Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Activation of polar organometallic reagents with alkali-metal alkoxides

Abstract

The use of group 1 metal alkoxides as additives to activate s-block organometallics is an established phenomenon in polar organometallic chemistry. Typified by the Lochmann–Schlosser superbase, these reagents have proved to be exceptionally powerful bases for the deprotonative metallation of organic substrates. However, despite their long-standing importance in synthesis, the nature of this activating effect remains to be fully understood. Here we shed light on the origins of the special reactivities of which these reagents are capable, which generally cannot be replicated by their homometallic precursors. In addition, reactivity studies that have established the mixed-metal constitutions of these organometallic reagents are discussed. Opening up new directions in synthesis, the use of lithium alkoxides as additives to promote direct regioselective magnesium (or zinc)/halogen exchange processes to access highly functionalized organometallics is also discussed, with an emphasis on rationalizing the role of each metal in these transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and reactivity of superbase reagents.
Fig. 2: Mixed-metal constitution of RLi/AM-OR combinations.
Fig. 3: Select examples of Mg/Br exchange using AM-OR-powered magnesiate reagents.
Fig. 4: Understanding the complexity of the [sBu2Mg + LiOR′] exchange reagent.

Similar content being viewed by others

References

  1. Reich, H. J. Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. Chem. Rev. 113, 7130–7178 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Harrison-Marchand, A. & Mongin, F. Mixed AggregAte (MAA): a single concept for all dipolar organometallic aggregates. 1. Structural data. Chem. Rev. 113, 7470–7562 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Rausch, M. D. & Ciappenelli, D. J. Organometallic π-complexes XII. The metalation of benzene and ferrocene by n-butyllithium-N,N,N′,N′-tetramethylethylenediamine. J. Organomet. Chem. 10, 127–136 (1967).

    Article  CAS  Google Scholar 

  4. Leroux, F., Schlosser, M., Zohar, E. & Marek, I. in The Chemistry of Organolithium Compounds (eds Rappoport, Z. & Marek, I.) 148 (Wiley, 2004).

  5. Marsch, M., Harms, K., Lochmann, L. & Boche, G. [nBuLi·LiOtBu]4, solid-state structure of an n-butyllithium-lithium tert-butoxide complex. Angew. Chem. Int. Ed. 29, 308–309 (1990).

    Article  Google Scholar 

  6. Benrath, P., Kaiser, M., Limbach, T., Mondeshki, M. & Klett, J. Combining neopentyllithium with potassium tert-butoxide: formation of an alkane-soluble Lochmann-Schlosser superbase. Angew. Chem. Int. Ed. 55, 10886–10889 (2016).

    Article  CAS  Google Scholar 

  7. Klett, J. Structural motifs of alkali metal superbases in non-coordinating solvents. Chem. Eur. J. 27, 888–904 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Robertson, S. D., Uzelac, M. & Mulvey, R. E. Alkali-metal-mediated synergistic effects in polar main group organometallic chemistry. Chem. Rev. 119, 8332–8405 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Gentner, T. X. & Mulvey, R. E. Alkali-metal mediation: diversity of applications in main-group organometallic chemistry. Angew. Chem. Int. Ed. 60, 9247–9262 (2021).

    Article  CAS  Google Scholar 

  10. Hsieh, H. L. & Wofford, C. F. Alkyllithium and alkali metal tert-butoxide as polymerization initiator. J. Polym. Sci. A 7, 449–460 (1969).

    Article  CAS  Google Scholar 

  11. Morton, A. A. et al. Polymerization. XII. The metalation of olefins and dienes and their use in alfin polymerization of butadiene 1. J. Am. Chem. Soc. 72, 3785–3792 (1950).

    Article  Google Scholar 

  12. Lochmann, L. & Janata, M. 50 years of superbases made from organolithium compounds and heavier alkali metal alkoxides. Cent. Eur. J. Chem. 12, 537–548 (2014).

    CAS  Google Scholar 

  13. Caubère, P. Unimetal super bases. Chem. Rev. 93, 2317–2334 (1993).

    Article  Google Scholar 

  14. Lochmann, L., Pospíšil, J. & Lím, D. On the interaction of organolithium compounds with sodium and potassium alkoxides. A new method for the synthesis of organosodium and organopotassium compounds. Tetrahedron Lett. 7, 257–262 (1966).

    Article  Google Scholar 

  15. Schlosser, M. Zur Aktivierung lithiumorganischer Reagenzien. J. Organomet. Chem. 8, 9–16 (1967).

    Article  CAS  Google Scholar 

  16. Schlosser, M. Superbases for organic synthesis. Pure Appl. Chem. 60, 1627–1634 (1988).

    Article  CAS  Google Scholar 

  17. Lochmann, L. Reaction of organolithium compounds with alkali metal alkoxides—a route to superbases. Eur. J. Inorg. Chem. 2000, 1115–1126 (2000).

    Article  Google Scholar 

  18. Lochmann, L. & Trekoval, J. Lithium-potassium exchange in alkyllithium/potassium t-pentoxide systems. J. Organomet. Chem. 326, 1–7 (1987).

    Article  CAS  Google Scholar 

  19. Schlosser, M. & Strunk, S. The ‘super-basic’ butyllithium/potassium tert-butoxide mixture and other lickor-reagents. Tetrahedron Lett. 25, 741–744 (1984).

    Article  CAS  Google Scholar 

  20. Harder, S. & Lutz, M. Lithiation of N,N,N′,N′-tetramethylethylenediamine and the structure in a mixed organolithium aggregate. Organometallics 13, 5173–5176 (1994).

    Article  CAS  Google Scholar 

  21. Schlosser, M., Jung, H. C. & Takagishi, S. Selective mono- or dimetalation of arenes by means of superbasic reagents. Tetrahedron 46, 5633–5648 (1990).

    Article  CAS  Google Scholar 

  22. Whisler, M. C., MacNeil, S., Snieckus, V. & Beak, P. Beyond thermodynamic acidity: a perspective on the complex-induced proximity effect (CIPE) in deprotonation reactions. Angew. Chem. Int. Ed. 43, 2206–2225 (2004).

    Article  CAS  Google Scholar 

  23. Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Rev. 90, 879–933 (1990).

    Article  CAS  Google Scholar 

  24. Katsoulos, G., Takagishi, S. & Schlosser, M. The metalation of fluoroanisoles: optional regioselectivity due to metal mediated control. Synlett 1991, 731–732 (1991).

    Article  Google Scholar 

  25. Fleming, P. & O’Shea, D. F. Controlled anion migrations with a mixed metal Li/K-TMP amide: general application to benzylic metalations. J. Am. Chem. Soc. 133, 1698–1701 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Benkeser, R. A. & Liston, T. V. Factors governing orientation in heterogeneous metalation reactions. J. Am. Chem. Soc. 82, 3221–3222 (1960).

    Article  CAS  Google Scholar 

  27. Manvar, A., Fleming, P. & O’Shea, D. F. General ambient temperature benzylic metalations using mixed-metal Li/K-TMP amide. J. Org. Chem. 80, 8727–8738 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Yamashita, Y., Suzuki, H., Sato, I., Hirata, T. & Kobayashi, S. Catalytic direct-type addition reactions of alkylarenes with imines and alkenes. Angew. Chem. Int. Ed. 57, 6896–6900 (2018).

    Article  CAS  Google Scholar 

  29. Screttas, C. G. & Micha-Screttas, M. The diphenylmagnesium/alkali metal alkoxide system. Hydrocarbon-soluble organoalkali metal reagents. J. Organomet. Chem. 290, 1–13 (1985).

    Article  CAS  Google Scholar 

  30. Screttas, C. G. & Steele, B. R. Mixed main-group metal alkyls and alkoxides in synthesis and catalysis. Appl. Organomet. Chem. 14, 653–659 (2000).

    Article  CAS  Google Scholar 

  31. Richey, H. G. & DeStephano, J. P. Reactions of dialkylmagnesium-salt mixtures with ketones: increasing the ratio of addition to reduction. J. Org. Chem. 55, 3281–3286 (1990).

    Article  CAS  Google Scholar 

  32. Bauer, W. & Lochmann, L. Structure of a super base in tetrahydrofuran solution studied by 6Li, 1H HOESY, 133Cs, 1H HOESY, and MNDO. Evidence for discrete species rather than a mixed aggregate. J. Am. Chem. Soc. 114, 7482–7489 (1992).

    Article  CAS  Google Scholar 

  33. Harder, S. & Streitwieser, A. First structure of a mixed organosodium/lithium alkoxide compound: model for a superbase. Angew. Chem. Int. Ed. 32, 1066–1068 (1993).

    Article  Google Scholar 

  34. Schade, C., Schleyer, Pv. R., Dietrich, H. & Mahdi, W. Pentacoordinate carbon in trigonal-bipyramidal symmetry. The eight-membered X-ray structure of tetrakis(benzylsodium-N,N,N′,N′-tetramethylethylenediamine). J. Am. Chem. Soc. 108, 2484–2485 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Unkelbach, C., O’Shea, D. F. & Strohmann, C. Insights into the metalation of benzene and toluene by Schlosser’s base: a superbasic cluster comprising PhK, PhLi and tBuOLi. Angew. Chem. Int. Ed. 53, 553–556 (2014).

    Article  CAS  Google Scholar 

  36. Jennewein, B., Kimpel, S., Thalheim, D. & Klett, J. Towards the next generation of Lochmann-Schlosser superbases: a potassium neopentyl/alkoxy aggregate used in the tetra-functionalization of ferrocene. Chem. Eur. J. 24, 7605–7609 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Clegg, W., Liddle, S. T., Drummond, A. M., Mulvey, R. E. & Robertson, A. A novel heterometallic alkoxide: lithium-potassium tert-butoxide [(ButO)8Li4K4]. Chem. Commun. 16, 1569–1570 (1999).

    Article  Google Scholar 

  38. Balkenhohl, M. et al. Preparation of polyfunctional arylzinc organometallics in toluene by halogen/zinc exchange reactions. Angew. Chem. Int. Ed. 58, 12898–12902 (2019).

    Article  CAS  Google Scholar 

  39. Desaintjean, A. et al. Regioselective bromine/magnesium exchange for the selective functionalization of polyhalogenated arenes and heterocycles. Angew. Chem. Int. Ed. 60, 1513–1518 (2021).

    Article  CAS  Google Scholar 

  40. Bole, L. J., Judge, N. R. & Hevia, E. Untangling the complexity of mixed lithium/magnesium alkyl/alkoxy combinations utilised in bromine/magnesium exchange reactions. Angew. Chem. Int. Ed. 60, 7626–7631 (2021).

    Article  CAS  Google Scholar 

  41. Tilly, D., Chevallier, F., Mongin, F. & Gros, P. C. Bimetallic combinations for dehalogenative metalation involving organic compounds. Chem. Rev. 114, 1207–1257 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Wittig, G., Pockels, U. & Dröge, H. Über die Austauschbarkeit von aromatisch gebundenem Wasserstoff gegen lithium mittels phenyl-lithiums. Berichte Dtsch. Chem. Gesellschaft 71, 1903–1912 (1938).

    Article  Google Scholar 

  43. Gilman, H. & Langham, W. Metalation as a side reaction in the preparation of organolithium compounds. J. Am. Chem. Soc. 61, 106–109 (1939).

    Article  CAS  Google Scholar 

  44. Knochel, P. et al. Highly functionalized organomagnesium reagents prepared through halogen-metal exchange. Angew. Chem. Int. Ed. 42, 4302–4320 (2003).

    Article  CAS  Google Scholar 

  45. Boudier, A., Bromm, L. O., Lotz, M. & Knochel, P. New applications of polyfunctional organometallic compounds in organic synthesis. Angew. Chem. Int. Ed. 39, 4414–4435 (2000).

    Article  Google Scholar 

  46. Farkas, J., Stoudt, S. J., Hanawalt, E. M., Pajerski, A. D. & Richey, H. G. Reactions of organomagnesates and aryl halides: metalation and nucleophilic substitution. Organometallics 23, 423–427 (2004).

    Article  CAS  Google Scholar 

  47. Catel, D., Payen, O., Chevallier, F., Mongin, F. & Gros, P. C. Pyridylmagnesiates: generation by bromine-metal exchange and enantioselective addition to aldehydes. Tetrahedron 68, 4018–4028 (2012).

    Article  CAS  Google Scholar 

  48. Francos, J., Gros, P. C., Kennedy, A. R. & O’Hara, C. T. Structural studies of (rac)-BIPHEN organomagnesiates and intermediates in the halogen-metal exchange of 2-bromopyridine. Organometallics 34, 2550–2557 (2015).

    Article  CAS  Google Scholar 

  49. Ziegler, D. S., Karaghiosoff, K. & Knochel, P. Generation of aryl and heteroaryl magnesium reagents in toluene by Br/Mg or Cl/Mg exchange. Angew. Chem. Int. Ed. 57, 6701–6704 (2018).

    Article  CAS  Google Scholar 

  50. Gros, P. C. & Elaachbouni, F. Bromine-lithium exchange under non-cryogenic conditions: TMSCH2Li–LiDMAE promoted C-2 lithiation of 2,3-dibromopyridine. Chem. Commun. 39, 4813–4815 (2008).

    Article  Google Scholar 

  51. Music, A. & Didier, D. Organocerium: a new contender for halogen-metal exchanges. Synlett 30, 1843–1849 (2019).

    Article  CAS  Google Scholar 

  52. Fairley, M. et al. s-Block cooperative catalysis: alkali metal magnesiate-catalysed cyclisation of alkynols. Chem. Sci. 10, 5821–5831 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Borys, A. M. & Hevia, E. Exploiting chemical cooperativity in main-group bimetallic catalysis. Trends Chem. 3, 803–806 (2021).

    Article  CAS  Google Scholar 

  54. Gil-Negrete, J. M. & Hevia, E. Main group bimetallic partnerships for cooperative catalysis. Chem. Sci. 12, 1982–1992 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (SNF, grant no. 188573) and the University of Bern. We also thank R. E. Mulvey (University of Strathclyde) and M. Uzelac (University of Edinburgh) for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

L.J.B. and E.H. contributed to discussions and wrote the manuscript.

Corresponding author

Correspondence to Eva Hevia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Florence Mongin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bole, L.J., Hevia, E. Activation of polar organometallic reagents with alkali-metal alkoxides. Nat Synth 1, 195–202 (2022). https://doi.org/10.1038/s44160-022-00040-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00040-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing