Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals


Liquid metals are unique solvents in which elegant solidification patterns emerge. Despite the fundamental and technological importance of the solidification process, knowledge gaps and challenges exist in the direct observation, understanding and control of phase transition and pattern formation on the surface of liquid metals. Here, we report the emergence of oscillatory bifurcation solidification patterns in multiple alloy systems. In particular, the solidification of a model Ag0.001Ga0.999 alloy, triggered by controlled nucleation, reveals a switchable transition between branched and particulate surface patterns of nanoscale phase-separated intermetallic Ag2Ga. Evidence from solidification observations, surface analyses and molecular dynamics (MD) simulations suggests that surface contact phases and conditions modulate the instability dynamics, giving rise to the unconventional oscillatory bifurcation patterns. By demonstrating manipulation and applications in a number of settings enabled by our method, we highlight the wide implications of the observations and present possibilities for exploiting surface solidification phenomena for the synthesis of exclusive nanostructured functional patterns for surface-based applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Seeded surface solidification of the Ag0.001Ga0.999 alloy.
Fig. 2: Surface patterning regimes and oscillatory bifurcation.
Fig. 3: Topographical, structural and compositional characterizations of the surface patterns.
Fig. 4: MD simulations.
Fig. 5: Oscillatory bifurcation surface solidification patterns in alloy systems Ag0.001Bi0.999 and Bi0.001Ga0.999.
Fig. 6: Demonstrations of the manipulation and application of oscillatory bifurcation patterns.

Data availability

Source data are provided for this paper. Other data that support the findings of this study can be found within the paper and its Supplementary Information.


  1. Fleury, V. et al (eds) Branching in Nature: Dynamics and Morphogenesis of Branching Structures, from Cell to River Networks (Springer Science & Business Media, 2013).

  2. Cross, M. C. & Hohenberg, P. C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993).

    Article  CAS  Google Scholar 

  3. Cummins, H. Z., Fourtune, L. & Rabaud, M. Successive bifurcations in directional viscous fingering. Phys. Rev. E 47, 1727–1738 (1993).

    Article  CAS  Google Scholar 

  4. Patsyk, A., Sivan, U., Segev, M. & Bandres, M. A. Observation of branched flow of light. Nature 583, 60–65 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Dick, K. A. et al. Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater. 3, 380–384 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Langer, J. S. Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1–28 (1980).

    Article  CAS  Google Scholar 

  7. Kulkarni, A. A., Hanson, E., Zhang, R., Thornton, K. & Braun, P. V. Archimedean lattices emerge in template-directed eutectic solidification. Nature 577, 355–358 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Losurdo, M., Suvorova, A., Rubanov, S., Hingerl, K. & Brown, A. S. Thermally stable coexistence of liquid and solid phases in gallium nanoparticles. Nat. Mater. 15, 995–1002 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Tang, J. et al. Unique surface patterns emerging during solidification of liquid metal alloys. Nat. Nanotechnol. 16, 431–439 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Trivedi, R. & Kurz, W. Dendritic growth. Int. Mater. Rev. 39, 49–74 (1994).

    Article  CAS  Google Scholar 

  11. Jackson, K. A. & Hunt, J. D. Lamellar and rod eutectic growth. Trans. Metall. Soc. 236, 1129–1142 (1966).

  12. Myroshnychenko, V. et al. Interacting plasmon and phonon polaritons in aligned nano- and microwires. Opt. Express 20, 10879–10887 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Kulkarni, A. A. et al. Template-directed solidification of eutectic optical materials. Adv. Opt. Mater. 6, 1800071 (2018).

    Article  Google Scholar 

  14. Sun, X. et al. Liquid metal microparticles phase change medicated mechanical destruction for enhanced tumor cryoablation and dual-mode imaging. Adv. Funct. Mater. 30, 2003359 (2020).

    Article  CAS  Google Scholar 

  15. Boley, J. W. et al. High-operating-temperature direct ink writing of mesoscale eutectic architectures. Adv. Mater. 29, 1604778 (2017).

    Article  Google Scholar 

  16. Daeneke, T. et al. Liquid metals: fundamentals and applications in chemistry. Chem. Soc. Rev. 47, 4073–4111 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Kalantar-Zadeh, K. et al. Emergence of liquid metals in nanotechnology. ACS Nano 13, 7388–7395 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. McKeown, J. T., Clarke, A. J. & Wiezorek, J. M. K. Imaging transient solidification behavior. MRS Bull. 45, 916–926 (2020).

    Article  Google Scholar 

  19. Kalantar-Zadeh, K., Rahim, M. A. & Tang, J. Low melting temperature liquid metals and their impacts on physical chemistry. Acc. Mater. Res. 2, 577–580 (2021).

    Article  CAS  Google Scholar 

  20. Turnbull, D. Formation of crystal nuclei in liquid metals. J. Appl. Phys. 21, 1022–1028 (1950).

    Article  CAS  Google Scholar 

  21. Yazdanpanah, M. M., Harfenist, S. A., Safir, A. & Cohn, R. W. Selective self-assembly at room temperature of individual freestanding Ag2Ga alloy nanoneedles. J. Appl. Phys. 98, 073510 (2005).

    Article  Google Scholar 

  22. Jalilian, R. et al. Toward wafer-scale patterning of freestanding intermetallic nanowires. Nanotechnology 22, 295601 (2011).

    Article  PubMed  Google Scholar 

  23. Stoop, N., Lagrange, R., Terwagne, D., Reis, P. M. & Dunkel, J. Curvature-induced symmetry breaking determines elastic surface patterns. Nat. Mater. 14, 337–342 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Meng, G., Paulose, J., Nelson, D. R. & Manoharan, V. N. Elastic instability of a crystal growing on a curved surface. Science 343, 634–637 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Libbrecht, K. G. The physics of snow crystals. Rep. Prog. Phys. 68, 855–895 (2005).

    Article  Google Scholar 

  26. Mullins, W. W. & Sekerka, R. F. Stability of a planar interface during solidification of a dilute binary alloy. J. Appl. Phys. 35, 444–451 (1964).

    Article  Google Scholar 

  27. Cao, M. et al. Ultrahigh electrical conductivity of graphene embedded in metals. Adv. Funct. Mater. 29, 1806792 (2019).

    Article  Google Scholar 

  28. Zhang, A., Guo, Z. & Xiong, S. M. Eutectic pattern transition under different temperature gradients: a phase field study coupled with the parallel adaptive-mesh-refinement algorithm. J. Appl. Phys. 121, 125101 (2017).

    Article  Google Scholar 

  29. Liu, S., Lee, J. H. & Trivedi, R. Dynamic effects in the lamellar–rod eutectic transition. Acta Mater. 59, 3102–3115 (2011).

    Article  CAS  Google Scholar 

  30. Regan, M. J. et al. X-ray reflectivity studies of liquid metal and alloy surfaces. Phys. Rev. B 55, 15874–15884 (1997).

    Article  CAS  Google Scholar 

  31. Shpyrko, O. et al. Surface crystallization in a liquid AuSi alloy. Science 313, 77–80 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y. et al. Structures of the ζ and ζ′ phases in the Ag–Ga system. J. Alloys Compd. 399, 155–159 (2005).

    Article  CAS  Google Scholar 

  33. Lambie, S., Steenbergen, K. G. & Gaston, N. Modulating the thermal and structural stability of gallenene via variation of atomistic thickness. Nanoscale Adv. 3, 499–507 (2021).

    Article  CAS  Google Scholar 

  34. Lereu, A. L., Lemarchand, F., Zerrad, M., Yazdanpanah, M. & Passian, A. Optical properties and plasmonic response of silver-gallium nanostructures. J. Appl. Phys. 117, 063110 (2015).

    Article  Google Scholar 

  35. Joo, S. W., Han, S. W. & Kim, K. Adsorption of 1,4-benzenedithiol on gold and silver surfaces: surface-enhanced Raman scattering study. J. Colloid Interface Sci. 240, 391–399 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  38. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  40. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  PubMed  Google Scholar 

  41. Steenbergen, K. G. & Gaston, N. Geometrically induced melting variation in gallium clusters from first principles. Phys. Rev. B 88, 161402 (2013).

    Article  Google Scholar 

  42. Steenbergen, K. G. & Gaston, N. A two-dimensional liquid structure explains the elevated melting temperatures of gallium nanoclusters. Nano Lett. 16, 21–26 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Steenbergen, K. G. & Gaston, N. Thickness dependent thermal stability of 2D gallenene. Chem. Commun. 55, 8872–8875 (2019).

    Article  CAS  Google Scholar 

  44. Drewitt, J. W. E. et al. Structural ordering in liquid gallium under extreme conditions. Phys. Rev. Lett. 124, 145501 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Yu, S. & Kaviany, M. Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles. J. Chem. Phys. 140, 064303 (2014).

    Article  PubMed  Google Scholar 

  46. Singh-Miller, N. E. & Marzari, N. Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles. Phys. Rev. B 80, 235407 (2009).

    Article  Google Scholar 

  47. Niu, H., Bonati, L., Piaggi, P. M. & Parrinello, M. Ab initio phase diagram and nucleation of gallium. Nat. Commun. 11, 2654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lambie, S., Steenbergen, K. G. & Gaston, N. A mechanistic understanding of surface Bi enrichment in dilute GaBi systems. Phys. Chem. Chem. Phys. 23, 14383–14390 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Zhou, J. et al. Observing crystal nucleation in four dimensions using atomic electron tomography. Nature 570, 500–503 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Heinz, H., Lin, T.-J., Kishore Mishra, R. & Emami, F. S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29, 1754–1765 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Nathanson, M., Kanhaiya, K., Pryor, A., Miao, J. & Heinz, H. Atomic-scale structure and stress release mechanism in core–shell nanoparticles. ACS Nano 12, 12296–12304 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Liu, J. et al. Understanding chemical bonding in alloys and the representation in atomistic simulations. J. Phys. Chem. C 122, 14996–15009 (2018).

    Article  CAS  Google Scholar 

Download references


This work was supported by an Australian Research Council (ARC) Laureate Fellowship grant (FL180100053, K.K.-Z.), the ARC Centres of Excellence FLEET (CE170100039, K.K.-Z.) and Exciton Science (CE170100026, N.M. and S.P.R.), and the ARC Discovery Early Career Researcher Award (DE220100816, J.T.). This work was also supported by computational resources provided by the Australian Government through the National Computational Infrastructure National Facility and the Pawsey Supercomputer Centre.

Author information

Authors and Affiliations



J.T. made the preliminary experimental observations. J.T. and K.K.-Z. conceived and designed the experiments. J.T. conducted the experiments, characterizations and analysed the data with assistance from J.Y., J.H., M.A.R., M.M., M.B.G., F.-M.A. and Z.C. The MD simulations were performed by S.L., N.M., A.J.C., C.F.M., K.G.S., S.P.R. and N.G. The first manuscript was drafted by J.T. and K.K.-Z. with inputs from all authors.

Corresponding authors

Correspondence to Salvy P. Russo, Nicola Gaston or Kourosh Kalantar-Zadeh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Andrés Aguado and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Table 1.

Supplementary Video 1

The seeded surface solidification process of a dilute Ag–Ga liquid alloy recorded under an optical microscope.

Supplementary Video 2

Surface pattern formation during the branched surface patterning (BSP) regime.

Supplementary Video 3

Surface pattern formation during the particulate surface patterning (PSP) regime.

Supplementary Video 4

Interfering with the surface solidification process and the surface patterns by introducing a mechanical disturbance.

Source data

Source Data Fig. 1

Source data for the normalized surface solidification area and speed in Fig. 1f calculated on the basis of Supplementary Video 1.

Source Data Fig. 3

Statistical source data for the results presented in Fig. 3e–g.

Source Data Fig. 4

Source data for the molecular dynamics simulation results presented in Fig. 4c–e.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Lambie, S., Meftahi, N. et al. Oscillatory bifurcation patterns initiated by seeded surface solidification of liquid metals. Nat Synth 1, 158–169 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing