Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Single-atom logic for heterocycle editing

Abstract

Medicinal chemistry continues to be impacted by new synthetic methods. Particularly sought after, especially at the drug discovery stage, is the ability to enact the desired chemical transformations in a concise and chemospecific fashion. To this end, the field of organic synthesis has become captivated by the idea of ‘molecular editing’—to rapidly build onto, change or prune molecules one atom at a time using transformations that are mild and selective enough to be employed at the late stages of a synthetic sequence. In this Review, the definition and categorization of a particularly promising subclass of molecular editing reactions, termed ‘single-atom skeletal editing’, are proposed. Although skeletal editing applies to both cyclic and acyclic compounds, this Review focuses on heterocycles, both for their centrality in medicinal chemistry and for the definitional clarity afforded by a focus on ring systems. A classification system is presented by highlighting methods (both historically important examples and recent advances) that achieve such transformations, with the goal to spark interest and inspire further development in this growing field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Definition and classification of single-atom molecular editing.
Fig. 2: Ring contractions that leverage classical carbonyl chemistry.
Fig. 3: Select developments in single-atom ring contractions of heterocycles.
Fig. 4: Single-atom deletions that leverage carbonyl chemistry.
Fig. 5: Select developments in single-atom deletions from nitrogenous heterocycles.
Fig. 6: Ring expansions that leverage carbonyl chemistry.
Fig. 7: Select advances in single-atom ring expansions.
Fig. 8: Single-atom insertions that leverage carbonyl chemistry.
Fig. 9: Recent advances in single-atom insertions into heterocycles.
Fig. 10: Dream reactions in single-atom skeletal editing and promising precedents.

Similar content being viewed by others

References

  1. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Hann, M. M. & Keserü, G. M. Finding the sweet spot: the role of nature and nurture in medicinal chemistry. Nat. Rev. Drug Discov. 11, 355–365 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among US FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in Drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Majumdar, K. & Chattopadhyay, S. Heterocycles in Natural Product Synthesis (John Wiley & Sons, Ltd, 2011).

  7. Antermite, D. & Bull, J. A. Transition metal-catalyzed directed C(sp3)–H functionalization of saturated heterocycles. Synthesis 51, 3171–3204 (2019).

    Article  CAS  Google Scholar 

  8. Campos, K. R. Direct sp3 C–H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 36, 1069–1084 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Ogba, O. M., Warner, N. C., O’Leary, D. J. & Grubbs, R. H. Recent advances in ruthenium-based olefin metathesis. Chem. Soc. Rev. 47, 4510–4544 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Albright, H. et al. Carbonyl–olefin metathesis. Chem. Rev. 121, 9359–9406 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, B., Perea, M. A. & Sarpong, R. Transition metal-mediated C−C single bond cleavage: making the cut in total synthesis. Angew. Chem. Int. Ed. 59, 18898–18919 (2020).

    Article  CAS  Google Scholar 

  12. Engle, K. M. et al. in Organic Chemistry – Breakthroughs and Perspectives (eds Ding, K. & Dai, L.-X.) 279–333 (John Wiley & Sons, Ltd, 2012).

  13. Bhawal, B. N. & Morandi, B. Shuttle catalysis—new strategies in organic synthesis. Chem. Eur. J. 23, 12004–12013 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Qiu, X. et al. Cleaving arene rings for acyclic alkenylnitrile synthesis. Nature 597, 64–69 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Aube, J. & Milligan, G. L. Intramolecular Schmidt reaction of alkyl azides. J. Am. Chem. Soc. 113, 8965–8966 (1991).

    Article  CAS  Google Scholar 

  16. Silva, L. F. Construction of cyclopentyl units by ring contraction reactions. Tetrahedron 58, 9137–9161 (2002).

    Article  CAS  Google Scholar 

  17. Harmata, M. in Molecular Rearrangements in Organic Synthesis (ed. Rocas, C. M.) 183–226 (John Wiley & Sons, Ltd, 2015).

  18. Furniss, B. S., Hannaford, A. J., Smith, P. W. G. & Tatchell, A. R. Vogel’s Textbook of Practical Organic Chemistry 5th edn, 1111–1114 (Longman, 1989).

  19. Jamison, T. F., Shambayati, S., Crowe, W. E. & Schreiber, S. L. Tandem use of cobalt-mediated reactions to synthesize (+)-epoxydictymene, a diterpene containing a trans-fused 5−5 ring system. J. Am. Chem. Soc. 119, 4353–4363 (1997).

    Article  CAS  Google Scholar 

  20. Wolinsky, J., Gibson, T., Chan, D. & Wolf, H. Stereospecific synthesis of iridomyrmecin and related iridolactones. Tetrahedron 21, 1247–1261 (1965).

    Article  CAS  PubMed  Google Scholar 

  21. Stoltz, B. M. & Wood, J. L. The stereoselective ring contraction of a pyranosylated indolocarbazole. A biosynthetic link between K252a and staurosporine? Tetrahedron Lett. 37, 3929–3930 (1996).

    Article  CAS  Google Scholar 

  22. Xiao, M. et al. Total synthesis of (−)-isatisine A via a biomimetic benzilic acid rearrangement. Tetrahedron 71, 3705–3714 (2015).

    Article  CAS  Google Scholar 

  23. Tehrani, K. A. et al. Boron(III) bromide-induced ring contraction of 3-oxygenated piperidines to 2-(bromomethyl)pyrrolidines. Tetrahedron Lett. 41, 2507–2510 (2000).

    Article  CAS  Google Scholar 

  24. Feraldi-Xypolia, A., Gomez Pardo, D. & Cossy, J. Ring Contraction of 3-hydroxy-3-(trifluoromethyl)piperidines: synthesis of 2-substituted 2-(trifluoromethyl)pyrrolidines. Chem. Eur. J. 21, 12876–12880 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Álvarez-Dorta, D., León, E. I., Kennedy, A. R., Riesco-Fagundo, C. & Suárez, E. Sequential Norrish Type II photoelimination and intramolecular aldol cyclization of 1,2-diketones in carbohydrate systems: stereoselective synthesis of cyclopentitols. Angew. Chem. Int. Ed. 47, 8917–8919 (2008).

    Article  CAS  Google Scholar 

  26. Alvarez-Dorta, D. et al. Sequential Norrish Type II photoelimination and intramolecular aldol cyclization of α-diketones: synthesis of polyhydroxylated cyclopentitols by ring contraction of hexopyranose carbohydrate derivatives. Chem. Eur. J. 19, 10312–10333 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Jurczyk, J. et al. Photomediated ring contraction of saturated heterocycles. Science 373, 1004–1012 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ling, R. & Mariano, P. S. A demonstration of the synthetic potential of pyridinium salt photochemistry by its application to a stereocontrolled synthesis of (+)-mannostatin A1. J. Org. Chem. 63, 6072–6076 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, S., Wang, H., Tian, N. & Yan, H. Insights for diastereoselectivity in synthesis of 2,3-dihydropyrroles by photochemical ring contraction of 1,4-dihydropyridines. Tetrahedron Lett. 65, 152797 (2021).

    Article  CAS  Google Scholar 

  30. Bellamy, F., Martz, P. & Streith, L. An intriguing copper salt effect upon the photochemistry of pyridine-N-oxides. Specific photoinduced syntheses of 3-substituted 2-formylpyrroles. Heterocycles 3, 395–400 (1975).

    Article  CAS  Google Scholar 

  31. Weber, H. & Rohn, T. 2H-Azirine und 2-(ω-Cyanalkyl)furane als neuartige Photoprodukte aus [n](2,6)Pyridinophan-N-oxiden und ihre Bedeutung für den Reaktionsverlauf. Chem. Ber. 122, 945–950 (1989).

    Article  CAS  Google Scholar 

  32. Feng, Z., Allred, T. K., Hurlow, E. E. & Harran, P. G. Anomalous chromophore disruption enables an eight-step synthesis and stereochemical reassignment of (+)-marineosin A. J. Am. Chem. Soc. 141, 2274–2278 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Hurlow, E. E. et al. Photorearrangement of [8]-2,6-pyridinophane N-oxide. J. Am. Chem. Soc. 142, 20717–20724 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Padwa, A., Smolanoff, J. & Tremper, A. Intramolecular photochemical and thermal cyclization reactions of 2-vinyl substituted 2H-azirines. Tetrahedron Lett. 15, 29–32 (1974).

    Article  Google Scholar 

  35. Padwa, A., Smolanoff, J. & Tremper, A. Photochemical transformations of small ring heterocyclic systems. LXV. Intramolecular cycloaddition reactions of vinyl-substituted 2H-azirines. J. Am. Chem. Soc. 97, 4682–4691 (1975).

    Article  CAS  Google Scholar 

  36. Portillo, M., Maxwell, M. A. & Frederich, J. H. Synthesis of nitrogen heterocycles via photochemical ring opening of pyridazine N-oxides. Org. Lett. 18, 5142–5145 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Eaton, P. E. & Cole, T. W. The cubane system. J. Am. Chem. Soc. 86, 962–964 (1964).

    Article  CAS  Google Scholar 

  38. Eaton, P. E. & Cole, T. W. Cubane. J. Am. Chem. Soc. 86, 3157–3158 (1964).

    Article  CAS  Google Scholar 

  39. Yu, X. et al. Stereospecific construction of contiguous quaternary all‐carbon centers by oxidative ring contraction. Angew. Chem. Int. Ed. 156, 350–353 (2017).

    Article  CAS  Google Scholar 

  40. Nicolaou, K. C., Gray, D. L. F. & Tae, J. Total synthesis of hamigerans and analogues thereof. Photochemical generation and Diels−Alder trapping of hydroxy-o-quinodimethanes. J. Am. Chem. Soc. 126, 613–627 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Ng, D., Yang, Z. & Garcia-Garibay, M. A. Total synthesis of (±)-herbertenolide by stereospecific formation of vicinal quaternary centers in a crystalline ketone. Org. Lett. 6, 645–647 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Natarajan, A., Ng, D., Yang, Z. & Garcia-Garibay, M. A. Parallel syntheses of (+)- and (−)-α-cuparenone by radical combination in crystalline solids. Angew. Chem. Int. Ed. 46, 6485–6487 (2007).

    Article  CAS  Google Scholar 

  43. Dotson, J. J., Bachman, J. L., Garcia-Garibay, M. A. & Garg, N. K. Discovery and total synthesis of a bis(cyclotryptamine) alkaloid bearing the elusive piperidinoindoline scaffold. J. Am. Chem. Soc. 142, 11685–11690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dotson, J. J. et al. Taming radical pairs in the crystalline solid state: discovery and total synthesis of psychotriadine. J. Am. Chem. Soc. 143, 4043–4054 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Roque, J. B., Kuroda, Y., Göttemann, L. T. & Sarpong, R. Deconstructive diversification of cyclic amines. Nature 564, 244–248 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zippel, C., Seibert, J. & Bräse, S. Skeletal editing—nitrogen deletion of secondary amines by anomeric amide reagents. Angew. Chem. Int. Ed. 60, 19522–19524 (2021).

    Article  CAS  Google Scholar 

  47. Kennedy, S. H., Dherange, B. D., Berger, K. J. & Levin, M. D. Skeletal editing through direct nitrogen deletion of secondary amines. Nature 593, 223–227 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Qin, H. et al. N‐atom deletion in nitrogen heterocycles. Angew. Chem. Int. Ed. 60, 20678–20683 (2021).

    Article  CAS  Google Scholar 

  49. Hui, C., Brieger, L., Strohmann, C. & Antonchick, A. P. Stereoselective synthesis of cyclobutanes by contraction of pyrrolidines. J. Am. Chem. Soc. 143, 18864–18870 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cao, Z.-C. & Shi, Z.-J. Deoxygenation of ethers to form carbon–carbon bonds via nickel catalysis. J. Am. Chem. Soc. 139, 6546–6549 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Song, Z.-L., Fan, C.-A. & Tu, Y.-Q. Semipinacol rearrangement in natural product synthesis. Chem. Rev. 111, 7523–7556 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Dowd, P. & Choi, S. C. A new tributyltin hydride-based rearrangement of bromomethyl β-keto esters. A synthetically useful ring expansion to ɣ-keto esters. J. Am. Chem. Soc. 109, 3493–3494 (1987).

    Article  CAS  Google Scholar 

  53. Beckwith, A. L. J., O’Shea, D. M. & Westwood, S. W. Rearrangement of suitably constituted aryl, alkyl, or vinyl radicals by acyl or cyano group migration. J. Am. Chem. Soc. 110, 2565–2575 (1988).

    Article  CAS  Google Scholar 

  54. Fu, C. et al. Diastereoselective total synthesis of salvileucalin C. Org. Lett. 16, 3376–3379 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Chen, P., Sieber, J., Senanayake, C. H. & Dong, G. Rh-catalyzed reagent-free ring expansion of cyclobutenones and benzocyclobutenones. Chem. Sci. 6, 5440–5445 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kelley, B. T., Walters, J. C. & Wengryniuk, S. E. Access to diverse oxygen heterocycles via oxidative rearrangement of benzylic tertiary alcohols. Org. Lett. 18, 1896–1899 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Murai, K., Komatsu, H., Nagao, R. & Fujioka, H. Oxidative rearrangement of spiro cyclobutane cyclic aminals: efficient construction of bicyclic amidines. Org. Lett. 14, 772–775 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Mailloux, M. J., Fleming, G. S., Kumta, S. S. & Beeler, A. B. Unified synthesis of azepines by visible-light-mediated dearomative ring expansion of aromatic N-ylides. Org. Lett. 23, 525–529 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Odum, R. A. & Brenner, M. Rearrangement on deoxygenation of nitrosobenzene. J. Am. Chem. Soc. 88, 2074–2075 (1966).

    Article  CAS  Google Scholar 

  60. Wentrup, C. Flash vacuum pyrolysis of azides, triazoles, and tetrazoles. Chem. Rev. 117, 4562–4623 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Gritsan, N. P. et al. Ring-expansion reaction of cyano-substituted singlet phenyl nitrenes: theoretical predictions and kinetic results from laser flash photolysis and chemical trapping experiments. J. Am. Chem. Soc. 123, 1425–1433 (2001).

    Article  CAS  Google Scholar 

  62. Inui, H., Sawada, K., Oishi, S., Ushida, K. & McMahon, R. J. Aryl nitrene rearrangements: spectroscopic observation of a benzazirine and its ring expansion to a ketenimine by heavy-atom tunneling. J. Am. Chem. Soc. 135, 10246–10249 (2013).

    Article  CAS  PubMed  Google Scholar 

  63. Li, G. et al. An improved PIII/PV=O-catalyzed reductive C–N coupling of nitroaromatics and boronic acids by mechanistic differentiation of rate- and product-determining steps. J. Am. Chem. Soc. 142, 6786–6799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Beckmann, E. Zur Kenntniss der Isonitrosoverbindungen. Ber. Dtsch. Chem. Ges. 19, 988–993 (1886).

    Article  Google Scholar 

  65. Tinge, J. et al. in Ullmann’s Encyclopedia of Industrial Chemistry (American Cancer Society, 2018); https://doi.org/10.1002/14356007.a05_031.pub3

  66. Banić Tomišić, Z. The story of azithromycin. Kem. Ind. 60, 603–617 (2011).

    Google Scholar 

  67. Amice, P., Blanco, L. & Conia, J. M. Enol silyl ethers and their use for the synthesis of α-halo-α,β-unsaturated carbonyl compounds. Synthesis 1976, 196–197 (1976).

    Article  Google Scholar 

  68. Parham, W. E., Soeder, R. W., Throckmorton, J. R., Kuncl, K. & Dodson, R. M. Reactions of enol ethers with carbenes. V. Rearrangements of dihalocyclopropanes derived from six-, seven-, and eight-membered cyclic enol ethers. J. Am. Chem. Soc. 87, 321–328 (1965).

    Article  CAS  Google Scholar 

  69. Skattebøl, L. Chemistry of gem-dihalocyclopropanes. IV. Ring opening of gem-dichlorocyclopropyl ethers. J. Org. Chem. 31, 1554–1559 (1966).

    Article  Google Scholar 

  70. Ohno, M. A new ring-expansion reaction from enamine and dichlorocarbene. Tetrahedron Lett. 4, 1753–1755 (1963).

    Article  Google Scholar 

  71. De Selms, R. C. A new method of ring expansion. Tetrahedron Lett. 7, 1965–1968 (1966).

    Article  Google Scholar 

  72. Yuan, P., Gerlinger, C. K. G., Herberger, J. & Gaich, T. Ten-step asymmetric total synthesis of (+)-pepluanol A. J. Am. Chem. Soc. 143, 11934–11938 (2021).

    Article  CAS  PubMed  Google Scholar 

  73. Ciamician, G. L. & Dennstedt, M. Ueber die Einwirkung des Chloroforms auf die Kaliumverbindung Pyrrols. Ber. Dtsch. Chem. Ges. 14, 1153–1163 (1881).

    Article  Google Scholar 

  74. Wynberg, H. The Reimer–Tiemann reaction. Chem. Rev. 60, 169–184 (1960).

    Article  CAS  Google Scholar 

  75. Dherange, B. D., Kelly, P. Q., Liles, J. P., Sigman, M. S. & Levin, M. D. Carbon atom insertion into pyrroles and indoles promoted by chlorodiazirines. J. Am. Chem. Soc. 143, 11337–11344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Graham, W. H. The halogenation of amidines. I. Synthesis of 3-halo- and other negatively substituted diazirines. J. Am. Chem. Soc. 87, 4396–4397 (1965).

    Article  CAS  Google Scholar 

  77. Ma, D., Martin, B. S., Gallagher, K. S., Saito, T. & Dai, M. One-carbon insertion and polarity inversion enabled a pyrrole strategy to the total syntheses of pyridine-containing lycopodium alkaloids: complanadine A and lycodine. J. Am. Chem. Soc. 143, 16383–16387 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Lyu, H., Kevlishvili, I., Yu, X., Liu, P. & Dong, G. Boron insertion into alkyl ether bonds via zinc/nickel tandem catalysis. Science 372, 175–182 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Pennington, L. D. & Moustakas, D. T. The necessary nitrogen atom: a versatile high-impact design element for multiparameter optimization. J. Med. Chem. 60, 3552–3579 (2017).

    Article  CAS  PubMed  Google Scholar 

  80. Golding, B. T. in Successful Drug Discovery (eds Fischer, J., Klein, C. & Childers, W. E.) 201–223 (John Wiley & Sons, Ltd, 2019).

  81. Fout, A. R., Bailey, B. C., Tomaszewski, J. & Mindiola, D. J. Cyclic denitrogenation of N-heterocycles applying a homogeneous titanium reagent. J. Am. Chem. Soc. 129, 12640–12641 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Morofuji, T., Inagawa, K. & Kano, N. Sequential ring-opening and ring-closing reactions for converting para-substituted pyridines into meta-substituted anilines. Org. Lett. 23, 6126–6130 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.S. is grateful to the National Institutes of Medical Science (R35 GM13045) and Merck Research Laboratories for funding portions of the work described herein. M.D.L. thanks the Packard Foundation and National Institutes of Health (R35 GM142768) for funding. S.F.K. is grateful for a National Science Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the inception, organization and writing of this manuscript, which was overseen by R.S. and M.D.L. All the figures were finalized by J.J. from initial drafts created by all the co-workers. J.J. led the writing of the section Contractions, S.F.K. wrote the section Deletions, J.W. led the writing of the section Expansions and B.D.D. wrote the Insertions section.

Corresponding authors

Correspondence to Richmond Sarpong or Mark D. Levin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Peter Seavill was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurczyk, J., Woo, J., Kim, S.F. et al. Single-atom logic for heterocycle editing. Nat. Synth 1, 352–364 (2022). https://doi.org/10.1038/s44160-022-00052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00052-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing