfoliation, and showed step edges within a single graphyne flake with a height of 9 nm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis of γ-graphyne.
Fig. 2: Structural characterization of γ-graphyne.
Fig. 3: Crystal structure of γ-graphyne with the unit cell and primitive cell.
Fig. 4: Folding behaviour of γ-graphyne.

Similar content being viewed by others

Data availability

Experimental data and characterization data are provided in the Supplementary Information. Crystallographic data for the structure HPB reported in this Article has been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2111647. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

Change history

References

  1. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  2. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  3. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Fan, Q. et al. Biphenylene network: a nonbenzenoid carbon allotrope. Science 372, 852–856 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299–1301 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Malko, D., Neiss, C., Viñes, F. & Görling, A. Competition for graphene: graphynes with direction-dependent Dirac cones. Phys. Rev. Lett. 108, 086804 (2012).

    Article  PubMed  Google Scholar 

  7. Chen, J., Xi, J., Wang, D. & Shuai, Z. Carrier mobility in graphyne should be even larger than that in graphene: a theoretical prediction. J. Phys. Chem. Lett. 4, 1443–1448 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Kang, J., Li, J., Wu, F., Li, S.-S. & Xia, J.-B. Elastic, Electronic, and Optical Properties of Two-Dimensional Graphyne Sheet. J. Phys. Chem. C 115, 20466–20470 (2011).

    Article  CAS  Google Scholar 

  9. Peng, Q., Ji, W. & De, S. Mechanical properties of graphyne monolayers: a first-principles study. Phys. Chem. Chem. Phys. 14, 13385–13391 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Cranford, S. W. & Buehler, M. J. Mechanical properties of graphyne. Carbon 49, 4111–4121 (2011).

    Article  CAS  Google Scholar 

  11. Zhang, Y. Y., Pei, Q. X. & Wang, C. M. Mechanical properties of graphynes under tension: s molecular dynamics study. Appl. Phys. Lett. 101, 081909 (2012).

    Article  Google Scholar 

  12. Hirsch, A. The era of carbon allotropes. Nat. Mater. 9, 868–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Baughman, R. H., Eckhardt, H. & Kertesz, M. Structure–property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J. Chem. Phys. 87, 6687–6699 (1987).

    Article  CAS  Google Scholar 

  14. Kehoe, J. M. et al. Carbon networks based on dehydrobenzoannulenes. 3. Synthesis of graphyne substructures. Org. Lett. 2, 969–972 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Johnson, C. A., Lu, Y. & Haley, M. M. Carbon networks based on benzocyclynes. 6. Synthesis of graphyne substructures via directed alkyne metathesis. Org. Lett. 9, 3725–3728 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Haley, M. M. Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl. Chem. 80, 519–532 (2008).

    Article  CAS  Google Scholar 

  17. Kilde, M. D. et al. Synthesis of radiaannulene oligomers to model the elusive carbon allotrope 6,6,12-graphyne. Nat. Commun. 10, 3714 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gao, Y. et al. The loss of endgroup effects in long pyridyl-endcapped oligoynes on the way to carbyne. Nat. Chem. 12, 1143–1149 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Eisler, S. & Tykwinski, R. R. Expanded radialenes: modular synthesis and characterization of cross-conjugated enyne macrocycles. Angew. Chem. Int. Ed. 38, 1940–1943 (1999).

    Article  CAS  Google Scholar 

  20. Tahara, K. et al. Syntheses and properties of graphyne fragments: trigonally expanded dehydrobenzo[12]annulenes. Chem. Eur. J. 19, 11251–11260 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Tahara, K. et al. Control and induction of surface-confined homochiral porous molecular networks. Nat. Chem. 3, 714–719 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Tahara, K., Yoshimura, T., Ohno, M., Sonoda, M. & Tobe, Y. Syntheses and photophysical Properties of boomerang-shaped bis(dehydrobenzo[12]annulene) and trapezoid-shaped tris(dehydrobenzo[12]annulene). Chem. Lett. 36, 838–839 (2007).

    Article  CAS  Google Scholar 

  23. Zhang, W., Brombosz, S. M., Mendoza, J. L. & Moore, J. S. A high-yield, one-step synthesis of o-phenylene ethynylene cyclic trimer via precipitation-driven alkyne metathesis. J. Org. Chem. 70, 10198–10201 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Diederich, F. & Kivala, M. All-carbon scaffolds by rational design. Adv. Mat. 22, 803–812 (2010).

    Article  CAS  Google Scholar 

  25. Grave, C. & Schlüter, A. D. Shape-persistent, nano-sized macrocycles. Eur. J. Org. Chem. 2002, 3075–3098 (2002).

    Article  Google Scholar 

  26. Zhang, W. & Moore, J. S. Shape-persistent macrocycles: structures and synthetic approaches from arylene and ethynylene building blocks. Angew. Chem. Int. Ed. 45, 4416–4439 (2006).

    Article  CAS  Google Scholar 

  27. Li, G. et al. Architecture of graphdiyne nanoscale films. Chem. Commun. 46, 3256–3258 (2010).

    Article  CAS  Google Scholar 

  28. Li, Y., Xu, L., Liu, H. & Li, Y. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572–2586 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, C. et al. Progress in research into 2D graphdiyne-based materials. Chem. Rev. 118, 7744–7803 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Pan, Q. et al. Direct synthesis of crystalline graphtetrayne—a new graphyne allotrope. CCS Chem. 3, 1368–1375 (2021).

    Article  CAS  Google Scholar 

  31. Li, Q. et al. Synthesis of γ-graphyne by mechanochemistry and its electronic structure. Carbon 136, 248–254 (2018).

    Article  CAS  Google Scholar 

  32. Li, Q., Yang, C., Wu, L., Wang, H. & Cui, X. Converting benzene into γ-graphyne and its enhanced electrochemical oxygen evolution performance. J. Mater. Chem. A 7, 5981–5990 (2019).

    Article  CAS  Google Scholar 

  33. Ding, W., Sun, M., Zhang, Z., Lin, X. & Gao, B. Ultrasound-promoted synthesis of γ-graphyne for supercapacitor and photoelectrochemical applications. Ultrason. Sonochem. 61, 104850 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Diederich, F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. Nature 369, 199–207 (1994).

    Article  CAS  Google Scholar 

  35. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Fürstner, A. The ascent of alkyne metathesis to strategy-level status. J. Am. Chem. Soc. 143, 15538–15555 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ma, T. et al. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science 361, 48–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Hu, Y. et al. Single crystals of mechanically entwined helical covalent polymers. Nat. Chem. 13, 660–665 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Jin, Y. H., Yu, C., Denman, R. J. & Zhang, W. Recent advances in dynamic covalent chemistry. Chem. Soc. Rev. 42, 6634–6654 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Du, Y. et al. Highly active multidentate ligand-based alkyne metathesis catalysts. Chem. Eur. J. 22, 7959–7963 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Narita, N., Nagai, S., Suzuki, S. & Nakao, K. Optimized geometries and electronic structures of graphyne and its family. Phys. Rev. B 58, 11009–11014 (1998).

    Article  CAS  Google Scholar 

  43. Zhou, J. et al. Electronic structures and bonding of graphyne sheet and its BN analog. J. Chem. Phys. 134, 174701 (2011).

    Article  PubMed  Google Scholar 

  44. Srinivasu, K. & Ghosh, S. K. Graphyne and graphdiyne: promising materials for nanoelectronics and energy storage applications. J. Phys. Chem. C 116, 5951–5956 (2012).

    Article  CAS  Google Scholar 

  45. Scharber, M. C. & Sariciftci, N. S. Low band gap conjugated semiconducting polymers. Adv. Mater. Technol. 6, 2000857 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Choi (University of Colorado Boulder) for helpful discussions on the electrochemistry tests and B. Lama (University of Colorado Boulder) for solid-state NMR spectroscopy data acquisition. W.Z. acknowledges the National Science Foundation (DMR-1420736). Y.Z. acknowledges the National Natural Science Foundation of China (31202117). Y.H. thanks the Summer Graduate Fellowship support from University of Colorado Boulder. The authors gratefully acknowledge use of the Materials Research X-Ray Diffraction Facility at the University of Colorado Boulder (RRID: SCR_019304), with instrumentation supported by NSF MRSEC grant DMR-1420736.

Author information

Authors and Affiliations

Authors

Contributions

Y.H., Y.Z. and W.Z. conceived the idea and led the project. Y.H., S.H., J.W. and L.J.W. conducted the synthesis. C.W. conducted the modelling. Q.P. and Y.Z. conducted the transmission electron microscopy. R.L. and M.B.R. conducted the AFM. V.M. and N.A.C. conducted the WAXS. Y.H., Y.J., Y.Z. and W.Z. interpreted the results and Y.H., Y.J. and W.Z. wrote the manuscript.

Corresponding authors

Correspondence to Yingjie Zhao or Wei Zhang.

Ethics declarations

Competing interests

Y.H. and W.Z. are inventors on a US patent application submitted by University of Colorado Boulder. The other authors do not have any competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental Details and Supplementary Figs. 1–28, discussion and Tables 1–4.

Supplementary Data 1

Crystallographic data of 1,2,3,4,5,6-hexapropynylbenzene (HPB), CCDC 2111647

Source data

Source Data Fig. 4c

The Excel sheet contains height plot data for the layered structure of exfoliated γ-graphyne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Wu, C., Pan, Q. et al. Synthesis of γ-graphyne using dynamic covalent chemistry. Nat. Synth 1, 449–454 (2022). https://doi.org/10.1038/s44160-022-00068-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00068-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing