Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereoselective cyclohexadienylamine synthesis through rhodium-catalysed [2+2+2] cyclotrimerization

Abstract

Development of a multicomponent reaction giving a single product is a major goal in synthetic organic chemistry. Catalytic [2+2+2] cyclotrimerization of two distinct alkynes and an alkene with chemo-, regio-, diastereo- and enantiocontrol offers rapid access to highly valued chiral six-membered carbocycles. However, previous [2+2+2]-cyclotrimerization methods have been thwarted by low selectivity and restricted substrate scope. Here we report the rhodium-catalysed [2+2+2] cyclotrimerization of terminal alkynes, alkynoates and cis-enamides to give synthetically valuable chiral cyclohexadienylamines with broad substrate scope and excellent selectivity without the requirement for slow addition or large excesses of reagents. Experimental and theoretical mechanistic studies revealed that the three-component [2+2+2]-cyclotrimerization reaction is highly specific towards use of the cis-enamide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Research background for catalytic three-component [2+2+2] cyclotrimerization.
Fig. 2: Synthetic transformations.
Fig. 3: Experimental mechanistic studies.
Fig. 4: Theoretical mechanistic studies.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in this article and its Supplementary Information (experimental procedures and characterization data). Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under the deposition number CCDC 2068101 ((4R,5S)-(+)-4eaa). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Nunes, P. S. G., Vidal, H. D. A. & Corrêa, A. G. Recent advances in catalytic enantioselective multicomponent reactions. Org. Biomol. Chem. 18, 7751–7773 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Ahmadi, T., Mohammadi Ziarani, G., Gholamzadeh, P. & Mollabagher, H. Recent advances in asymmetric multicomponent reactions (AMCRs). Tetrahedron Asymmetry 28, 708–724 (2017).

    Article  CAS  Google Scholar 

  3. de Graaff, C., Ruijter, E. & Orru, R. V. A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev. 41, 3969 (2012).

    Article  PubMed  CAS  Google Scholar 

  4. Shi, S. et al. Three-component radical homo Mannich reaction. Nat. Commun. 12, 1006 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Boerth, J. A., Maity, S., Williams, S. K., Mercado, B. Q. & Ellman, J. A. Selective and synergistic cobalt(III)-catalysed three-component C–H bond addition to dienes and aldehydes. Nat. Catal. 1, 673–679 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ohashi, M., Shirataki, H., Kikushima, K. & Ogoshi, S. Nickel-catalyzed formation of fluorine-containing ketones via the selective cross-trimerization reaction of tetrafluoroethylene, ethylene, and aldehydes. J. Am. Chem. Soc. 137, 6496–6499 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Zhou, C., Emrich, D. E. & Larock, R. C. An efficient, regio- and stereoselective palladium-catalyzed route to tetrasubstituted olefins. Org. Lett. 5, 1579–1582 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki, M., Yanagisawa, A. & Noyori, R. The three-component coupling synthesis of prostaglandins. J. Am. Chem. Soc. 110, 4718–4726 (1988).

    Article  CAS  Google Scholar 

  9. Passerini, M. Isonitriles. II. Compounds with aldehydes or with ketones and monobasic organic acids. Gazz. Chim. Ital. 51, 181–189 (1921).

    CAS  Google Scholar 

  10. Ugi, I. The α-addition of immonium ions and anions to isonitriles accompanied by secondary reactions. Angew. Chem. Int. Ed. 1, 8–21 (1962).

    Article  Google Scholar 

  11. Tripolitsiotis, N. P., Thomaidi, M. & Neochoritis, C. G. The Ugi three‐component reaction; a valuable tool in modern organic synthesis. Eur. J. Org. Chem. 2020, 6525–6554 (2020).

    Article  Google Scholar 

  12. Wang, S.-X., Wang, M.-X., Wang, D.-X. & Zhu, J. Catalytic enantioselective Passerini three-component reaction. Angew. Chem. Int. Ed. 47, 388–391 (2008).

    Article  CAS  Google Scholar 

  13. Zhang, J. et al. Asymmetric phosphoric acid-catalyzed four-component Ugi reaction. Science 361, eaas8707 (2018).

    Article  PubMed  CAS  Google Scholar 

  14. Pla-Quintana, A. & Roglans, A. Chiral induction in [2+2+2] cycloaddition reactions. Asian J. Org. Chem. 7, 1706–1718 (2018).

    Article  CAS  Google Scholar 

  15. Domínguez, G. & Pérez-Castells, J. Alkenes in [2+2+2] cycloadditions. Chem. Eur. J. 22, 6720–6739 (2016).

    Article  PubMed  CAS  Google Scholar 

  16. Amatore, M. & Aubert, C. Recent advances in stereoselective [2+2+2] cycloadditions. Eur. J. Org. Chem. 2015, 265–286 (2015).

    Article  CAS  Google Scholar 

  17. Galan, B. R. & Rovis, T. Beyond Reppe: building substituted arenes by [2+2+2] cycloadditions of alkynes. Angew. Chem. Int. Ed. 48, 2830–2834 (2009).

    Article  CAS  Google Scholar 

  18. Mori, N., Ikeda, S. & Odashima, K. Chemo- and regioselective cyclotrimerization of monoynes catalyzed by a nickel(0) and zinc(II) phenoxide system. Chem. Commun. 181–182 (2001).

  19. Ura, Y. et al. Ruthenium-catalyzed [2+2+2] cycloaddition of three different alkynes. J. Mol. Catal. A 239, 166–171 (2005).

    Article  CAS  Google Scholar 

  20. Yamamoto, Y., Ishii, J.-I., Nishiyama, H. & Itoh, K. Ru(II)-catalyzed chemo- and regioselective cyclotrimerization of three unsymmetrical alkynes through boron temporary tether. one-pot four-component coupling via cyclotrimerization/Suzuki–Miyaura coupling. J. Am. Chem. Soc. 126, 3712–3713 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Heinz, C. & Cramer, N. Synthesis of fijiolide A via an atropselective paracyclophane formation. J. Am. Chem. Soc. 137, 11278–11281 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Mori, N., Ikeda, S.-I. & Sato, Y. Selective cyclotrimerization of enones and alkynes by a nickel and aluminum catalytic system. J. Am. Chem. Soc. 121, 2722–2727 (1999).

    Article  CAS  Google Scholar 

  23. Satoh, Y. & Obora, Y. NbCl3-catalyzed three-component [2+2+2] cycloaddition reaction of terminal alkynes, internal alkynes, and alkenes to 1,3,4,5-tetrasubstituted 1,3-cyclohexadienes. Org. Lett. 13, 2568–2571 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Komagawa, S. & Saito, S. Nickel-catalyzed three-component [3+2+2] cocyclization of ethyl cyclopropylideneacetate and alkynes—selective synthesis of multisubstituted cycloheptadienes. Angew. Chem. Int. Ed. 45, 2446–2449 (2006).

    Article  CAS  Google Scholar 

  25. Hara, H., Hirano, M. & Tanaka, K. Liquid enol ethers and acetates as gaseous alkyne equivalents in Rh-catalyzed chemo- and regioselective formal cross-alkyne cyclotrimerization. Org. Lett. 10, 2537–2540 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Qiu, Z. & Xie, Z. Nickel-catalyzed three-component [2+2+2] cycloaddition reaction of arynes, alkenes, and alkynes. Angew. Chem. Int. Ed. 48, 5729–5732 (2009).

    Article  CAS  Google Scholar 

  27. Kobayashi, M., Suda, T., Noguchi, K. & Tanaka, K. Enantioselective construction of bridged multicyclic skeletons: intermolecular [2+2+2] cycloaddition/intramolecular Diels–Alder reaction cascade. Angew. Chem. Int. Ed. 50, 1664–1667 (2011).

    Article  CAS  Google Scholar 

  28. Yoshida, T. et al. Rhodium-catalyzed [3+2+2] and [2+2+2] cycloadditions of two alkynes with cyclopropylideneacetamides. Angew. Chem. Int. Ed. 54, 8241–8244 (2015).

    Article  CAS  Google Scholar 

  29. Shibata, Y. & Tanaka, K. Rhodium-catalyzed [2+2+2] cycloaddition of alkynes for the synthesis of substituted benzenes: catalysts, reaction scope, and synthetic applications. Synthesis 44, 323–350 (2012).

    Article  CAS  Google Scholar 

  30. Perreault, S. & Rovis, T. Multi-component cycloaddition approaches in the catalytic asymmetric synthesis of alkaloid targets. Chem. Soc. Rev. 38, 3149 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hara, J., Ishida, M., Kobayashi, M., Noguchi, K. & Tanaka, K. Highly chemo-, regio-, and enantioselective rhodium-catalyzed cross-cyclotrimerization of two different alkynes with alkenes. Angew. Chem. Int. Ed. 53, 2956–2959 (2014).

    Article  CAS  Google Scholar 

  32. Kobayashi, M. & Tanaka, K. Rhodium-catalyzed linear cross-trimerization of two different alkynes with an alkene and two different alkenes with an alkyne. Chem. Eur. J. 18, 9225–9229 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Shibata, T. et al. Rhodium-catalyzed enantioselective [2+2+2] cycloaddition of diynes with unfunctionalized alkenes. Tetrahedron 63, 12853–12859 (2007).

    Article  CAS  Google Scholar 

  34. Aida, Y., Sugiyama, H., Uekusa, H., Shibata, Y. & Tanaka, K. Rhodium-catalyzed asymmetric [2+2+2] cycloaddition of α,ω-diynes with unsymmetrical 1,2-disubstituted alkenes. Org. Lett. 18, 2672–2675 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Hashimoto, T. et al. The absolute structure of oryzoxymycin. J. Antibiot. 27, 86–87 (1974).

    Article  CAS  Google Scholar 

  36. Fukuyama, T. & Kishi, Y. A total synthesis of gliotoxin. J. Am. Chem. Soc. 98, 6723–6724 (1976).

    Article  CAS  PubMed  Google Scholar 

  37. Yeung, H. S. & Corey, E. J. A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. J. Am. Chem. Soc. 128, 6310–6311 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, C. U. et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119, 681–690 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Lew, W., Williams, M. A., Mendel, D. B., Escarpe, P. A. & Kim, C. U. C3-Thia and C3-carba isosteres of a carbocyclic influenza neuraminidase inhibitor, (3R,4R,5S)-4-acetamido-5-amino-3-propoxyl-1-cyclohexene-1-carboxylic acid. Bioorg. Med. Chem. Lett. 7, 1843–1846 (1997).

    Article  CAS  Google Scholar 

  40. Tohmé, R. et al. Direct activation of PP2A for the treatment of tyrosine kinase inhibitor-resistant lung adenocarcinoma. JCI Insight 4, e125693 (2019).

    Article  PubMed Central  Google Scholar 

  41. Brazdova, B., Zhang, N., Samoshin, V. V. & Guo, X. Trans-2-aminocyclohexanol as a pH-sensitive conformational switch in lipid amphiphiles. Chem. Commun. 4774 (2008).

  42. Hernandez, L. W., Klöckner, U., Pospech, J., Hauss, L. & Sarlah, D. Nickel-catalyzed dearomative trans-1,2-carboamination. J. Am. Chem. Soc. 140, 4503–4507 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Masutomi, K., Sugiyama, H., Uekusa, H., Shibata, Y. & Tanaka, K. Asymmetric synthesis of protected cyclohexenylamines and cyclohexenols by rhodium-catalyzed [2+2+2] cycloaddition. Angew. Chem. Int. Ed. 55, 15373–15376 (2016).

    Article  CAS  Google Scholar 

  44. Shimizu, H., Nagasaki, I. & Saito, T. Recent advances in biaryl-type bisphosphine ligands. Tetrahedron 61, 5405–5432 (2005).

    Article  CAS  Google Scholar 

  45. Marcone, J. E. & Moloy, K. G. Kinetic study of reductive elimination from the complexes (diphosphine)Pd(R)(CN). J. Am. Chem. Soc. 120, 8527–8528 (1998).

    Article  CAS  Google Scholar 

  46. Tanaka, K., Toyoda, K., Wada, A., Shirasaka, K. & Hirano, M. Chemo- and regioselective intermolecular cyclotrimerization of terminal alkynes catalyzed by cationic rhodium(I)/modified BINAP complexes: application to one-step synthesis of paracyclophanes. Chem. Eur. J. 11, 1145–1156 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Dyker, G. Palladium-catalyzed C-H activation of tert-butyl groups: a simple synthesis of 1,2-dihydrocyclobutabenzene derivatives. Angew. Chem. Int. Ed. 33, 103–105 (1994).

    Article  Google Scholar 

  48. Dyker, G. Palladacycles as reactive intermediates. Chem. Ber. 130, 1567–1578 (1997).

    Article  CAS  Google Scholar 

  49. Gimalova, F. A. et al. Effect of the β-substituent with respect to the azido group on the reactivity of methyl (2E)-3-[5-(azidomethyl)-2,2-diethyl-1,3-dioxolan-4-yl]-2-methylprop-2-enoate. Russ. J. Org. Chem. 49, 1047–1054 (2013).

    Article  CAS  Google Scholar 

  50. Maeda, S., Ohno, K. & Morokuma, K. Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods. Phys. Chem. Chem. Phys. 15, 3683–3701 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Roglans, A., Pla-Quintana, A. & Solà, M. Mechanistic studies of transition-metal-catalyzed [2+2+2] cycloaddition reactions. Chem. Rev. 121, 1894–1979 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Sakaki, S., Kitaura, K. & Morokuma, K. Structure and coordinate bonding nature of nickel(0) and copper(I) carbon dioxide complexes. An ab initio molecular orbital study. Inorg. Chem. 21, 760–765 (1982).

    Article  CAS  Google Scholar 

  53. Komagawa, S., Wang, C., Morokuma, K., Saito, S. & Uchiyama, M. Mechanistic origin of chemo- and regioselectivity of nickel-catalyzed [3+2+2] cyclization reaction. J. Am. Chem. Soc. 135, 14508–14511 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Evans, M. G. & Polanyi, M. Some applications of the transition state method to the calculation of reaction velocities, especially in solution. Trans. Faraday Soc. 31, 875–894 (1935).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported partly by Grants-in-Aid for Scientific Research (number JP19H00893 to K.T., number 17H06173 to M.U. and numbers JP20H04661 and JP18H04504 to H.U.) from JSPS (Japan) and CREST (number JPMJCR19R2 to M.U.) from JST (Japan). We thank Takasago International Corporation for the gift of Segphos and H8-BINAP, and Umicore for the support in supplying the rhodium complexes. Allotment of computational resources from and HOKUSAI BigWaterfall (Project G19012, RIKEN) and TSUBAME (Tokyo Institute of Technology) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

K.F. designed the project, conducted experimental studies and wrote a draft of the experimental studies. K.M. conducted preliminary experiments. Y.N., T.S., J.K. and M.U. conducted computational studies and wrote a draft of the computational studies. H.S. and H.U. performed the X-ray crystal structure analysis. K.T. designed, advised and directed the project, and wrote the manuscript. All authors edited the manuscript.

Corresponding authors

Correspondence to Masanobu Uchiyama or Ken Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Martin Kotora and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Materials and methods, synthetic experiments, single-crystal X-ray diffraction analysis of (+)-4eaa, computational studies, NMR spectra, HPLC data, references, Figs 1–7 and Tables 1–8.

Supplementary Data 1

Crystal structure of +4eaa; CCDC 2068101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujii, K., Nagashima, Y., Shimokawa, T. et al. Stereoselective cyclohexadienylamine synthesis through rhodium-catalysed [2+2+2] cyclotrimerization. Nat. Synth 1, 365–375 (2022). https://doi.org/10.1038/s44160-022-00043-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00043-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing