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The arylation of alcohols is one of the most widely utilized 
organic reactions in the pharmaceutical industry according 
to a big data analysis of pharmaceutical patents over the past 

40 years1. Copper-mediated C–O bond formation from aryl halides 
has the potential to provide a convenient and efficient protocol 
to realize etherification due to the low toxicity and cost of copper 
and the existence of readily accessible haloarenes. However, cop-
per cannot generally be used in cross-coupling reactions due to 
the lack of efficient oxidative addition of aryl (pseudo)halides to 
Cu(I)2. While palladium(0) is efficient for oxidative addition due 
to the development of suitable ligands, product-forming C–X 
bond reductive elimination from Cu(III) is typically more facile 
than from Pd(II) (refs. 2,3). Merging photoredox and metal cataly-
sis is promising for the construction of carbon–heteroatom bonds 
because photoexcited catalysts can result in synthetically use-
ful oxidation states of transition metals that are not easily acces-
sible with conventional transition-metal catalysis4–11; excited-state 
organometallic intermediates can enable transformations not cur-
rently accessible by organometallics in the ground state12. However, 
a general strategy to access aryl ethers, transition-metal-catalysed 
or metallaphotoredox-catalysed, has not been developed from aryl 
halides based on copper. Here we report a conceptually different 
and general approach to activate aryl halides for copper-mediated 
carbon–heteroatom bond formation reactions by energy trans-
fer to, or direct excitation of, aryl halides. In contrast to current 
photoredox-based strategies, our approach increases the range 
of suitable electrophiles to encompass aryl iodides, bromides and 
even chlorides, and the scope of nucleophiles, for example, to 
functionalized alcohols, which has not been achieved by photoin-
duced Ullmann-type C–O coupling reactions of aryl halides13,14. 
The approach was further extended to other nucleophiles such as 
amines and fluoride, showcasing the potential of the energy transfer 
and direct excitation strategy in combination with copper.

Over the past two decades, different transition-metal-promoted 
reactions15, such as Chan–Lam couplings16, palladium-catalysed 
C–O bond-forming reactions17, Ullmann-type reactions2,18–22 and 
various others7,14, have been developed to construct C–O bonds. 
However, Chan–Lam couplings require arylboronic acids as starting  

materials, which are often less available than the corresponding 
halides. For palladium-catalysed coupling reactions, the scope has 
become more and more general upon extensive ligand develop-
ment17. However, basic conditions and high temperature promote 
competitive β-hydride elimination and diminish the applicability of 
the reaction. Copper-catalysed or copper-mediated Ullmann-type 
reactions were discovered as early as 19032, but usually require 
harsh reaction conditions due to the high barrier of the copper 
aryl halide oxidative addition step. With alcohol nucleophiles, high 
reaction temperature (>110 °C) or solvent amounts of alcohol are 
required18. Additionally, the substrate scope is often restricted to 
aryl iodides18,19. To achieve a broader substrate scope and milder 
reaction conditions, various ligands were developed to tackle the 
slow rate of oxidative addition to other aryl halides. For example, 
Buchwald and co-workers developed diamine ligands20, and Ma and 
Hartwig developed oxalic diamide and oxalohydrazide ligands21,22, 
which enable a broader substrate scope but still mostly for simple 
alcohols and aryl iodides and bromides. Extension of the concept 
of metallaphotoredox catalysis to copper and aryl halides is prom-
ising but has not yet resulted in a general strategy that would also 
encompass aryl ether bond formation. For example, the generation 
of synthetically useful aryl radicals from aryl halides can achieve the 
formation of synthetically useful arylcopper species10,13,14, but the 
generation of aryl radicals through this process is challenging10,13,23. 
In 2018, MacMillan and co-workers developed a photoredox strat-
egy to generate [LnNuCuIIIAr] intermediates via bromine atom 
abstraction from aryl halides by a silyl radical abstraction process 
(Fig. 1a)10. The atom transfer activation mode, however, has not yet 
been generalized, for example, to etherification or fluorination of 
aryl halides, possibly due to undesired side reactions between silanes 
and the nucleophile24. Aryl chlorides are still out of reach for that 
chemistry based on copper. Another promising approach involves 
single-electron transfer (SET) to aryl halides to generate aryl radi-
cals by mesolytic bond cleavage that can then undergo oxidative 
ligation to copper. Fu and Peters reported that excited [LnCuINu] 
species could undergo SET with aryl halides (Fig. 1b). To excite the 
[LnCuINu] species, the nucleophiles are usually substrates with a π 
system such as phenol, carbazole and indole13,14. Other photoredox 
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catalysts have not been identified to generally access aryl radicals 
from aryl halides under conditions that are suitable for productive 
reductive elimination from high-valent copper. The low oxidation 
potentials of aryl halides that require strongly reducing excited 
states are usually not compatible with high-valent copper species23. 
Our group has addressed this challenge by photoredox-mediated 
generation of aryl radicals from aryl thianthrenium salts, which 
can be prepared site selectively from complex arenes25 and have 
substantially lower oxidation potentials and higher mesolytic cleav-
age rates than aryl halides (Fig. 1c)26. Based on this approach, we 
achieved visible-light-induced radical oxygenation27, amination28, 
trifluoromethylation29 and fluorination reactions26. However, while 
thianthrenium salt formation from complex small molecules is 
often superior to halogenation, thousands of aryl halides are com-
mercially available but out of reach for this chemistry. Therefore, to 
realize a general copper-mediated carbon–heteroatom bond forma-
tion reaction from aryl halides, we sought to develop a new strategy 
to activate aryl halides that is compatible with high-valent copper 
intermediates and various nucleophiles. The approach bypasses 
the energetically challenging oxidative addition process by copper 
through generation of aryl radicals from triplet-state aryl halides, 
as opposed to photoredox catalysis, which is compatible with facile 
C–X bond formation from high-valent copper (Fig. 1d).

Results and discussion
Generally, SET for activation of Ar–X bonds (X = (pseudo)halo-
gen) requires transfer of an external electron to a π* orbital of the 
haloarene to form a radical anion species. Subsequently, the radical 
anion can further undergo C–X bond mesolytic cleavage to form an 
aryl radical and a halide anion30. The external single electron donor, 
a strong reductant, is commonly incompatible with high-valent 
copper intermediates, especially for the strong single-electron 
reductants required for SET to aryl halides. In contrast, energy trans-
fer31,32 is initiated by absorption of a photon of a photosensitizer,  

which leads to excitation from the ground state (S0) to the first 
excited singlet state (S1), followed by intersystem crossing (ISC), for 
an ideal photosensitizer in high quantum yield, to the lowest triplet 
state (T1). From T1, the photosensitizer can transfer its energy to an 
aryl halide, resulting in a triplet-state aryl halide. The sensitization 
process requires no external electron or high reduction potential 
and therefore has the potential to be compatible with high-valent 
metal intermediates. Based on this analysis, we designed a cata-
lytic cycle that does not involve photoredox processes but instead 
direct energy transfer (EnT, Fig. 2a). While energy transfer is a 
well-established photophysical process, it does not appear to have 
been used as a substrate-activation strategy for metal-mediated 
cross-coupling chemistry. Radiative emission from the triplet state 
is spin-forbidden, so that homolytic cleavage of the C–X bond can 
occur to form two radicals33–36. The halogen atom could oxidize or 
oxidatively ligate37 to Cu(I) in the presence of nucleophiles to form 
a [LnCuIINu] intermediate and a halide anion. Oxidative ligation of 
the aryl radical to [LnCuIINu] (refs. 38–42) would form the high-valent 
[LnNuCuIIIAr] intermediate, from which fast reductive elimination2 
would occur to form product and regenerate Cu(I).

A typical energy transfer process is depicted in the Jablonski dia-
gram in Fig. 2b (left). For the energy transfer to occur effectively, a 
close spatial encounter between an excited photosensitizer of suf-
ficient triplet energy and the substrate must occur. Therefore, the 
energy transfer mechanism is only applicable to aryl halide substrates 
whose triplet energy is lower than or similar to that of the photosen-
sitizer. We selected thioxanthone (TXO) as photosensitizer due to its 
triplet state energy of ET = 64.5 kcal mol−1 (ref. 31) and 4-iodobiphenyl 
(1) with a reported triplet energy of ET = 62.5 kcal mol−1 (ref. 32) to 
evaluate the desired etherification reaction of 1 and obtained 70% 
yield of azetedinyl ether upon irradiation with a 400 nm light-emitting 
diode (LED) (Fig. 2c). CuTC was identified as the best copper 
source, while copper halides performed worse and produce deha-
logenation species as major side products (Supplementary Table 2).  
Because copper halides are probably produced as by-products in the 
cross-coupling reactions of aryl halides, stoichiometric amounts of 
CuTC afforded higher product yields but copper catalysis can be 
achieved upon addition of halide scavengers. For example, addition 
of 0.5 equiv. of Ag2O enabled the CuTC catalyst loading to be reduced 
to 5 mol% and unambiguously established the presence of a catalytic 
copper redox cycle (Fig. 2c). Given that CuTC is rather inexpensive 
(US$2.2 g−1) and no expensive ligand is required, we identified both 
the reaction with 1 equiv. of CuTC and the reaction conditions with 
5 mol% as practical and synthetically useful.

The triplet energy of aryl halides is highly dependent on the con-
jugated π system. For example, phenyl halides have triplet energies of 
ET = 78–82 kcal mol−1 (ref. 32), which is too high for excitation by com-
mon photosensitizers such as benzophenone (ET = 69.1 kcal mol−1)31. 
Therefore, to evaluate whether the substrate scope of our approach 
could be extended to aryl halides without additional conjugated π sys-
tems, we attempted direct excitation of those aryl halides to access their 
triplet states under otherwise identical reaction conditions (Fig. 2b,  
right). For example, 4-bromo- and 4-chloroanisole (4b, 4c) have the 
same triplet energy of 78.1 kcal mol−1 (ref. 32), and could be excited 
with ultraviolet light to afford the desired etherification product 5 in 
good yield (Fig. 2d). Although ultraviolet irradiation must be used, 
the engagement of unactivated aryl chlorides for copper-mediated 
cross-coupling is a fundamental advance that has not been achieved 
with conventional or metallaphotoredox approaches under mild con-
ditions as of yet. In addition, we show that the requirement for ultra-
violet irradiation does not preclude the use of functionalized small 
molecules, even those with other chromophores on either aryl halide 
or the alcohol reaction partner.

Experiments with respect to the mechanism of the etherification 
are consistent with our design (Fig. 3). First, inter- and intramolecular 
radical-trapping experiments results indicate the formation of aryl 
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Fig. 1 | Generation of aryl radicals from aryl (pseudo)halides in 
copper-mediated etherification reactions. a–c, Previous strategies: 
activation of aryl bromides via atom transfer with silyl radical10 (a), 
activation of aryl halides via SET with excited-state [CuI] species13,14 (b)  
and activation of aryl sulfonium salts via SET with photocatalyst26–29 (c).  
d, This work: activation of aryl halides via energy transfer or direct excitation.  
PC, photocatalyst; TT, thianthrenium; TFT, tetrafluorothianthrenium; PS, 
photosensitizer; EnT, energy transfer; OA, oxidative addition.
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radicals during the cross-coupling reaction. Upon addition of sty-
rene to the otherwise unchanged reaction set-up, the radical adduct 
4-styryl-1,1′-biphenyl (6, Fig. 3a) could be isolated. Additionally, 
upon addition of different amounts of THF to the etherification 
reaction, the product distribution changed linearly with THF con-
centration towards arene (Ar–H), consistent with hydrogen atom 
transfer from the typical hydrogen atom donor THF to the in situ 
formed aryl radical (Fig. 3b). By employing THF-d8, we determined 
a primary kinetic isotope effect of 2.2, also consistent with the 
involvement of the aryl radical intermediates. Furthermore, when 
prenyl ether 7 was subjected to the standard conditions, cyclization 
products 8a and 8b were observed in a 40% combined yield (Fig. 3c).  
To probe the hypothesis of an operating energy transfer mecha-
nism, we irradiated the reaction mixture of 1-iodonaphthalene (9) 
in the absence of copper sources and nucleophile to a conversion 
of 50% and observed the formation of 40% naphthalene and 38% 
molecular iodine (yield based on the mass of iodine), which would 
not be expected for an SET mechanism (Fig. 3d); in the presence of 
stoichiometric CuTC, formation of iodine was not observed, consis-
tent with oxidation to Cu(II) by the halogen radical. Reactions with 
excess halogen scavenger 2-methyl-2-butene and an oxidant did not 
work (Supplementary Table 2), possibly because halogen radical 
reacts with CuTC more efficiently than alkenes37. The etherification 
reaction efficiency correlates with the triplet state energy of the pho-
tosensitizer but not with its reduction potential, which is in agree-
ment with an energy transfer mechanism and would be unusual for 
an SET mechanism (Fig. 3e). Additionally, a Stern–Volmer analy-
sis revealed an effective quenching of the photoexcited sensitizer’s 
luminance by 1-iodonaphthalene (9) but not by CuTC or CuTC in 
the presence of alcohol, also consistent with energy transfer to sub-
strate (Fig. 3f and Supplementary Fig. 12).

The merger of triplet-state aryl halides and copper redox chem-
istry is successful in engaging a variety of challenging nucleophiles 
for copper-mediated cross-coupling reactions (Table 1). Primary 
alcohols, including methanol-d4 (14), 4-fluorobenzyl alcohol (16) 
and alcohols of higher complexity (3, 15, 28, 30, 32, 33, 52, 54), can 
undergo coupling reactions with aryl halides in 34–71% yield. Due 

to synthetic practicality and its low cost, we employed 1 equiv. of 
CuTC for these examples but also demonstrate a small-scale exper-
iment to synthesize 17 and a scale-up experiment to produce 1.37 g 
of 3 with 5 mol% CuTC as catalyst. Secondary alcohols including 
N-Boc protected 3-hydroxyazetidine, 1,2-cyclohexanediol (18) and 
1,3-dimethoxy-2-propanol (53), and carbohydrates (29) or amino 
acid derivatives were also found to be effective coupling partners 
for the etherification reactions. Tertiary alcohols did not partici-
pate in the reaction, but a complex phenol (39) was an effective 
coupling partner. The basic reaction conditions and high reaction 
temperatures commonly used for other transition-metal-catalysed 
etherification reactions usually lead to side reactions such as trans-
esterification19, epimerization15 or β-hydride elimination17. The 
comparatively mild conditions of our reaction protocol therefore 
enable conversion of substrates that are not tolerated by conven-
tional methods15. For example, alcohols with base-sensitive esters 
are tolerated (10, 27, 32) and no epimerization or racemization was 
observed. Additionally, an alcohol bearing a terminal olefin (28), 
which is challenging in, for example, palladium-catalysed C–O 
cross-coupling, could be arylated under our reaction conditions.

The generality of our approach goes beyond etherification; acti-
vation by energy transfer is also suitable for the construction of other 
carbon–heteroatom bonds (19–25). Water, amines and especially 
fluoride are challenging coupling partners for cross-coupling reac-
tions but can participate smoothly via energy transfer in hydroxyl-
ation (19–21), amination (22, 23) and fluorination (24, 25) reactions 
with virtually identical reaction conditions. Aryl halides without 
additional conjugated π systems can also be aminated or fluorinated 
under direct excitation conditions (Supplementary Table 4), the abil-
ity to couple various challenging nucleophiles in synthetically useful 
yields via energy transfer is a consequence of the design and distin-
guishes our protocol from other contributions in this field.

We subsequently evaluated the generality with respect to the aryl 
halide coupling partner through either energy transfer or direct 
excitation (Table 1), applying one of a selection of three different 
reaction conditions, namely, 400 nm, 310 nm or 280 nm light irradi-
ation, respectively. The appropriate condition can be deduced from 
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the triplet energy but also intuitively selected based on the simple 
selection criteria provided in Table 1. Aryl chlorides are challenging 
substrates for copper-mediated cross-coupling reactions because 

oxidative addition of Cu(I) into aryl chloride is slow and cannot 
be achieved by copper-mediated cross-coupling under mild condi-
tions. Our reaction, however, can activate aryl chlorides smoothly 

Table 1 | Dehalogenative functionalization

+Ar X Ar OR
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under ultraviolet light irradiation, without deleterious effect on the 
substrate scope of the alcohol coupling partner (40–54). A range 
of functional groups, including esters (41), nitriles (46), ketones 
(43, 45), carbamates (31), amides (13), trifluoromethyl (36), and 
heterocycles (12, 18, 34, 38), are all tolerated in the etherification 
reactions. Ambient reaction temperature and high functional group 
tolerance render the method useful for late-stage functionaliza-
tion, as demonstrated for the drug-like molecules 13, 36–39 and 
47. Other chromophores, such as functionalized aryl (36, 37), biaryl 
(38), benzyl (34, 35) and phenol (39) groups, are tolerated and the 
reaction is chemoselective for the aryl halide in such cases.

Conclusions
Generation of aryl radicals from triplet-state aryl halides provides 
a solution to tackle the energetically challenging oxidative addition 
problem of copper. The value of our contribution is also to provide 
a conceptually different strategy to activate aryl halides that is com-
patible with high-valent copper intermediates. The approach sub-
stantially expands the accessible universe of reactivity to aryl halides 
and a variety of nucleophiles that have been out of reach for modern 
cross-coupling and metallaphotoredox approaches with copper.

Methods
General procedure for the etherification reaction under visible light. In an 
anhydrous-nitrogen-filled glovebox, a 4 ml borosilicate vial equipped with a 
magnetic stir bar was charged with copper(I) thiophene-2-carboxylate (38.1 mg, 
0.200 mmol, 1.00 equiv.), alcohol (0.400 mmol, 2.00 equiv.), Na2CO3 (21.2 mg, 
0.200 mmol, 1.00 equiv.), aryl halide (0.200 mmol, 1.00 equiv.) and TXO (4.2 mg, 
20 µmol, 10 mol%). Dry MeCN (1 ml, 0.2 M) was then added into the vial. The 
vial was sealed with a Teflon cap, and then transferred out of the glovebox. The 
reaction mixture was stirred at 23 °C for 2 h, then the vial was placed onto an 
aluminium plate fitted with a 10 W high-power single LED plate (Zerodis LED 
chip; size, 10 × 10 mm, λmax = 400 nm) which is driven by a constant current power 
supply (9–12 V, 900 mA). An aluminium block was used to hold the vial. The 
temperature was kept at approximately 30 °C through the use of a cooling fan. 
The reaction mixture was stirred for 20 h with 400 nm LED irradiation, and then 
diluted with CH2Cl2 (2 ml). The reaction mixture was filtered through a short pad 
of silica using CH2Cl2 (25 ml) as eluent. The filtrate was collected and concentrated 
in vacuo, and the residue was then purified by flash column chromatography on 
silica gel to afford the ether.

Note: The reaction is moisture sensitive and therefore the use of anhydrous 
MeCN, Na2CO3 and CuTC is important for the reaction. When wet MeCN was 
used, or Na2CO3 and CuTC were weighed without further drying under ambient 
atmosphere, the yield of the etherification product was lower and hydroxylation 
product could be observed. For simplicity, all reaction components were stored and 
weighed in a nitrogen-filled glovebox, although the reactions can be performed 
outside of a glovebox by using Schlenk techniques to avoid moisture.
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Fig. 3 | Mechanistic investigation. a, Intermolecular radical-trapping experiment. b, Competition kinetics between etherification and hydrogen atom 
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