Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The synthesis of diverse terpene architectures from phenols

Abstract

Nature has evolved exquisite synthetic pathways for terpenes by combining isoprenes into chains, folding them into carbocycles and then oxidizing and/or rearranging them into a vast range of complex molecules (>50,000 examples). Although laboratory syntheses can sometimes emulate elements of this process, additional approaches that can similarly emulate nature’s approach and lead to molecular diversity are desirable. Here we show that the synthesis of polycyclic terpene molecules can be achieved through a predictable and reliable process that starts from phenols. The synthetic route comprises three steps: prenylation, dearomatization and/or prenyl migration, and, finally, epoxidation and/or radical cyclization. Critically, the third step uses a cooperative bimetallic catalyst to mediate the cyclization of epoxy enones under hydrogenative conditions. Overall, this approach leads to the stereocontrolled formation of bicyclic-, linear-, angular-, clovane- and propellane-based terpene structures with functional groups that allow further manipulation. For example, these motifs can be repurposed for ring contractions to access additional terpene-based architectures. Of note, several natural products were prepared through a formal total synthesis using this approach; these routes are as concise as, and often shorter than, previously reported syntheses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of a cohesive and unified strategy for terpene synthesis.
Fig. 2: Redox neutral and reductive dearomatizations.
Fig. 3: Scope of the epoxidation and radical cyclization cascade.
Fig. 4: Exploration of cooperative catalysis to achieve the radical cyclization.
Fig. 5: Application of the radical cyclization sequence for natural product synthesis.
Fig. 6: Further application of the radical cyclization sequence for natural product synthesis.

Similar content being viewed by others

Data availability

Full experimental procedures, compound characterization and spectral data for all the new materials can all be found in the Supplementary Information. Crystallographic data for the 14 structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2117563 (60), 2117564 (74), 2117565 (62), 2117566 (57), 2117567 (13), 2117568 (14), 2117569 (51), 2117570 (Supplementary54), 2117571 (38), 2117572 (66), 2117573 (11), 2117574 (84), 2117575 (12) and 2117576 (Supplementary55). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Christianson, D. W. Structural and chemical biology of terpenoid cyclases. Chem. Rev. 117, 11570–11648 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fischbach, M. & Clardy, J. One pathway, many products. Nat. Chem. Biol. 3, 353–355 (2007).

    CAS  PubMed  Google Scholar 

  3. Harms, V., Kirschning, A. & Dickschat, J. S. Nature-driven approaches to non-natural terpene analogues. Nat. Prod. Rep. 37, 1080–1097 (2020).

    CAS  PubMed  Google Scholar 

  4. Kanda, Y. et al. Two-phase synthesis of taxol. J. Am. Chem. Soc. 142, 10526–10533 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wildermuth, R. et al. A modular synthesis of tetracyclic meroterpenoid antibiotics. Nat. Commun. 8, 2083 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Maruoka, K., Sato, J., Banno, H. & Yamamoto, H. Organoaluminum-promoted rearrangement of allyl phenyl ethers. Tetrahedron Lett. 31, 377–380 (1990).

    CAS  Google Scholar 

  7. Giese, B. Formation of CC bonds by addition of free radicals to alkenes. Angew. Chem. Int. Ed. 22, 753–764 (1983).

    Google Scholar 

  8. Streuff, J. & Gansäuer, A. Metal-catalyzed β-functionalization of Michael acceptors through reductive radical addition reactions. Angew. Chem. Int. Ed. 54, 14232–14242 (2015).

    CAS  Google Scholar 

  9. Büschleb, M. et al. Synthetic strategies toward natural products containing contiguous stereogenic quaternary carbon atoms. Angew. Chem. Int. Ed. 55, 4156–4186 (2016).

    Google Scholar 

  10. Morcillo, S. P. et al. Ti(III)-catalyzed cyclizations of ketoepoxypolyprenes: control over the number of rings and unexpected stereoselectivities. J. Am. Chem. Soc. 136, 6943–6951 (2014).

    CAS  PubMed  Google Scholar 

  11. Lo, J. C. et al. Fe-catalyzed C–C bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu, P. et al. Quaternary-centre-guided synthesis of complex polycyclic terpenes. Nature 569, 703–707 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Xia, Z. et al. Re2O7 catalyzed dienone–phenol rearrangement. RSC Adv. 5, 38499–38502 (2015).

    CAS  Google Scholar 

  14. Nugent, W. A. & RajanBabu, T. V. Transition-metal-centered radicals in organic synthesis. Titanium(III)-induced cyclization of epoxy olefins. J. Am. Chem. Soc. 110, 8561–8562 (1988).

    CAS  Google Scholar 

  15. Zhang, Z., Richrath, R. B. & Gansäuer, A. Merging catalysis in single electron steps with photoredox catalysis-efficient and sustainable radical chemistry. ACS Catal. 9, 3208–3212 (2019).

    CAS  Google Scholar 

  16. Gansäuer, A., Bluhm, H. & Pierobon, M. Emergence of a novel catalytic radical reaction: titanocene-catalyzed reductive opening of epoxides. J. Am. Chem. Soc. 120, 12849–12859 (1998).

    Google Scholar 

  17. Rosales, A. et al. Ti(III)-catalyzed, concise synthesis of marine furanospongian diterpenes. RSC Adv. 2, 12922–12925 (2012).

    CAS  Google Scholar 

  18. Silva, L. F. Construction of cyclopentyl units by ring contraction reactions. Tetrahedron 58, 9137–9161 (2002).

    CAS  Google Scholar 

  19. Li, L., Chen, Z., Zhang, X. & Jia, Y. Divergent strategy in natural product total synthesis. Chem. Rev. 118, 3752–3832 (2018).

    CAS  PubMed  Google Scholar 

  20. Le Bideau, F., Kousara, M., Chen, L., Wei, L. & Dumas, F. Tricyclic sesquiterpenes from marine origin. Chem. Rev. 117, 6110–6159 (2017).

    PubMed  Google Scholar 

  21. Hung, K., Hu, X. & Maimone, T. J. Total synthesis of complex terpenoids employing radical cascade processes. Nat. Prod. Rep. 35, 174–202 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gansäuer, A. & Narayan, S. Titanocene-catalysed electron transfer-mediated opening of epoxides. Adv. Synth. Catal. 344, 465–475 (2002).

    Google Scholar 

  23. Barrero, A. F., Quílez del Moral, J. F., Sánchez, E. M. & Arteaga, J. F. Titanocene-mediated radical cyclization: an emergent method towards the synthesis of natural products. Eur. J. Org. Chem. 7, 1627–1641 (2006).

    Google Scholar 

  24. Justicia, J. et al. Bioinspired terpene synthesis: a radical approach. Chem. Soc. Rev. 40, 3525–3537 (2011).

    CAS  PubMed  Google Scholar 

  25. Saito, S. & Yamamoto, H. Efficient conjugate reduction of α,β-unsaturated carbonyl compounds by complexation with aluminum tris(2,6-diphenylphenoxide). J. Org. Chem. 61, 2928–2929 (1996).

    CAS  PubMed  Google Scholar 

  26. Saito, S. & Yamamoto, H. Designer Lewis acid catalysts—bulky aluminium reagents for selective organic synthesis. Chem. Commun. 1997, 1585–1592 (1997).

    Google Scholar 

  27. Lei, X., Dai, M., Hua, Z. & Danishefsky, S. J. Biomimetic total synthesis of tricycloillicinone and mechanistic studies toward the rearrangement of prenyl phenyl ethers. Tetrahedron Lett. 49, 6383–6385 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Homer, J. A. et al. Enantioselective para-Claisen rearrangement for the synthesis of illicium-derived prenylated phenylpropanoids. Org. Lett. 23, 3248–3252 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Guérard, K. C. et al. Oxidative 1,2- and 1,3-alkyl shift processes: developments and applications in synthesis. J. Org. Chem. 77, 2121–2133 (2012).

    PubMed  Google Scholar 

  30. Hou, H. et al. Total syntheses of the tetracyclic cyclopiane diterpenes conidiogenone, conidiogenol, and conidiogenone B. Angew. Chem. Int. Ed. 55, 4456–4460 (2016).

    CAS  Google Scholar 

  31. Maruoka, K., Banno, H. & Yamamoto, H. Enantioselective activation of ethers by chiral organoaluminum reagents: application to asymmetric Claisen rearrangement. Tetrahedron Asymmetry 2, 663–666 (1991).

    Google Scholar 

  32. Hoffmann, R. W. Allylic 1,3-strain as a controlling factor in stereoselective transformations. Chem. Rev. 89, 1841–1860 (1989).

    CAS  Google Scholar 

  33. Yao, C., Dahmen, T., Gansäuer, A. & Norton, J. Anti-Markovnikov alcohols via epoxide hydrogenation through cooperative catalysis. Science 364, 764–767 (2019).

    CAS  PubMed  Google Scholar 

  34. Chen, J. et al. Synthesis, characterization, and catalytic activity of bimetallic Ti/Cr complexes. Organometallics 39, 4592–4598 (2020).

    CAS  Google Scholar 

  35. Srikrishna, A. & Mahesh, K. An enantiospecific approach to irregular Ligusticum grayi sesquiterpenes: synthesis of cis-preisothapsa-2,8(12)-diene. Synlett 17, 2537–2540 (2011).

    Google Scholar 

  36. Stevens, K. E. & Paquette, L. A. Stereocontrolled total synthesis of (±)-Δ9(12)-capnellene. Tetrahedron Lett. 22, 4393–4396 (1981).

    CAS  Google Scholar 

  37. Kutney, J. P. & Chen, Y. H. The chemistry of thujone. XVII. The synthesis of ambergris fragrances and related analogues. Can. J. Chem. 72, 1570–1581 (1994).

    CAS  Google Scholar 

  38. Ho, T. S. & Jana, G. H. Total synthesis of 9-isocyanoneopupukeanane. J. Org. Chem. 24, 8965–8967 (1999).

    Google Scholar 

  39. Baker, B. A., Bošković, Ž. V. & Lipshutz, B. H. (BDP)CuH: a ‘hot’ Stryker’s reagent for use in achiral conjugate reductions. Org. Lett. 10, 289–292 (2008).

    CAS  PubMed  Google Scholar 

  40. Qin, T. et al. Nickel-catalyzed Barton decarboxylation and Giese reactions: a practical take on classic transforms. Angew. Chem. Int. Ed. 56, 260–265 (2017).

    CAS  Google Scholar 

  41. Curran, D. P. & Shen, W. Tandem transannular radical cyclizations. Total syntheses of (±)-modhephene and (±)-epi-modhephene. Tetrahedron 49, 755–770 (1993).

    CAS  Google Scholar 

  42. Schmiedel, V. M. et al. Synthesis and structure revision of dichrocephones A and B. Angew. Chem. Int. Ed. 57, 2419–2422 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Filatov, K. Jesse and S. Whitmeyer (University of Chicago) for X-ray analyses of our crystalline intermediates, and J. Kurutz and C. Jin Qin for assistance with the NMR spectroscopy and mass spectrometry, respectively (University of Chicago). This work was supported by funds from the University of Chicago and the NIH (R01-124295A).

Author information

Authors and Affiliations

Authors

Contributions

S.A.S. and F.S. conceived the project, and S.A.S. and J.R.N. directed the research. F.S. designed, carried out and analysed all experiments described in the main article, except for those studies on the catalytic approach to the epoxy-enone cyclizations (which were performed by C.Y.). S.A.S. and F.S. composed the manuscript and the Supplementary Information; all the authors commented on the manuscript and the Supplementary Information.

Corresponding author

Correspondence to Scott A. Snyder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Peter Seavill was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections A–T, experimental details, Schemes 1–3, and Tables 1 and 2.

Supplementary Data 1

Crystallographic data of compound 11, CCDC 2117573.

Supplementary Data 2

Crystallographic data of compound 12, CCDC 2117575.

Supplementary Data 3

Crystallographic data of compound 13, CCDC 2117567.

Supplementary Data 4

Crystallographic data of compound 14, CCDC 2117568.

Supplementary Data 5

Crystallographic data of compound 38, CCDC 2117571.

Supplementary Data 6

Crystallographic data of compound 51, CCDC 2117569.

Supplementary Data 7

Crystallographic data of compound 57, CCDC 2117566.

Supplementary Data 8

Crystallographic data of compound 60, CCDC 2117563.

Supplementary Data 9

Crystallographic data of compound 62, CCDC 2117565.

Supplementary Data 10

Crystallographic data of compound 66, CCDC 2117572.

Supplementary Data 11

Crystallographic data of compound 74, CCDC 2117564.

Supplementary Data 12

Crystallographic data of compound 84, CCDC 2117574.

Supplementary Data 13

Crystallographic data of compound S54, CCDC 2117570

Supplementary Data 14

Crystallographic data of compound S55, CCDC 2117576.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahi, F., Yao, C., Norton, J.R. et al. The synthesis of diverse terpene architectures from phenols. Nat. Synth 1, 313–321 (2022). https://doi.org/10.1038/s44160-022-00051-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00051-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing