Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Copper-catalysed asymmetric radical cyanation

Abstract

Catalytic asymmetric cyanation is a straightforward route to α-chiral nitriles that has previously relied on the enantioselective attack of cyanide on unsaturated electrophiles or the hydrocyanation of alkenes. More recently, such asymmetric cyanation reactions have entailed the reaction of cyanide with carbon radicals promoted by chiral copper catalysts via a radical relay process. In this Perspective, we discuss catalytic asymmetric cyanation reactions and the key carbon radicals involved, such as benzylic, allylic and propargylic radicals. In particular, we outline the control of selectivity by considering the mechanism of formation for the carbon radicals as well as the subsequent copper-catalysed radical cyanation step. The carbon radicals can be generated from a diverse range of precursors, which include C–H substrates, alkenes, esters, cyclopropanol and so on. As a consequence, copper-catalysed asymmetric radical cyanation has the potential to expand the scope of catalytic asymmetric cyanation and is expected to find broad utility in organic synthesis and the late-stage functionalization of complex molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chiral nitriles and their synthesis via copper-catalysed ARC.
Fig. 2: Access to α-chiral nitriles through the copper-catalysed ARC of C–H bonds.
Fig. 3: Different synthetic approaches to chiral nitriles through the copper-catalysed ARC of carbon radicals generated from the radical addition of alkenes and C–X bond cleavage.
Fig. 4: Mechanistic and computational studies on selectivity control during carbon radical formation and copper-catalysed cyanation.
Fig. 5: Mechanistic and computational studies on the asymmetric carbon radical cyanation.

Similar content being viewed by others

References

  1. Fleming, F. F. Nitrile-containing natural products. Nat. Prod. Rep. 16, 597–606 (1999).

    Article  CAS  Google Scholar 

  2. Fleming, F. F., Yao, L., Ravikumar, P. C., Funk, L. & Shook, B. C. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore. J. Med. Chem. 53, 7902–7917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, W.-B., Yu, J.-S. & Zhou, J. Catalytic enantioselective cyanation: recent advances and perspectives. ACS Catal. 10, 7668–7690 (2020).

    Article  CAS  Google Scholar 

  4. Kurono, N. & Ohkuma, T. Catalytic asymmetric cyanation reactions. ACS Catal. 6, 989–1023 (2016).

    Article  CAS  Google Scholar 

  5. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, H. et al. Copper-catalyzed intermolecular aminocyanation and diamination of alkenes. Angew. Chem. Int. Ed. 52, 2529–2533 (2013).

    Article  CAS  Google Scholar 

  7. Ratani, T. S., Bachman, S., Fu, G. C. & Peters, J. C. Photoinduced, copper-catalyzed carbon−carbon bond formation with alkyl electrophiles: cyanation of unactivated secondary alkyl chlorides at room temperature. J. Am. Chem. Soc. 137, 13902–13907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3295 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, K. & Kong, W. Recent advances in transition metal‐catalyzed asymmetric radical reactions. Chin. J. Chem. 36, 247–256 (2018).

    Article  CAS  Google Scholar 

  11. Andrus, M. B. & Zhou, Z. Highly enantioselective copper-bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate. J. Am. Chem. Soc. 124, 8806–8807 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Zhu, R. & Buchwald, S. L. Enantioselective functionalization of radical intermediates in redox catalysis: copper-catalyzed asymmetric oxytrifluoromethylation of alkenes. Angew. Chem. Int. Ed. 52, 12655–12658 (2013).

    Article  CAS  Google Scholar 

  13. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lin, J.-S. et al. A dual-catalytic strategy to direct asymmetric radical aminotrifluoromethylation of alkenes. J. Am. Chem. Soc. 138, 9357–9360 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. White, M. C. & Zhao, J. Aliphatic C−H oxidations for late-stage functionalization. J. Am. Chem. Soc. 140, 13988–14009 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Lu, R. et al. Enantioselective copper-catalyzed radical cyanation of propargylic C–H bonds: easy access to chiral allenyl nitriles. J. Am. Chem. Soc. 143, 1451–1457 (2021).

    Article  Google Scholar 

  19. Zhang, Z., Zhang, X. & Nagib, D. A. Chiral piperidines from acyclic amines via enantioselective, radical-mediated δ C–H cyanation. Chem 5, 3127–3134 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wang, C.-Y. et al. Enantioselective copper-catalyzed cyanation of remote C(sp3)–H bonds enabled by 1,5-hydrogen atom transfer. iScience 21, 490–498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng, Z., Chen, P. & Liu, G. Enantioselective cyanation of remote C–H bonds via cooperative photoredox and copper catalysis. Acta Chim. Sinica 77, 856–860 (2019).

    Article  CAS  Google Scholar 

  22. Bao, X., Wang, Q. & Zhu, J. Dual photoredox/copper catalysis for the remote C(sp3)–H functionalization of alcohols and alkyl halides by N-alkoxypyridinium salts. Angew. Chem. Int. Ed. 58, 2139–2143 (2019).

    Article  CAS  Google Scholar 

  23. Chen, H., Jin, W. & Yu, S. Enantioselective remote C(sp3)−H cyanation via dual photoredox and copper catalysis. Org. Lett. 22, 5910–5914 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Lan, X.-W., Wang, N.-X. & Ying, Y. Recent advances in radical difunctionalization of simple alkenes. Eur. J. Org. Chem. 2017, 5821–5851 (2017).

    Article  CAS  Google Scholar 

  25. Wang, F. et al. Enantioselective copper-catalyzed intermolecular cyanotrifluoromethylation of alkenes via radical process. J. Am. Chem. Soc. 138, 15547–15550 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Sha, W. et al. Catalytic enantioselective cyano-trifluoromethylation of styrenes. ChemistrySelect 2, 1129–1132 (2017).

    Article  CAS  Google Scholar 

  27. Sha, W. et al. Merging photoredox and copper catalysis: enantioselective radical cyanoalkylation of styrenes. ACS Catal. 8, 7489–7494 (2018).

    Article  CAS  Google Scholar 

  28. Guo, Q. et al. Dual-functional chiral Cu-catalyst-induced photoredox asymmetric cyanofluoroalkylation of alkenes. ACS Catal. 9, 4470–4476 (2019).

    Article  CAS  Google Scholar 

  29. Zhang, Z.-Q., Meng, X.-Y., Sheng, J., Lan, Q. & Wang, X.-S. Enantioselective copper-catalyzed 1,5-cyanotrifluoromethylation of vinylcyclopropanes. Org. Lett. 21, 8256–8260 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Israr, M., Xiong, H., Li, Y. & Bao, H. Copper-catalyzed enantioselective cyano(fluoro)alkylation of alkenes. Adv. Synth. Catal. 362, 2211–2215 (2020).

    Article  CAS  Google Scholar 

  31. Wang, D., Wang, F., Chen, P., Lin, Z. & Liu, G. Enantioselective copper-catalyzed intermolecular amino- and azidocyanation of alkenes in a radical process. Angew. Chem. Int. Ed. 56, 2054–2058 (2017).

    Article  CAS  Google Scholar 

  32. Zheng, M., Gao, K., Qin, H., Li, G. & Lu, H. Metal-to-ligand ratio-dependent chemodivergent asymmetric synthesis. Angew. Chem. Int. Ed. 60, 22892–22899 (2021).

    Article  CAS  Google Scholar 

  33. Zhang, G., Fu, L., Chen, P., Zou, J. & Liu, G. Proton-coupled electron transfer enables tandem radical relay for asymmetric copper-catalyzed phosphinoylcyanation of styrenes. Org. Lett. 21, 5015–5020 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Fu, N. et al. New bisoxazoline ligands enable enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, P.-Z. et al. Asymmetric three-component olefin dicarbofunctionalization enabled by photoredox and copper dual catalysis. Nat. Commun. 12, 1815 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhuang, W., Chen, P. & Liu, G. Enantioselective arylcyanation of styrenes via copper-catalyzed radical relay. Chin. J. Chem. 39, 50–54 (2021).

    Article  CAS  Google Scholar 

  37. Zeng, Y., Li, Y., Lv, D. & Bao, H. Copper-catalyzed three-component oxycyanation of alkenes. Org. Chem. Front. 8, 908–914 (2021).

    Article  CAS  Google Scholar 

  38. Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, X.-Y., Chen, J.-R. & Xiao, W.-J. Visible light-driven radical-mediated C–C bond cleavage/functionalization in organic synthesis. Chem. Rev. 121, 506–561 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, D., Zhu, N., Chen, P., Lin, Z. & Liu, G. Enantioselective decarboxylative cyanation employing cooperative photoredox catalysis and copper catalysis. J. Am. Chem. Soc. 139, 15632–15635 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, T. et al. Enantioselective cyanation via radical-mediated C–C single bond cleavage for synthesis of chiral dinitriles. Nat. Commun. 10, 5373 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen, J. et al. Enantioselective radical ring-opening cyanation of oxime esters by dual photoredox and copper catalysis. Org. Lett. 21, 9763–9768 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Yang, S. et al. Copper-catalyzed asymmetric aminocyanation of arylcyclopropanes for synthesis of γ-amino nitriles. ACS Catal. 9, 716–721 (2019).

    Article  CAS  Google Scholar 

  44. Wu, L., Wang, L., Chen, P., Guo, Y.-L. & Liu, G. Enantioselective copper-catalyzed radical ring-opening cyanation of cyclopropanols and cyclopropanone acetals. Adv. Synth. Catal. 362, 2189–2194 (2020).

    Article  Google Scholar 

  45. Lu, F.-D., Lu, L.-Q., He, G.-F., Bai, J.-C. & Xiao, W.-J. Enantioselective radical carbocyanation of 1,3-dienes via photocatalytic generation of allylcopper complexes. J. Am. Chem. Soc. 143, 4168–4173 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Lu, F.-D. et al. Asymmetric propargylic radical cyanation enabled by dual organophotoredox and copper catalysis. J. Am. Chem. Soc. 141, 6167–6172 (2019).

    Article  CAS  PubMed  Google Scholar 

  47. Chen, H.-W. et al. Asymmetric deoxygenative cyanation of benzyl alcohols enabled by synergistic photoredox and copper catalysis. Chin. J. Chem. 38, 1671–1675 (2020).

    Article  CAS  Google Scholar 

  48. Zeng, Y. et al. Copper-catalyzed enantioselective radical 1,4-difunctionalization of 1,3-enynes. J. Am. Chem. Soc. 142, 18014–18021 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Zhang, G. et al. Asymmetric coupling of carbon-centered radicals adjacent to nitrogen: copper-catalyzed cyanation and etherification of enamides. Angew. Chem. Int. Ed. 59, 20439–20444 (2020).

    Article  CAS  Google Scholar 

  50. Zhou, S. et al. Copper-catalyzed asymmetric cyanation of alkenes via carbonyl-assisted coupling of alkyl-substituted carbon-centered radicals. Org. Lett. 22, 6299–6303 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Fu, L., Zhang, Z., Chen, P., Lin, Z. & Liu, G. Enantioselective copper-catalyzed alkynylation of benzylic C−H bonds via radical relay. J. Am. Chem. Soc. 142, 12493–12500 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Liang, Y., Sun, G., Su, Z. & Guan, W. A theoretical mechanistic study of IrIII/CuI-metallaphotoredox catalyzed asymmetric radical decarboxylative cyanation. Dalton Trans. 49, 15276–15286 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Wang, F. et al. Divergent synthesis of CF3-substituted allenyl nitriles by ligand-controlled radical 1,2- and 1,4-addition to 1,3-enynes. Angew. Chem. Int. Ed. 57, 7140–7145 (2018).

    Article  CAS  Google Scholar 

  54. Zhu, X. et al. Copper-catalyzed radical 1,4-difunctionalization of 1,3-enynes with alkyl diacyl peroxides and N‑fluorobenzenesulfonimide. J. Am. Chem. Soc. 141, 548–559 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Jiao, Y., Chiou, M.-F., Li, Y. & Bao, H. Copper-catalyzed radical acyl-cyanation of alkenes with mechanistic studies on the tert-butoxy radical. ACS Catal. 9, 5191–5197 (2019).

    Article  CAS  Google Scholar 

  56. Miwa, N. et al. Copper-catalyzed tertiary alkylative cyanation for the synthesis of cyanated peptide building blocks. J. Am. Chem. Soc. 142, 1692–1697 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Wu, L. et al. Anionic bisoxazoline ligands enable copper-catalyzed asymmetric radical azidation of acrylamides. Angew. Chem. Int. Ed. 60, 6997–7001 (2021).

    Article  CAS  Google Scholar 

  58. Wu, L., Wang, F., Chen, P. & Liu, G. Enantioselective construction of quaternary all-carbon centers via copper-catalyzed arylation of tertiary carbon-centered radicals. J. Am. Chem. Soc. 141, 1887–1892 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Key R&D Program of China (No. 2021YFA1500100), the National Nature Science Foundation of China (nos. 95956202, 21790330 and 21821002), the Science and Technology Commission of Shanghai Municipality (nos. 20JC1417000, 21520780100 and 19590750400), the Key Research Program of Frontier Science (QYZDJSSW-SLH055) and the International Partnership Program (no. 121731KYSB20190016), of the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

F.W., P. C. and G.L. co-wrote the manuscript with input and comments from all the authors.

Corresponding author

Correspondence to Guosheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Xin-Yuan Liu, Song Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Thomas West was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Chen, P. & Liu, G. Copper-catalysed asymmetric radical cyanation. Nat Synth 1, 107–116 (2022). https://doi.org/10.1038/s44160-021-00016-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00016-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing