Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

SmI2-mediated enantioselective reductive dearomatization of non-activated arenes

Abstract

Arenes are fundamental feedstocks for many chemical processes within organic synthesis. The dearomatization of arenes, especially non-activated benzene derivatives, has long been recognized as an important synthetic transformation. However, developing enantioselective variants of these dearomative reactions remains a challenge due to the inherent stability of benzene derivatives. Here we report the development of a samarium diiodide (SmI2)-mediated enantioselective reductive dearomatization of non-activated benzene derivatives. The use of chiral tridentate aminodiol ligand forms a chiral samarium complex, mediating the intramolecular addition of a ketyl radical onto one of the two enantiotopic arene rings in a stereoselective fashion. The scope of the process is displayed through the synthesis of a range of dearomatized bicycles bearing three stereogenic centres, in good yield and stereocontrol. Scale-up of the process and further reductive and olefination transformations of the bicyclic products showed the synthetic utility of the SmI2-mediated process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for enantioselective dearomatization of non-activated arenes.
Fig. 2: Reaction scale-up and product transformations.

Similar content being viewed by others

Data availability

Crystallographic data are available free of charge from the Cambridge Crystallographic Database Centre under CCDC 2094419 (2a) and 2094418 (2t). All other characterization data are in the Supplementary Information. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Schleyer, Pv. R. & Jiao, H. What is aromaticity? Pure Appl. Chem. 68, 209–218 (1996).

    Article  CAS  Google Scholar 

  2. Pape, A. R., Kaliappan, K. P. & Kündig, E. P. Transition-metal-mediated dearomatization reactions. Chem. Rev. 100, 2917–2940 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Roche, S. P. & Porco, J. A. Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

    Article  CAS  Google Scholar 

  4. Wiesenfeldt, M. P., Nairoukh, Z., Dalton, T. & Glorius, F. Selective arene hydrogenation for direct access to saturated carbo- and heterocycles. Angew. Chem. Int. Ed. 58, 10460–10476 (2019).

    Article  CAS  Google Scholar 

  5. Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Huck, C. J. & Sarlah, D. Shaping molecular landscapes: recent advances, opportunities, and challenges in dearomatization. Chem 6, 1589–1603 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Birch, A. J. Reduction by dissolving metals. Part I. J. Chem. Soc. 430–436 (1944).

  8. Chatterjee, A. & König, B. Birch-type photoreduction of arenes and heteroarenes by sensitized electron transfer. Angew. Chem. Int. Ed. 58, 14289–14294 (2019).

    Article  CAS  Google Scholar 

  9. Cole, J. P. et al. Organocatalyzed birch reduction driven by visible light. J. Am. Chem. Soc. 142, 13573–13581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Masuda, Y., Tsuda, H. & Murakami, M. Photoinduced dearomatizing three-component coupling of arylphosphines, alkenes, and water. Angew. Chem. Int. Ed. 60, 3551–3555 (2021).

    Article  CAS  Google Scholar 

  11. Benkeser, R. A. & Kaiser, E. M. An electrochemical method of reducing aromatic compounds selectively to dihydro or tetrahydro products. J. Am. Chem. Soc. 85, 2858–2859 (1963).

    Article  CAS  Google Scholar 

  12. Swenson, K. E., Zemach, D., Nanjundiah, C. & Kariv-Miller, E. Birch reductions of methoxyaromatics in aqueous solution. J. Org. Chem. 48, 1777–1779 (1983).

    Article  CAS  Google Scholar 

  13. Bordeau, M., Biran, C., Pons, P., Léger-Lambert, M.-P. & Dunogues, J. The electrochemical reductive trimethylsilylation of aryl chlorides: a good route to aryltrimethylsilanes and a novel route to tris(trimethylsilyl)cyclohexadienes. J. Org. Chem. 57, 4705–4711 (1992).

    Article  CAS  Google Scholar 

  14. Ishifune, M. et al. Electroreduction of aromatics using magnesium electrodes in aprotic solvents containing alcoholic proton donors. Electrochim. Acta 48, 2405–2409 (2003).

    Article  CAS  Google Scholar 

  15. Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gibson, D. T., Koch, J. R. & Kallio, R. E. Oxidative degradation of aromatic hydrocarbons by microorganisms. I. Enzymic formation of catechol from benzene. Biochemistry 7, 2653–2662 (1968).

    Article  CAS  PubMed  Google Scholar 

  17. Hudlicky, T., Gonzalez, D. & Gibson, D. T. Enzymatic dihydroxylation of aromatics in enantioselective synthesis: expanding asymmetric methodology. Aldrichimica Acta 32, 35–62 (1999).

    CAS  Google Scholar 

  18. Boyd, D. R. & Bugg, T. D. H. Arene cis-dihydrodiol formation: from biology to application. Org. Biomol. Chem. 4, 181–192 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Zhuo, C.-X., Zhang, W. & You, S.-L. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed. 51, 12662–12686 (2012).

    Article  CAS  Google Scholar 

  20. Zheng, C. & You, S.-L. Catalytic asymmetric dearomatization by transition-metal catalysis: a method for transformations of aromatic compounds. Chem 1, 830–857 (2016).

    Article  CAS  Google Scholar 

  21. Zheng, C. & You, S.-L. Advances in catalytic asymmetric dearomatization. ACS Cent. Sci. 7, 432–444 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Manoni, E., De Nisi, A. & Bandini, M. New opportunities in the stereoselective dearomatization of indoles. Pure Appl. Chem. 88, 207–214 (2016).

    Article  CAS  Google Scholar 

  23. Zheng, C. & You, S.-L. Catalytic asymmetric dearomatization (CADA) reaction-enabled total synthesis of indole-based natural products. Nat. Prod. Rep. 36, 1589–1605 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Wu, W.-T., Zhang, L. & You, S.-L. Catalytic asymmetric dearomatization (CADA) reactions of phenol and aniline derivatives. Chem. Soc. Rev. 45, 1570–1580 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Thanh, N. P. T., Tone, M., Inoue, H., Fujisawa, I. & Iwasa, S. Highly stereoselective intramolecular Buchner reaction of diazoacetamides catalyzed by a Ru(II)–Pheox complex. Chem. Commun. 55, 13398–13401 (2019).

    Article  Google Scholar 

  26. Smith, K. L., Padgett, C. L., Mackay, W. D. & Johnson, J. S. Catalytic, asymmetric dearomative synthesis of complex cyclohexanes via a highly regio- and stereoselective arene cyclopropanation using α-cyanodiazoacetates. J. Am. Chem. Soc. 142, 6449–6455 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Ito, T. et al. Asymmetric intramolecular dearomatization of nonactivated arenes with ynamides for rapid assembly of fused ring system under silver catalysis. J. Am. Chem. Soc. 143, 604–611 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Namy, J. L., Girard, P. & Kagan, H. B. New preparation of some divalent lanthanide iodides and their usefulness in organic-synthesis. Nouv. J. Chim. 1, 5–7 (1977).

    CAS  Google Scholar 

  29. Szostak, M., Fazakerley, N. J., Parmar, D. & Procter, D. J. Cross-coupling reactions using samarium(II) iodide. Chem. Rev. 114, 5959–6039 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Schmalz, H.-G., Siegel, S. & Bats, J. W. Radical additions to (η6-arene)(tricarbonyl)-chromium complexes: diastereoselective synthesis of hydrophenalene and hydrobenzindene derivatives by samarium(II) iodide induced cyclization. Angew. Chem. Int. Ed. 34, 2383–2385 (1995).

    Article  CAS  Google Scholar 

  31. Schmalz, H.-G., Siegel, S. & Schwarz, A. Radical cyclization of η6-arene-Cr(CO)3 complexes: a regio- and stereoselective entry to functionalized pseudopterosin precursors. Tetrahedron Lett. 37, 2947–2950 (1996).

    Article  CAS  Google Scholar 

  32. Dinesh, C. U. & Reissig, H.-U. A new samarium diiodide induced reaction: intramolecular attack of ketyl radical anions on aryl substituents with formation of 1,4-cyclohexadiene derivatives. Angew. Chem. Int. Ed. 38, 789–791 (1999).

    Article  CAS  Google Scholar 

  33. Berndt, M. & Reissig, H.-U. Samarium diiodide mediated ketyl–aryl coupling reactions—influence of substituents and trapping experiments. Synlett 1290–1292 (2001).

  34. Wefelscheid, U. K., Berndt, M. & Reissig, H.-U. Samarium diiodide mediated ketyl–aryl coupling reactions—influence of substituents and trapping experiments. Eur. J. Org. Chem. 3635–3646 (2008).

  35. Niermann, A. & Reissig, H.-U. Influence of geminal disubstitution on samarium diiodide induced reductive cyclizations of γ-aryl ketones. Synlett 525–528 (2011).

  36. Rao, C. N. & Reissig, H.-U. Synthesis and evaluation of enantiopure HMPA analogs in samarium-diiodide-promoted dearomatizations of N-acylated indole derivatives. Eur. J. Org. Chem. 6392-6399 (2021).

  37. Ohno, H., Maeda, S.-I., Okumura, M., Wakayama, R. & Tanaka, T. The first samarium(II)-mediated stereoselective spirocyclization onto an aromatic ring. Chem. Commun. 316–317 (2002).

  38. Maity, S. & Flowers, R. A. II Mechanistic study and development of catalytic reactions of Sm(II). J. Am. Chem. Soc. 141, 3207–3216 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Shono, T., Kise, N., Suzumoto, T. & Morimoto, T. Novel intramolecular stereoselective addition of electrogenerated radical species to the aromatic ring. J. Am. Chem. Soc. 108, 4676–4677 (1986).

    Article  CAS  Google Scholar 

  40. Swartz, J. E., Mahachi, T. J. & Kariv-Miller, E. Electrochemical reduction of ketones mediated by (dimethylpyrrolidinio)mercury. Reductive cyclization of unsaturated ketones and redox catalysis studies. J. Am. Chem. Soc. 110, 3622–3628 (1988).

    Article  CAS  Google Scholar 

  41. Kise, N., Suzumoto, T. & Shono, T. Electroreductive intramolecular coupling of nonconjugated aromatic ketones. J. Org. Chem. 59, 1407–1413 (1994).

    Article  CAS  Google Scholar 

  42. Kern, N., Plesniak, M. P., McDouall, J. J. W. & Procter, D. J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem. 9, 1198–1204 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Borissov, A. et al. Organocatalytic enantioselective desymmetrisation. Chem. Soc. Rev. 45, 5474–5540 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Chciuk, T. V., Anderson, W. R. Jr. & Flowers, R. A. II Interplay between substrate and proton donor coordination in reductions of carbonyls by SmI2–water through proton-coupled electron-transfer. J. Am. Chem. Soc. 140, 15342–15352 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Prasad, E. & Flowers, R. A. II Mechanistic study of β-substituent effects on the mechanism of ketone reduction by SmI2. J. Am. Chem. Soc. 124, 6357–6361 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Evans, D. A., Nelson, S. G., Gagné, M. R. & Muci, A. R. A chiral samarium-based catalyst for the asymmetric Meerwein–Ponndorf–Verley reduction. J. Am. Chem. Soc. 115, 9800–9801 (1993).

    Article  CAS  Google Scholar 

  47. Chopade, P. R., Prasad, E. & Flowers, R. A. II The role of proton donors in SmI2-mediated ketone reduction: new mechanistic insights. J. Am. Chem. Soc. 126, 44–45 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Key R&D Program of China (grant number 2021YFA1500100), the National Natural Science Foundation of China (grant numbers 21821002, 22031012 and 91856201) and the Science and Technology Commission of Shanghai Municipality (grant numbers 19590750400 and 21520780100). S.-L.Y. acknowledges support from Tencent Foundation through an Xplorer Prize.

Author information

Authors and Affiliations

Authors

Contributions

S.-L.Y. conceived and supervised the project. Y.W. developed SmI2-mediated asymmetric reductive dearomatization of non-activated arenes. W.-Y.Z. and Z.-L.Y. contributed to expanding the substrate scope. C.Z. wrote the manuscript and incorporated revisions suggested by all authors.

Corresponding author

Correspondence to Shu-Li You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Robert Flowers, Kjell Jorner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion and Tables 1–3.

Crystallographic Data 1

Crystallographic Data for 2a, CCDC 2094419.

Crystallographic Data 2

Crystallographic Data for 2t, CCDC 2094418.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, WY., Yu, ZL. et al. SmI2-mediated enantioselective reductive dearomatization of non-activated arenes. Nat. Synth 1, 401–406 (2022). https://doi.org/10.1038/s44160-022-00065-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00065-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing