Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combining nickel and squaramide catalysis for the stereodivergent α-propargylation of oxindoles

Abstract

Stereoisomers of drugs can have different therapeutic outcomes or side effects, and regulatory agencies require the bioactivity of all stereoisomers of pharmaceutical candidates to be evaluated during the drug discovery and development process. However, relatively few methods can lead to all possible stereoisomers of molecules containing contiguous stereocentres. Here we report a combination of nickel and squaramide catalysis as a versatile strategy for stereodivergent α-propargylation of oxindoles. Effective with both primary and secondary propargylic ammonium salt substrates, the reported process gives a range of α-propargylated oxindole products with excellent regio- and stereocontrol. The stereochemical outcome of the reaction can be programmed through choice of the appropriate enantiomers of the nickel and squaramide catalysts. The synthetic utility of this stereodivergent methodology is demonstrated through its application to the synthesis of a number of natural products, (−)-physovenine, (−)-esermethole and (−)-physostigmine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design plan for dual nickel/squaramide catalysis for stereodivergent propargylation to access all stereoisomers.
Fig. 2: Synthetic utilities.
Fig. 3: Stereodivergent transformations.
Fig. 4: Mechanistic studies.
Fig. 5: Proposed catalytic cycle.

Similar content being viewed by others

Data availability

The experimental data as well as the characterization data for all the compounds prepared during these studies are provided in the Supplementary Information. NMR data in a mnova file format and HPLC traces are available from Zenodo at https://zenodo.org/record/6043896#.YgcR_upBwuU, under the Creative Commons Attribution 4.0 International licence. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2080170 (3a) (https://www.ccdc.cam.ac.uk/mystructures/structuredetails/c36ae01e-99a6-eb11-9699-00505695281c) and 2080169 (7h) (https://www.ccdc.cam.ac.uk/mystructures/structuredetails/6774b318-99a6-eb11-9699-00505695281c). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. Comprehensive Asymmetric Catalysis (Springer, 1999).

  2. Kasprzyk-Hordern, B. Pharmacologically active compounds in the environment and their chirality. Chem. Soc. Rev. 39, 4466–4503 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Huo, X., He, R., Zhang, X. & Zhang, W. An Ir/Zn dual catalysis for enantio- and diastereodivergent α-allylation of α-hydroxyketones. J. Am. Chem. Soc. 138, 11093–11096 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Shi, S.-L., Wong, Z. L. & Buchwald, S. L. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature 532, 353–356 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cruz, F. A. & Dong, V. M. Stereodivergent coupling of aldehydes and alkynes via synergistic catalysis using Rh and Jacobsen’s amine. J. Am. Chem. Soc. 139, 1029–1032 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jiang, X., Beiger, J. J. & Hartwig, J. F. Stereodivergent allylic substitutions with aryl acetic acid esters by synergistic iridium and Lewis base catalysis. J. Am. Chem. Soc. 139, 87–90 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Beletskaya, I. P., Nájera, C. & Yue, M. Stereodivergent catalysis. Chem. Rev. 118, 5080–5200 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Romiti, F. et al. Different strategies for designing dual-catalytic enantioselective processes: from fully cooperative to non-cooperative systems. J. Am. Chem. Soc. 141, 17952–17961 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Wei, L., Chang, X. & Wang, C.-J. Catalytic asymmetric reactions with N-metallated azomethine ylides. Acc. Chem. Res. 53, 1084–1100 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen‐bond donors. Angew. Chem. Int. Ed. 45, 1520–1543 (2006).

    Article  CAS  Google Scholar 

  13. Long, J., Hu, J., Shen, X., Ji, B. & Ding, K. Discovery of exceptionally efficient catalysts for solvent-free enantioselective hetero-Diels-Alder reaction. J. Am. Chem. Soc. 124, 10–11 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, F. et al. Self‐assembled bifunctional catalysis induced by metal coordination interactions: an exceptionally efficient approach to enantioselective hydrophosphonylation. Angew. Chem. Int. Ed. 47, 5646–5649 (2008).

    Article  CAS  Google Scholar 

  15. Dub, P. A. & Gordon, J. C. Metal-ligand bifunctional catalysis: the ‘accepted’ mechanism, the issue of concertedness, and the function of the ligand in catalytic cycles involving hydrogen atoms. ACS Catal. 7, 6635–6655 (2017).

    Article  CAS  Google Scholar 

  16. Mikami, K., Matsukawa, S., Volk, T. & Terada, M. Self-assembly of several components into a highly enantioselective Ti catalyst for carbonyl-Ene reactions. Angew. Chem. Int. Ed. 36, 2768–2771 (1997).

    Article  CAS  Google Scholar 

  17. Mikami, K. et al. Asymmetric activation. Angew. Chem. Int. Ed. 39, 3532–3556 (2000).

    Article  CAS  Google Scholar 

  18. Li, X., Kwok, W. H. & Chan, A. S. C. Highly enantioselective alkynylzinc addition to aromatic aldehydes catalyzed by self-assembled titanium catalysts. J. Am. Chem. Soc. 124, 12636–12637 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu, M., Zhang, L. & Wang, T. Supramolecular chirality in self-assembled systems. Chem. Rev. 115, 7304–7397 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Du, Z. T. & Shao, Z.-H. Combining transition metal catalysis and organocatalysis—an update. Chem. Soc. Rev. 42, 1337–1378 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, D.-F., Han, Z.-Y., Zhou, X.-L. & Gong, L.-Z. Asymmetric organocatalysis combined with metal catalysis: concept, proof of concept and beyond. Acc. Chem. Res. 47, 2365–2377 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Ding, C.-H. & Hou, X.-L. Catalytic asymmetric propargylation. Chem. Rev. 111, 1914–1937 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, D.-Y. & Hu, X.-P. Recent advances in copper-catalyzed propargylic substitution. Tetrahedron Lett. 56, 283–295 (2015).

    Article  CAS  Google Scholar 

  25. Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Watanabe, K. et al. Nickel-catalyzed asymmetric propargylic amination of propargylic carbonates bearing an internal alkyne group. Org. Lett. 20, 5448–5451 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Peng, L., He, Z., Xu, X. & Guo, C. Cooperative Ni/Cu-catalyzed asymmetric propargylic alkylation of aldimine esters. Angew. Chem. Int. Ed. 59, 14270–14274 (2020).

    Article  CAS  Google Scholar 

  28. Miyazaki, Y., Zhou, B., Tsuji, H. & Kawatsura, M. Nickel-catalyzed asymmetric Friedel-Crafts propargylation of 3-substituted indoles with propargylic carbonates bearing an internal alkyne group. Org. Lett. 22, 2049–2053 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Tsuji, H. & Kawatsura, M. Transition‐metal‐catalyzed propargylic substitution of propargylic alcohol derivatives bearing an internal alkyne group. Asian J. Org. Chem. 9, 1924–1941 (2020).

    Article  CAS  Google Scholar 

  30. Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schreiber, S. L. Target-oriented and diversity-oriented organic synthesis in drug discovery. Science 287, 1964–1969 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Singh, G. S. & Desta, Z. Y. Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem. Rev. 112, 6104–6155 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Galliford, C. V. & Scheidt, K. A. Pyrrolidinyl‐spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. 46, 8748–8758 (2007).

    Article  CAS  Google Scholar 

  34. He, C.-Q., Cao, W.-D., Zhang, J.-L., Ge, S.-L. & Feng, X.-M. Chiral N,N′-dioxide/scandium(III)-catalyzed asymmetric alkylation of N-unprotected 3-substituted oxindoles. Adv. Synth. Catal. 360, 4301–4305 (2018).

    Article  CAS  Google Scholar 

  35. Xia, J.-T. & Hu, X.-P. Copper-catalyzed asymmetric propargylic alkylation with oxindoles: diastereo- and enantioselective construction of vicinal tertiary and all-carbon quaternary stereocenters. Org. Lett. 22, 1102–1107 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Y., Han, S.-J., Liu, W.-B. & Stoltz, B. M. Catalytic enantioselective construction of quaternary stereocenters: assembly of key building blocks for the synthesis of biologically active molecules. Acc. Chem. Res. 48, 740–751 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Matsuura, T., Overman, L. E. & Poon, D. J. Catalytic asymmetric synthesis of either enantiomer of the Calabar alkaloids physostigmine and physovenine. J. Am. Chem. Soc. 120, 6500–6503 (1998).

    Article  CAS  Google Scholar 

  38. Guisán-Ceinos, M., Martín-Heras, V. & Tortosa, M. Regio- and stereospecific copper-catalyzed substitution reaction of propargylic ammonium salts with aryl Grignard reagents. J. Am. Chem. Soc. 139, 8448–8451 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Guisán-Ceinos, M., Martín-Heras, V., Soler-Yanes, R., Cárdenas, D. J. & Tortosa, M. Copper-catalysed cross-coupling of alkyl Grignard reagents and propargylic ammonium salts: stereospecific synthesis of allene. Chem. Commun. 54, 8343–8346 (2018).

    Article  Google Scholar 

  40. Malerich, J. P., Hagihara, K. & Rawal, V. H. Chiral squaramide derivatives are excellent hydrogen bond donor catalysts. J. Am. Chem. Soc. 130, 14416–14417 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, T., Ferrali, A., Sladojevich, F., Campbell, L. & Dixon, D. J. Brønsted base/Lewis acid cooperative catalysis in the enantioselective Conia-Ene reaction. J. Am. Chem. Soc. 131, 9140–9141 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Sladojevich, F. et al. Mechanistic investigations into the enantioselective Conia‐Ene reaction catalyzed by cinchona‐derived amino urea pre‐catalysts and CuI. Chem. Eur. J. 19, 14286–14295 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    Article  CAS  Google Scholar 

  44. Chen, D.-F., Zhao, F., Hu, Y. & Gong, L.-Z. C-H functionalization/asymmetric Michael addition cascade enabled by relay catalysis: metal carbenoid used for C–C bond formation. Angew. Chem. Int. Ed. 53, 10763–10767 (2014).

    Article  CAS  Google Scholar 

  45. Banik, S. M., Levina, A., Hyde, A. M. & Jacobsen, E. N. Lewis acid enhancement by hydrogen-bond donors for asymmetric catalysis. Science 358, 761–764 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rombola, M., Sumaria, C. S., Montgomery, T. D. & Rawal, V. H. Development of chiral, bifunctional thiosquaramides: enantioselective Michael additions of barbituric acids to nitroalkenes. J. Am. Chem. Soc. 139, 5297–5300 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N-H bonds of aliphatic amines. Science 366, 990–994 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Dong, G. et al. Asymmetric allylation by chiral organocatalyst‐promoted formal hetero‐Ene reactions of alkylgold intermediates. Angew. Chem. Int. Ed. 60, 1992–1999 (2021).

    Article  CAS  Google Scholar 

  49. Pinto, A., Jia, Y., Neuville, L. & Zhu, J. Palladium‐catalyzed enantioselective domino Heck-cyanation sequence: development and application to the total synthesis of esermethole and physostigmine. Chem. Eur. J. 13, 961–967 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Zhou, M.-B., Huang, X.-C., Liu, Y.-Y., Song, R.-J. & Li, J.-H. Alkylation of terminal alkynes with transient σ-alkylpalladium(II) complexes: a carboalkynylation route to alkyl-substituted alkynes. Chem. Eur. J. 20, 1843–1846 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Rostami, A. et al. Squaramide-quaternary ammonium salt as an effective binary organocatalytic system for oxazolidinone synthesis from isocyanates and epoxides. Eur. J. Org. Chem. 2020, 1881–1895 (2020).

    Article  CAS  Google Scholar 

  52. Raheem, I. T., Thiara, P. S., Peterson, E. A. & Jacobsen, E. N. Enantioselective Pictet-Spengler-type cyclizations of hydroxylactams: H-bond donor catalysis by anion binding. J. Am. Chem. Soc. 129, 13404–13405 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Reisman, S. E., Doyle, A. G. & Jacobsen, E. N. Enantioselective thiourea-catalyzed additions to oxocarbenium ions. J. Am. Chem. Soc. 130, 7198–7199 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hamilton, G. L., Kang, E. J., Mba, M. & Toste, F. D. A powerful chiral counterion strategy for asymmetric transition metal catalysis. Science. 317, 496–499 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Chang, X., Zhang, J., Peng, L. & Guo, C. Collective synthesis of acetylenic pharmaceuticals via enantioselective nickel/Lewis acid-catalyzed propargylic alkylation. Nat. Commun. 12, 299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simlandy, A. K., Ghosh, B. & Mukherjee, S. Enantioselective [4 + 2]-annulation of azlactones with copper-allenylidenes under cooperative catalysis: synthesis of α-quaternary α-acylaminoamides. Org. Lett. 21, 3361–3366 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Kang, G. et al. Catalytic stereoselective conjugate addition of oxindole to electron-deficient alkynes. Adv. Synth. Catal. 355, 315–320 (2013).

    Article  CAS  Google Scholar 

  58. Zhao, M.-X. et al. Enantioselective Michael addition of 3-aryloxindoles to a vinyl bisphosphonate ester catalyzed by a cinchona alkaloid derived thiourea catalyst. Org. Biomol. Chem. 10, 7970–7979 (2012).

    Article  CAS  PubMed  Google Scholar 

  59. Deng, Y.-H. et al. Bifunctional tertiary amine-squaramide catalyzed asymmetric catalytic 1,6-conjugate addition/aromatization of para-quinone methides with oxindoles. Chem. Commun. 52, 4183–4186 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (grant no. 21971227, to C.G.), the Anhui Provincial Natural Science Foundation (grant no. 1808085MB30, to C.G.) and the Fundamental Research Funds for the Central Universities (grant no. WK2340000090, to C.G.).

Author information

Authors and Affiliations

Authors

Contributions

C.G. conceived the study. Q.H. performed the experiments and analysed the data. Z.H. and L.P. synthesized some of the substrates and ligands. All authors discussed the results and prepared the manuscript.

Corresponding author

Correspondence to Chang Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Xinfang Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Fig. 1, text and discussion and Tables 1–7.

Supplementary Data 1

Crystallographic data for compound 3a CCDC 2080170.

Supplementary Data 2

Crystallographic data for compound 7h CCDC 2080169.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., He, Z., Peng, L. et al. Combining nickel and squaramide catalysis for the stereodivergent α-propargylation of oxindoles. Nat. Synth 1, 322–331 (2022). https://doi.org/10.1038/s44160-022-00050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00050-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing