Abstract
The use of group 1 metal alkoxides as additives to activate s-block organometallics is an established phenomenon in polar organometallic chemistry. Typified by the Lochmann–Schlosser superbase, these reagents have proved to be exceptionally powerful bases for the deprotonative metallation of organic substrates. However, despite their long-standing importance in synthesis, the nature of this activating effect remains to be fully understood. Here we shed light on the origins of the special reactivities of which these reagents are capable, which generally cannot be replicated by their homometallic precursors. In addition, reactivity studies that have established the mixed-metal constitutions of these organometallic reagents are discussed. Opening up new directions in synthesis, the use of lithium alkoxides as additives to promote direct regioselective magnesium (or zinc)/halogen exchange processes to access highly functionalized organometallics is also discussed, with an emphasis on rationalizing the role of each metal in these transformations.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Reich, H. J. Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. Chem. Rev. 113, 7130–7178 (2013).
Harrison-Marchand, A. & Mongin, F. Mixed AggregAte (MAA): a single concept for all dipolar organometallic aggregates. 1. Structural data. Chem. Rev. 113, 7470–7562 (2013).
Rausch, M. D. & Ciappenelli, D. J. Organometallic π-complexes XII. The metalation of benzene and ferrocene by n-butyllithium-N,N,N′,N′-tetramethylethylenediamine. J. Organomet. Chem. 10, 127–136 (1967).
Leroux, F., Schlosser, M., Zohar, E. & Marek, I. in The Chemistry of Organolithium Compounds (eds Rappoport, Z. & Marek, I.) 148 (Wiley, 2004).
Marsch, M., Harms, K., Lochmann, L. & Boche, G. [nBuLi·LiOtBu]4, solid-state structure of an n-butyllithium-lithium tert-butoxide complex. Angew. Chem. Int. Ed. 29, 308–309 (1990).
Benrath, P., Kaiser, M., Limbach, T., Mondeshki, M. & Klett, J. Combining neopentyllithium with potassium tert-butoxide: formation of an alkane-soluble Lochmann-Schlosser superbase. Angew. Chem. Int. Ed. 55, 10886–10889 (2016).
Klett, J. Structural motifs of alkali metal superbases in non-coordinating solvents. Chem. Eur. J. 27, 888–904 (2021).
Robertson, S. D., Uzelac, M. & Mulvey, R. E. Alkali-metal-mediated synergistic effects in polar main group organometallic chemistry. Chem. Rev. 119, 8332–8405 (2019).
Gentner, T. X. & Mulvey, R. E. Alkali-metal mediation: diversity of applications in main-group organometallic chemistry. Angew. Chem. Int. Ed. 60, 9247–9262 (2021).
Hsieh, H. L. & Wofford, C. F. Alkyllithium and alkali metal tert-butoxide as polymerization initiator. J. Polym. Sci. A 7, 449–460 (1969).
Morton, A. A. et al. Polymerization. XII. The metalation of olefins and dienes and their use in alfin polymerization of butadiene 1. J. Am. Chem. Soc. 72, 3785–3792 (1950).
Lochmann, L. & Janata, M. 50 years of superbases made from organolithium compounds and heavier alkali metal alkoxides. Cent. Eur. J. Chem. 12, 537–548 (2014).
Caubère, P. Unimetal super bases. Chem. Rev. 93, 2317–2334 (1993).
Lochmann, L., Pospíšil, J. & Lím, D. On the interaction of organolithium compounds with sodium and potassium alkoxides. A new method for the synthesis of organosodium and organopotassium compounds. Tetrahedron Lett. 7, 257–262 (1966).
Schlosser, M. Zur Aktivierung lithiumorganischer Reagenzien. J. Organomet. Chem. 8, 9–16 (1967).
Schlosser, M. Superbases for organic synthesis. Pure Appl. Chem. 60, 1627–1634 (1988).
Lochmann, L. Reaction of organolithium compounds with alkali metal alkoxides—a route to superbases. Eur. J. Inorg. Chem. 2000, 1115–1126 (2000).
Lochmann, L. & Trekoval, J. Lithium-potassium exchange in alkyllithium/potassium t-pentoxide systems. J. Organomet. Chem. 326, 1–7 (1987).
Schlosser, M. & Strunk, S. The ‘super-basic’ butyllithium/potassium tert-butoxide mixture and other lickor-reagents. Tetrahedron Lett. 25, 741–744 (1984).
Harder, S. & Lutz, M. Lithiation of N,N,N′,N′-tetramethylethylenediamine and the structure in a mixed organolithium aggregate. Organometallics 13, 5173–5176 (1994).
Schlosser, M., Jung, H. C. & Takagishi, S. Selective mono- or dimetalation of arenes by means of superbasic reagents. Tetrahedron 46, 5633–5648 (1990).
Whisler, M. C., MacNeil, S., Snieckus, V. & Beak, P. Beyond thermodynamic acidity: a perspective on the complex-induced proximity effect (CIPE) in deprotonation reactions. Angew. Chem. Int. Ed. 43, 2206–2225 (2004).
Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).
Katsoulos, G., Takagishi, S. & Schlosser, M. The metalation of fluoroanisoles: optional regioselectivity due to metal mediated control. Synlett 1991, 731–732 (1991).
Fleming, P. & O’Shea, D. F. Controlled anion migrations with a mixed metal Li/K-TMP amide: general application to benzylic metalations. J. Am. Chem. Soc. 133, 1698–1701 (2011).
Benkeser, R. A. & Liston, T. V. Factors governing orientation in heterogeneous metalation reactions. J. Am. Chem. Soc. 82, 3221–3222 (1960).
Manvar, A., Fleming, P. & O’Shea, D. F. General ambient temperature benzylic metalations using mixed-metal Li/K-TMP amide. J. Org. Chem. 80, 8727–8738 (2015).
Yamashita, Y., Suzuki, H., Sato, I., Hirata, T. & Kobayashi, S. Catalytic direct-type addition reactions of alkylarenes with imines and alkenes. Angew. Chem. Int. Ed. 57, 6896–6900 (2018).
Screttas, C. G. & Micha-Screttas, M. The diphenylmagnesium/alkali metal alkoxide system. Hydrocarbon-soluble organoalkali metal reagents. J. Organomet. Chem. 290, 1–13 (1985).
Screttas, C. G. & Steele, B. R. Mixed main-group metal alkyls and alkoxides in synthesis and catalysis. Appl. Organomet. Chem. 14, 653–659 (2000).
Richey, H. G. & DeStephano, J. P. Reactions of dialkylmagnesium-salt mixtures with ketones: increasing the ratio of addition to reduction. J. Org. Chem. 55, 3281–3286 (1990).
Bauer, W. & Lochmann, L. Structure of a super base in tetrahydrofuran solution studied by 6Li, 1H HOESY, 133Cs, 1H HOESY, and MNDO. Evidence for discrete species rather than a mixed aggregate. J. Am. Chem. Soc. 114, 7482–7489 (1992).
Harder, S. & Streitwieser, A. First structure of a mixed organosodium/lithium alkoxide compound: model for a superbase. Angew. Chem. Int. Ed. 32, 1066–1068 (1993).
Schade, C., Schleyer, Pv. R., Dietrich, H. & Mahdi, W. Pentacoordinate carbon in trigonal-bipyramidal symmetry. The eight-membered X-ray structure of tetrakis(benzylsodium-N,N,N′,N′-tetramethylethylenediamine). J. Am. Chem. Soc. 108, 2484–2485 (1986).
Unkelbach, C., O’Shea, D. F. & Strohmann, C. Insights into the metalation of benzene and toluene by Schlosser’s base: a superbasic cluster comprising PhK, PhLi and tBuOLi. Angew. Chem. Int. Ed. 53, 553–556 (2014).
Jennewein, B., Kimpel, S., Thalheim, D. & Klett, J. Towards the next generation of Lochmann-Schlosser superbases: a potassium neopentyl/alkoxy aggregate used in the tetra-functionalization of ferrocene. Chem. Eur. J. 24, 7605–7609 (2018).
Clegg, W., Liddle, S. T., Drummond, A. M., Mulvey, R. E. & Robertson, A. A novel heterometallic alkoxide: lithium-potassium tert-butoxide [(ButO)8Li4K4]. Chem. Commun. 16, 1569–1570 (1999).
Balkenhohl, M. et al. Preparation of polyfunctional arylzinc organometallics in toluene by halogen/zinc exchange reactions. Angew. Chem. Int. Ed. 58, 12898–12902 (2019).
Desaintjean, A. et al. Regioselective bromine/magnesium exchange for the selective functionalization of polyhalogenated arenes and heterocycles. Angew. Chem. Int. Ed. 60, 1513–1518 (2021).
Bole, L. J., Judge, N. R. & Hevia, E. Untangling the complexity of mixed lithium/magnesium alkyl/alkoxy combinations utilised in bromine/magnesium exchange reactions. Angew. Chem. Int. Ed. 60, 7626–7631 (2021).
Tilly, D., Chevallier, F., Mongin, F. & Gros, P. C. Bimetallic combinations for dehalogenative metalation involving organic compounds. Chem. Rev. 114, 1207–1257 (2014).
Wittig, G., Pockels, U. & Dröge, H. Über die Austauschbarkeit von aromatisch gebundenem Wasserstoff gegen lithium mittels phenyl-lithiums. Berichte Dtsch. Chem. Gesellschaft 71, 1903–1912 (1938).
Gilman, H. & Langham, W. Metalation as a side reaction in the preparation of organolithium compounds. J. Am. Chem. Soc. 61, 106–109 (1939).
Knochel, P. et al. Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. Angew. Chem. Int. Ed. 42, 4302–4320 (2003).
Boudier, A., Bromm, L. O., Lotz, M. & Knochel, P. New applications of polyfunctional organometallic compounds in organic synthesis. Angew. Chem. Int. Ed. 39, 4414–4435 (2000).
Farkas, J., Stoudt, S. J., Hanawalt, E. M., Pajerski, A. D. & Richey, H. G. Reactions of organomagnesates and aryl halides: metalation and nucleophilic substitution. Organometallics 23, 423–427 (2004).
Catel, D., Payen, O., Chevallier, F., Mongin, F. & Gros, P. C. Pyridylmagnesiates: generation by bromine-metal exchange and enantioselective addition to aldehydes. Tetrahedron 68, 4018–4028 (2012).
Francos, J., Gros, P. C., Kennedy, A. R. & O’Hara, C. T. Structural studies of (rac)-BIPHEN organomagnesiates and intermediates in the halogen-metal exchange of 2-bromopyridine. Organometallics 34, 2550–2557 (2015).
Ziegler, D. S., Karaghiosoff, K. & Knochel, P. Generation of aryl and heteroaryl magnesium reagents in toluene by Br/Mg or Cl/Mg exchange. Angew. Chem. Int. Ed. 57, 6701–6704 (2018).
Gros, P. C. & Elaachbouni, F. Bromine-lithium exchange under non-cryogenic conditions: TMSCH2Li–LiDMAE promoted C-2 lithiation of 2,3-dibromopyridine. Chem. Commun. 39, 4813–4815 (2008).
Music, A. & Didier, D. Organocerium: a new contender for halogen-metal exchanges. Synlett 30, 1843–1849 (2019).
Fairley, M. et al. s-Block cooperative catalysis: alkali metal magnesiate-catalysed cyclisation of alkynols. Chem. Sci. 10, 5821–5831 (2019).
Borys, A. M. & Hevia, E. Exploiting chemical cooperativity in main-group bimetallic catalysis. Trends Chem. 3, 803–806 (2021).
Gil-Negrete, J. M. & Hevia, E. Main group bimetallic partnerships for cooperative catalysis. Chem. Sci. 12, 1982–1992 (2021).
Acknowledgements
This work was supported by the Swiss National Science Foundation (SNF, grant no. 188573) and the University of Bern. We also thank R. E. Mulvey (University of Strathclyde) and M. Uzelac (University of Edinburgh) for their valuable comments and suggestions.
Author information
Authors and Affiliations
Contributions
L.J.B. and E.H. contributed to discussions and wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Synthesis thanks Florence Mongin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Bole, L.J., Hevia, E. Activation of polar organometallic reagents with alkali-metal alkoxides. Nat Synth 1, 195–202 (2022). https://doi.org/10.1038/s44160-022-00040-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44160-022-00040-5
This article is cited by
-
An Electrolysis-Distillation Approach for Producing Potassium Metal
Metallurgical and Materials Transactions B (2024)