Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct growth of single-metal-atom chains

Abstract

Single-metal-atom chains (SMACs), as the smallest one-dimensional structure, have intriguing physical and chemical properties. Although several SMACs have been realized so far, their controllable fabrication remains challenging due to the need to arrange single atoms in an atomically precise manner. Here we develop a chemical vapour co-deposition method to construct a wafer-scale network of platinum SMACs in atom-thin films. The obtained atomic chains possess an average length of up to ~17 nm and a high density of over 10 wt%. Interestingly, as a consequence of the electronic delocalization of platinum atoms along the chain, this atomically coherent one-dimensional channel delivers a metallic behaviour, as revealed by electronic measurements, first-principles calculations and complex network modelling. Our strategy is potentially extendable to other transition metals such as cobalt, enriching the toolbox for manufacturing SMACs and paving the way for the fundamental study of one-dimensional systems and the development of devices comprising monoatomic chains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth of platinum SMACs.
Fig. 2: Atomic structure of platinum SMACs in monolayer MoS2.
Fig. 3: Atomic structure of platinum SMACs in bilayer MoS2.
Fig. 4: Formation mechanism of platinum SMACs.
Fig. 5: Electronic structure of platinum SMAC.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information.

Code availability

The code of the complex network-based method employed in this work is available at https://doi.org/10.6084/m9.figshare.c.4879863.

References

  1. Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Ahn, J., Yeom, H., Yoon, H. & Lyo, I.-W. Metal-insulator transition in Au atomic chains on Si with two proximal bands. Phys. Rev. Lett. 91, 196403 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Pham, T. et al. Torsional instability in the single-chain limit of a transition metal trichalcogenide. Science 361, 263–266 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Dua, P., Lee, G. & Kim, K. S. Ferromagnetism in monatomic chains: spin-dependent bandwidth narrowing/broadening. J. Phys. Chem. C 121, 20994–21000 (2017).

    Article  CAS  Google Scholar 

  6. Bergman, A., Hellsvik, J., Bessarab, P. F. & Delin, A. Spin relaxation signature of colossal magnetic anisotropy in platinum atomic chains. Sci. Rep. 6, 36872 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rubio-Bollinger, G., Bahn, S. R., Agrait, N., Jacobsen, K. W. & Vieira, S. Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87, 026101 (2001).

    Article  Google Scholar 

  8. Ohnishi, H., Kondo, Y. & Takayanagi, K. Quantized conductance through individual rows of suspended gold atoms. Nature 395, 780–783 (1998).

    Article  CAS  Google Scholar 

  9. Kizuka, T. Atomic configuration and mechanical and electrical properties of stable gold wires of single-atom width. Phys. Rev. B 77, 155401 (2008).

    Article  Google Scholar 

  10. Sokolov, A., Zhang, C., Tsymbal, E. Y., Redepenning, J. & Doudin, B. Quantized magnetoresistance in atomic-size contacts. Nat. Nanotechnol. 2, 171–175 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Autès, G., Barreteau, C., Desjonquères, M. C., Spanjaard, D. & Viret, M. Giant orbital moments are responsible for the anisotropic magnetoresistance of atomic contacts. Europhys. Lett. 83, 17010 (2008).

    Article  Google Scholar 

  12. Calvo, M. R. et al. The Kondo effect in ferromagnetic atomic contacts. Nature 458, 1150–1153 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Oncel, N. Atomic chains on surfaces. J. Phys. Condens. Matter 20, 393001 (2008).

    Article  Google Scholar 

  14. Snijders, P. C. & Weitering, H. H. Colloquium: electronic instabilities in self-assembled atom wires. Rev. Mod. Phys. 82, 307–329 (2010).

    Article  CAS  Google Scholar 

  15. Blumenstein, C. et al. Atomically controlled quantum chains hosting a Tomonaga–Luttinger liquid. Nat. Phys. 7, 776–780 (2011).

    Article  CAS  Google Scholar 

  16. Yanson, A. et al. Formation and manipulation of a metallic wire of single gold atoms. Nature 395, 783–785 (1998).

    Article  CAS  Google Scholar 

  17. Lehtinen, O. et al. Atomic scale microstructure and properties of Se-deficient two-dimensional MoSe2. ACS Nano 9, 3274–3283 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, Y. et al. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary. Nat. Commun. 8, 14231 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Ma, Y. et al. Metallic twin grain boundaries embedded in MoSe2 monolayers grown by molecular beam epitaxy. ACS Nano 11, 5130–5139 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Nanda, K. K., Sahu, S. N. & Behera, S. N. Liquid-drop model for the size-dependent melting of low-dimensional systems. Phys. Rev. A 66, 013208 (2002).

    Article  Google Scholar 

  22. Voiry, D. et al. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Vancsó, P. et al. The intrinsic defect structure of exfoliated MoS2 single layers revealed by scanning tunneling microscopy. Sci. Rep. 6, 29726 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fu, Y., Rudnev, A. V., Wiberg, G. K. & Arenz, M. Single graphene layer on Pt(111) creates confined electrochemical environment via selective ion transport. Angew. Chem. Int. Ed. 56, 12883–12887 (2017).

    Article  CAS  Google Scholar 

  25. Xu, S. et al. Direct integration of strained-Pt catalysts into proton-exchange-membrane fuel cells with atomic layer deposition. Adv. Mater. 33, 2007885 (2021).

    Article  CAS  Google Scholar 

  26. Xia, M. et al. Spectroscopic signatures of AA′ and AB stacking of chemical vapor deposited bilayer MoS2. ACS Nano 9, 12246–12254 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, H. et al. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. ACS Nano 8, 1031–1038 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Jin, G. et al. Atomically thin three-dimensional membranes of van der Waals semiconductors by wafer-scale growth. Sci. Adv. 5, eaaw3180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yao, H., Hsieh, Y.-P., Kong, J. & Hofmann, M. Modelling electrical conduction in nanostructure assemblies through complex networks. Nat. Mater. 19, 745–751 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Albert, R. & Barabási, A.-L. Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  Google Scholar 

  31. Lee, D., Kahng, B., Cho, Y. S., Goh, K. I. & Lee, D. S. Recent advances of percolation theory in complex networks. J. Korean Phys. Soc. 73, 152–164 (2018).

    Article  Google Scholar 

  32. Yao, H., Hempel, M., Hsieh, Y.-P., Kong, J. & Hofmann, M. Characterizing percolative materials by straining. Nanoscale 11, 1074–1079 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Jolie, W. et al. Tomonaga–Luttinger liquid in a box: electrons confined within MoS2 mirror-twin boundaries. Phys. Rev. X 9, 011055 (2019).

    CAS  Google Scholar 

  34. Barja, S. et al. Charge density wave order in 1D mirror twin boundaries of single-layer MoSe2. Nat. Phys. 12, 751–756 (2016).

    Article  CAS  Google Scholar 

  35. Nagao, T., Yaginuma, S., Inaoka, T. & Sakurai, T. One-dimensional plasmon in an atomic-scale metal wire. Phys. Rev. Lett. 97, 116802 (2006).

    Article  PubMed  Google Scholar 

  36. Segovia, P., Purdie, D., Hengsberger, M. & Baer, Y. Observation of spin and charge collective modes in one-dimensional metallic chains. Nature 402, 504–507 (1999).

    Article  CAS  Google Scholar 

  37. Barthel, J. Dr. Probe: a software for high-resolution STEM image simulation. Ultramicroscopy 193, 1–11 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Hÿtch, M. et al. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008).

    Article  PubMed  Google Scholar 

  39. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Silvi, B. & Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371, 683–686 (1994).

    Article  CAS  Google Scholar 

  44. Savin, A., Nesper, R., Wengert, S. & Fässler, T. F. ELF: the electron localization function. Angew. Chem. Int. Ed. 36, 1808–1832 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the support from National Research Foundation Singapore programme NRF-CRP22-2019-0007 and NRF-CRP21-2018-0007. This work is also supported by the Ministry of Education, Singapore, under its AcRF Tier 2 (MOE2019-T2-2-105) and AcRF Tier 1 RG4/17 and RG7/18. This research is also supported by A*STAR under its AME IRG Grant (project no. A2083c0052). The work at NUAA was supported by the National Key Research and Development Program of China (2019YFA0705400), National Natural Science Foundation of China (11772153, 22073048), the Natural Science Foundation of Jiangsu Province (BK20190018), and a Project by the Priority Academic Program Development of Jiangsu Higher Education Institutions. W.Z. acknowledges the support of the Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). B.T. and X.W. acknowledge the support from the Ministry of Education, Singapore (MOE2019 T1-001-113). H.Y. and M.N. acknowledge the support from the Hong Kong Research Grant Council, Hong Kong (HKRGC GRF 12300218, 12300519, 17201020, 17300021, and UGC-RMGS 207300829). H.D. acknowledges the support from German Research Foundation (DFG) under the Grant SFB917 Nanoswitches.

Author information

Authors and Affiliations

Authors

Contributions

Z.L. Y.H. and Z.Z. guided the project. S.G. and Y.H. synthesized the platinum SMACs. S.G. conducted electronic measurements. J.F. and C.Z. (NTU and SEU) conducted the STEM characterizations. Z.Z. proposed the surf-zip model. P.Z. and Z.Z. performed the first-principle calculations and analysed the simulation results. H.Y., M.H., Y.H. and M.N. simulated the electronic transport. Z.L., Y.H., Z.Z. and C.J. conceived and supervised the experiments. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Chunlin Jia, Zhuhua Zhang, Yongmin He or Zheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Jan van Ruitenbeek and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Alison Stoddart was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–25, Table 1, Discussion, and Notes 1 and 2.

Supplementary Data 1

The coordinates of all optimized structures used in the DFT calculations.

Source data

Source Data Fig. 1

Statistical Source Data for Fig. 1c.

Source Data Fig. 1

Statistical Source Data for Fig. 1d.

Source Data Fig. 1

Statistical Source Data for Fig. 1e.

Source Data Fig. 2

Statistical Source Data for Fig. 2d.

Source Data Fig. 3

Statistical Source Data for Fig. 3b.

Source Data Fig. 3

Statistical Source Data for Fig. 3c.

Source Data Fig. 5

Statistical Source Data for Fig. 5f.

Source Data Fig. 5

Statistical Source Data for Fig. 5h.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Fu, J., Zhang, P. et al. Direct growth of single-metal-atom chains. Nat Synth 1, 245–253 (2022). https://doi.org/10.1038/s44160-022-00038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00038-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing