Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoelectrochemical hybrid cell for unbiased CO2 reduction coupled to alcohol oxidation

Abstract

The reduction of CO2 to renewable fuels must be coupled to a sustainable oxidation process to devise a viable device that produces solar fuels. In photoelectrochemical cells, water oxidation to O2 is the predominant oxidation reaction and typically requires a pair of light absorbers or an applied bias voltage when coupled to CO2 reduction. Here, we report a bias-free photoelectrochemical device for simultaneous CO2 reduction to formate and alcohol oxidation to aldehyde in aqueous conditions. The photoanode is constructed by co-immobilization of a diketopyrrolopyrrole-based chromophore and a nitroxyl-based alcohol oxidation catalyst on a mesoporous TiO2 scaffold, which provides a precious-metal-free dye-sensitized photoanode. The photoanode is wired to a biohybrid cathode that consists of the CO2 reduction enzyme formate dehydrogenase integrated into a mesoporous indium tin oxide electrode. The bias-free cell delivers sustained photocurrents of up to 30 µA cm−2 under visible-light irradiation, which results in simultaneous aldehyde and formate production. Our results show that in the absence of an external bias, single light absorber photoelectrochemical cells can be used for parallel fuel production and chemical synthesis from CO2 and alcohol substrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PEC cell with molecular components.
Fig. 2: Synthesis and characterization of the dyes.
Fig. 3: PEC characterization of the photoanode.
Fig. 4: Simultaneous CO2 reduction and 4-MBA oxidation in a two-electrode mTiO2|STEMPO/DPP-CA||mITO|FDH PEC cell.

Similar content being viewed by others

Data availability

The data supporting the findings of the study are available in the paper and its Supplementary Information. Other source data supporting the findings of this study are available from the Cambridge data repository (https://doi.org/10.17863/CAM.76484). Source data are provided with this paper.

References

  1. Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. You, B., Liu, X., Jiang, N. & Sun, Y. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 138, 13639–13646 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Shaner, M. R., Atwater, H. A., Lewis, N. S. & McFarland, E. W. A comparative technoeconomic analysis of renewable hydrogen production using solar energy. Energy Environ. Sci. 9, 2354–2371 (2016).

    Article  CAS  Google Scholar 

  5. Na, J. et al. General technoeconomic analysis for electrochemical coproduction coupling carbon dioxide reduction with organic oxidation. Nat. Commun. 10, 5193 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Reid, L. M., Li, T., Cao, Y. & Berlinguette, C. P. Organic chemistry at anodes and photoanodes. Sustain. Energy Fuels 2, 1905–1927 (2018).

    Article  CAS  Google Scholar 

  7. Uekert, T., Pichler, C. M., Schubert, T. & Reisner, E. Solar-driven reforming of solid waste for a sustainable future. Nat. Sustain. 4, 383–391 (2021).

    Article  Google Scholar 

  8. Rosatella, A. A., Simeonov, S. P., Frade, R. F. M. & Afonso, C. A. M. 5-Hydroxymethylfurfural (HMF) as a building block platform: biological properties, synthesis and synthetic applications. Green Chem. 13, 754–793 (2011).

    Article  CAS  Google Scholar 

  9. Wu, Y.-C., Song, R.-J. & Li, J.-H. Recent advances in photoelectrochemical cells (PECs) for organic synthesis. Org. Chem. Front. 7, 1895–1902 (2020).

    Article  CAS  Google Scholar 

  10. Cha, H. G. & Choi, K.-S. Combined biomass valorization and hydrogen production in a photoelectrochemical cell. Nat. Chem. 7, 328–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Li, C., Zhao, X., Wang, A., Huber, G. W. & Zhang, T. Catalytic transformation of lignin for the production of chemicals and fuels. Chem. Rev. 115, 11559–11624 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Y. et al. Simultaneous electrosynthesis of syngas and an aldehyde from CO2 and an alcohol by molecular electrocatalysis. ACS Appl. Energy Mater. 2, 97–101 (2019).

    Article  CAS  Google Scholar 

  13. Li, T., Cao, Y., He, J. & Berlinguette, C. P. Electrolytic CO2 reduction in tandem with oxidative organic chemistry. ACS Cent. Sci. 3, 778–783 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bajada, M. A. et al. A precious‐metal‐free hybrid electrolyzer for alcohol oxidation coupled to CO2‐to‐syngas conversion. Angew. Chem. Int. Ed. 59, 15633–15641 (2020).

    Article  CAS  Google Scholar 

  15. Wang, L., Zhang, X., Yang, L., Wang, C. & Wang, H. Photocatalytic reduction of CO2 coupled with selective alcohol oxidation under ambient conditions. Catal. Sci. Technol. 5, 4800–4805 (2015).

    Article  CAS  Google Scholar 

  16. Chen, Y. et al. Coupling photocatalytic CO2 reduction with benzyl alcohol oxidation to produce benzyl acetate over Cu2O/Cu. Catal. Sci. Technol. 8, 2218–2223 (2018).

    Article  CAS  Google Scholar 

  17. Spitler, M. T. et al. Practical challenges in the development of photoelectrochemical solar fuels production. Sustain. Energy Fuels 4, 985–995 (2020).

    Article  CAS  Google Scholar 

  18. Harris, A. W., Yehezkeli, O., Hafenstine, G. R., Goodwin, A. P. & Cha, J. N. Light-driven catalytic upgrading of butanol in a biohybrid photoelectrochemical system. ACS Sustain. Chem. Eng. 5, 8199–8204 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, T. et al. Photoelectrochemical oxidation of organic substrates in organic media. Nat. Commun. 8, 390 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wang, D. et al. Lignin-fueled photoelectrochemical platform for light-driven redox biotransformation. Green Chem. 22, 5151–5160 (2020).

    Article  CAS  Google Scholar 

  21. Seabold, J. A. & Choi, K.-S. Effect of a cobalt-based oxygen evolution catalyst on the stability and the selectivity of photo-oxidation reactions of a WO3 photoanode. Chem. Mater. 23, 1105–1112 (2011).

    Article  CAS  Google Scholar 

  22. Bella, F., Gerbaldi, C., Barolo, C. & Grätzel, M. Aqueous dye-sensitized solar cells. Chem. Soc. Rev. 44, 3431–3473 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  PubMed  Google Scholar 

  24. Kavan, L., Tétreault, N., Moehl, T. & Grätzel, M. Electrochemical characterization of TiO2 blocking layers for dye-sensitized solar cells. J. Phys. Chem. C 118, 16408–16418 (2014).

    Article  CAS  Google Scholar 

  25. Song, W. et al. Visible light driven benzyl alcohol dehydrogenation in a dye-sensitized photoelectrosynthesis cell. J. Am. Chem. Soc. 136, 9773–9779 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Pho, T. V. et al. Efficient light-driven oxidation of alcohols using an organic chromophore–catalyst assembly anchored to TiO2. ACS Appl. Mater. Interfaces 8, 9125–9133 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Badgurjar, D. et al. Electron-withdrawing boron dipyrromethene dyes as visible light absorber/sensitizers on semiconductor oxide surfaces. ACS Appl. Mater. Interfaces 12, 7768–7776 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Creissen, C. E., Warnan, J. & Reisner, E. Solar H2 generation in water with a CuCrO2 photocathode modified with an organic dye and molecular Ni catalyst. Chem. Sci. 9, 1439–1447 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Antón-García, D., Warnan, J. & Reisner, E. A diketopyrrolopyrrole dye-based dyad on a porous TiO2 photoanode for solar-driven water oxidation. Chem. Sci. 11, 12769–12776 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Brennaman, M. K. et al. Finding the way to solar fuels with dye-sensitized photoelectrosynthesis cells. J. Am. Chem. Soc. 138, 13085–13102 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3, 944–951 (2018).

    Article  CAS  Google Scholar 

  32. Miller, M. et al. Interfacing formate dehydrogenase with metal oxides for the reversible electrocatalysis and solar-driven reduction of carbon dioxide. Angew. Chem. Int. Ed. 58, 4601–4605 (2019).

    Article  CAS  Google Scholar 

  33. Oliveira, A. R. et al. Toward the mechanistic understanding of enzymatic CO2 reduction. ACS Catal. 10, 3844–3856 (2020).

    Article  CAS  Google Scholar 

  34. Warnan, J. et al. A compact diketopyrrolopyrrole dye as efficient sensitizer in titanium dioxide dye-sensitized solar cells. J. Photochem. Photobiol. A 226, 9–15 (2011).

    Article  CAS  Google Scholar 

  35. Leung, J. J. et al. Solar-driven reduction of aqueous CO2 with a cobalt bis(terpyridine)-based photocathode. Nat. Catal. 2, 354–365 (2019).

    Article  CAS  Google Scholar 

  36. Hoertz, P. G., Chen, Z., Kent, C. A. & Meyer, T. J. Application of high surface area tin-doped indium oxide nanoparticle films as transparent conducting electrodes. Inorg. Chem. 49, 8179–8181 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Zigler, D. F. et al. Disentangling the physical processes responsible for the kinetic complexity in interfacial electron transfer of excited Ru(II) polypyridyl dyes on TiO2. J. Am. Chem. Soc. 138, 4426–4438 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Xu, P., McCool, N. S. & Mallouk, T. E. Water splitting dye-sensitized solar cells. Nano Today 14, 42–58 (2017).

    Article  CAS  Google Scholar 

  39. Willkomm, J. et al. Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. Chem. Soc. Rev. 45, 9–23 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Leung, J. J. et al. Photoelectrocatalytic H2 evolution in water with molecular catalysts immobilised on p-Si via a stabilising mesoporous TiO2 interlayer. Chem. Sci. 8, 5172–5180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schreier, M. et al. Covalent immobilization of a molecular catalyst on Cu2O photocathodes for CO2 reduction. J. Am. Chem. Soc. 138, 1938–1946 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Kay, A. & Grätzel, M. Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J. Phys. Chem. 97, 6272–6277 (1993).

    Article  CAS  Google Scholar 

  43. Manthou, V. S., Pefkianakis, E. K., Falaras, P. & Vougioukalakis, G. C. Co-adsorbents: a key component in efficient and robust dye-sensitized solar cells. ChemSusChem 8, 588–599 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Bruggeman, D. F., Bakker, T. M. A., Mathew, S. & Reek, J. N. H. Redox‐mediated alcohol oxidation coupled to hydrogen gas formation in a dye‐sensitized photosynthesis cell. Chem. Eur. J. 27, 218–221 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Bullock, R. M., Das, A. K. & Appel, A. M. Surface immobilization of molecular electrocatalysts for energy conversion. Chem. Eur. J. 23, 7626–7641 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Wang, D. et al. Stabilized photoanodes for water oxidation by integration of organic dyes, water oxidation catalysts, and electron-transfer mediators. Proc. Natl Acad. Sci. USA 115, 8523–8528 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Suryani, O. et al. A near-infrared organic photosensitizer for use in dye-sensitized photoelectrochemical water splitting. Chem. Commun. 53, 6784–6787 (2017).

    Article  CAS  Google Scholar 

  48. Yamamoto, M. et al. Visible light-driven water oxidation with a subporphyrin sensitizer and a water oxidation catalyst. Chem. Commun. 52, 13702–13705 (2016).

    Article  CAS  Google Scholar 

  49. Chadderdon, X. H., Chadderdon, D. J., Pfennig, T., Shanks, B. H. & Li, W. Paired electrocatalytic hydrogenation and oxidation of 5-(hydroxymethyl)furfural for efficient production of biomass-derived monomers. Green Chem. 21, 6210–6219 (2019).

    Article  CAS  Google Scholar 

  50. Kashparova, V. P. et al. Selective synthesis of 2,5-diformylfuran by sustainable 4-acetamido-TEMPO/halogen-mediated electrooxidation of 5-hydroxymethylfurfural. Chem. Asian J. 11, 2578–2585 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Rafiee, M., Konz, Z. M., Graaf, M. D., Koolman, H. F. & Stahl, S. S. Electrochemical oxidation of alcohols and aldehydes to carboxylic acids catalyzed by 4-acetamido-TEMPO: an alternative to ‘Anelli’ and ‘Pinnick’ oxidations. ACS Catal. 8, 6738–6744 (2018).

    Article  CAS  Google Scholar 

  52. Fang, X. et al. Structure–activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 19, 1844–1850 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Green, A. N. M., Palomares, E., Haque, S. A., Kroon, J. M. & Durrant, J. R. Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. J. Phys. Chem. B 109, 12525–12533 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Sokol, K. P. et al. Photoreduction of CO2 with a formate dehydrogenase driven by photosystem II using a semi-artificial Z-scheme architecture. J. Am. Chem. Soc. 140, 16418–16422 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Windle, C. D., Massin, J., Chavarot-Kerlidou, M. & Artero, V. A protocol for quantifying hydrogen evolution by dye-sensitized molecular photocathodes and its implementation for evaluating a new covalent architecture based on an optimized dye–catalyst dyad. Dalton Trans. 47, 10509–10516 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Coridan, R. H. et al. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ. Sci. 8, 2886–2901 (2015).

    Article  CAS  Google Scholar 

  57. Liu, C., Colón, B. C., Ziesack, M., Silver, P. A. & Nocera, D. G. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, Q. et al. Molecularly engineered photocatalyst sheet for scalable solar formate production from carbon dioxide and water. Nat. Energy 5, 703–710 (2020).

    Article  CAS  Google Scholar 

  59. Kim, J. H., Hansora, D., Sharma, P., Jang, J.-W. & Lee, J.-S. Toward practical solar hydrogen production—an artificial photosynthetic leaf-to-farm challenge. Chem. Soc. Rev. 48, 1908–1971 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, H. et al. Fundamentals, applications, and future directions of bioelectrocatalysis. Chem. Rev. 120, 12903–12993 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Plumeré, N. et al. A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat. Chem. 6, 822–827 (2014).

    Article  PubMed  Google Scholar 

  62. Dalle, K. E. et al. Electro- and solar-driven fuel synthesis with first row transition metal complexes. Chem. Rev. 119, 2752–2875 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Son, E. J. et al. Sunlight-assisted, biocatalytic formate synthesis from CO2 and water using silicon-based photoelectrochemical cells. Chem. Commun. 52, 9723–9726 (2016).

    Article  CAS  Google Scholar 

  65. Kuk, S. K. et al. Photoelectrochemical reduction of carbon dioxide to methanol through a highly efficient enzyme cascade. Angew. Chem. Int. Ed. 56, 3827–3832 (2017).

    Article  CAS  Google Scholar 

  66. Nam, D. H. et al. Enzymatic photosynthesis of formate from carbon dioxide coupled with highly efficient photoelectrochemical regeneration of nicotinamide cofactors. Green Chem. 18, 5989–5993 (2016).

    Article  CAS  Google Scholar 

  67. Kuk, S. K. et al. CO2‐reductive, copper oxide‐based photobiocathode for Z‐scheme semi‐artificial leaf structure. ChemSusChem 13, 2940–2944 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Lee, S. Y., Lim, S. Y., Seo, D., Lee, J.-Y. & Chung, T. D. Light-driven highly selective conversion of CO2 to formate by electrosynthesized enzyme/cofactor thin film electrode. Adv. Energy Mater. 6, 1502207 (2016).

    Article  Google Scholar 

  69. Ishibashi, T., Higashi, M., Ikeda, S. & Amao, Y. Photoelectrochemical CO2 reduction to formate with the sacrificial reagent free system of semiconductor photocatalysts and formate dehydrogenase. ChemCatChem 11, 6227–6235 (2019).

    Article  CAS  Google Scholar 

  70. Frisch, M. J. et al. Gaussian 09, Revision D.01 (Gaussian Inc., 2013).

  71. Farré, Y. et al. Second generation of diketopyrrolopyrrole dyes for NiO-based dye-sensitized solar cells. J. Phys. Chem. C 120, 7923–7940 (2016).

    Article  Google Scholar 

  72. Hehre, W. J., Stewart, R. F. & Pople, J. A. Self-consistent molecular-orbital methods. I. Use of gaussian expansions of Slater-type atomic orbitals. J. Chem. Phys. 51, 2657–2664 (1969).

    Article  CAS  Google Scholar 

  73. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  74. Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3093 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).

    Article  CAS  Google Scholar 

  76. Sawyer, D. T., Sobkowiak, A. & Roberts, J. L. Electrochemistry for Chemists (Wiley-Interscience, 1995).

Download references

Acknowledgements

We acknowledge support from an EPSRC PhD DTA studentship (EP/M508007/1, D.A.-G.), the Christian Doppler Research Association (Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology and Development) and the OMV Group (M.A.B., J.W. and E.R.), an ERC Consolidator Grant ‘MatEnSAP’ (682833; D.A.-G., E.E.M. and E.R.), the Endeavour Scholarship Scheme (M.A.B.), the German National Academy of Sciences Leopoldina for a postdoctoral fellowship (LPDS 2018-04, A.E.), Fundação para a Ciência e Tecnologia (Portugal) for fellowship SFRH/BD/116515/2016 (A.R.O.), grant PTDC/BII-BBF/2050/2020 (I.A.C.P.) and R&D unit MOSTMICRO-ITQB (UIDB/04612/2020 and UIDP/04612/2020). J.W. gratefully acknowledges support from R. Fischer and the Deutsche Forschungsgemeinschaft (grant no. FI 502/43-1). We thank Q. Wang, N. Kornienko, C. Pichler and A. Wagner for helpful discussions. We also thank N. Heidary and K. Ly for their help in preparing the artwork. We appreciate suggestions and comments on the manuscript from T. Li and Q. Wang.

Author information

Authors and Affiliations

Authors

Contributions

D.A.-G., J.W. and E.R. designed the project. D.A.-G. synthesized and characterized the DPP chromophores and the TEMPO-based catalyst. D.A.-G. and A.E. performed the DFT calculations and analysed the data. D.A.-G. and M.A.B. designed and characterized the alcohol oxidation photoanode, and carried out the PEC experiments of the photoanode. E.E.M. designed and characterized the CO2 reduction cathode. D.A.-G. and E.E.M. carried out the PEC experiments of the two-electrode cell, and analysed the data. A.R.O. and I.A.C.P. expressed, purified and characterized FDH. D.A.-G., J.W. and E.R. wrote the manuscript with contributions and discussions from all the authors. E.R. and J.W. supervised the research work.

Corresponding authors

Correspondence to Julien Warnan or Erwin Reisner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Synthesis thanks Wenzhen Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Alison Stoddart was the primary editor on this article and managed its editorial process and peer review in collaboration with the rest of the editorial team.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–16, Figs. 1–30 and References 1–11.

Source data

Source Data Fig. 2

Numerical data used to generate graphs.

Source Data Fig. 3

Numerical data used to generate graphs.

Source Data Fig. 4

Numerical data used to generate graphs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antón-García, D., Edwardes Moore, E., Bajada, M.A. et al. Photoelectrochemical hybrid cell for unbiased CO2 reduction coupled to alcohol oxidation. Nat Synth 1, 77–86 (2022). https://doi.org/10.1038/s44160-021-00003-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-021-00003-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing