Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Visual temporal attention from perception to computation

Abstract

Visual attention unfolds across space and time to prioritize a subset of incoming visual information. Distinct in key ways from spatial attention, temporal attention is a growing research area with its own conceptual and mechanistic territory. Here I review key conceptual issues, data and models in the field of visual temporal attention, with an emphasis on voluntary temporal attention. I first situate voluntary temporal attention in the broader domains of temporal attention and attentional dynamics, with the goal of organizing concepts and findings related to dynamic attention. Next, I review findings that voluntary temporal attention affects visual perception in a selective fashion — prioritizing certain time points at the expense of other time points. Selectivity is a hallmark of attention and implies a limitation in computational resources that prevents sustained maximal processing of all time points. I discuss a computational model of temporal attention that captures limited resources across time and review other models of attentional dynamics. Finally, I discuss productive future directions for the study of temporal attention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temporal attention in the real world.
Fig. 2: Experimental manipulation of timing predictability and relevance.
Fig. 3: Visual temporal attention selectively affects perception.
Fig. 4: Limited resources across time.

Similar content being viewed by others

References

  1. Rucci, M., Ahissar, E. & Burr, D. Temporal coding of visual space. Trends Cogn. Sci. 22, 883–895 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zangrossi, A., Cona, G., Celli, M., Zorzi, M. & Corbetta, M. Visual exploration dynamics are low-dimensional and driven by intrinsic factors. Commun. Biol. 4, 1100 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cuthill, I. C., Matchette, S. R. & Scott-Samuel, N. E. Camouflage in a dynamic world. Curr. Opin. Behav. Sci. 30, 109–115 (2019).

    Article  Google Scholar 

  4. Hayhoe, M. M. Vision and action. Annu. Rev. Vis. Sci. 3, 389–413 (2017).

    Article  PubMed  Google Scholar 

  5. Land, M. F. & Furneaux, S. The knowledge base of the oculomotor system. Phil. Trans. R Soc. Lond. B 352, 1231–1239 (1997).

    Article  Google Scholar 

  6. Coull, J. T. & Nobre, A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nobre, A. C. Orienting attention to instants in time. Neuropsychologia 39, 1317–1328 (2001).

    Article  PubMed  Google Scholar 

  8. Nobre, A. C. & van Ede, F. Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19, 34–48 (2018).

    Article  PubMed  Google Scholar 

  9. Nobre, A. C. & Rohenkohl, G. in The Oxford Handbook of Attention (eds Nobre, A. C. & Kastner, S.) Ch. 24 (Oxford Univ. Press, 2014).

  10. Nobre, A. C. & van Ede, F. Attention in flux. Neuron 111, 971–986 (2023).

    Article  PubMed  Google Scholar 

  11. Kingstone, A. Combining expectancies. Q. J. Exp. Psychol. A 44, 69–104 (1992).

    Article  Google Scholar 

  12. Woodrow, H. The Measurement of Attention (Kessinger, 1914).

  13. Correa, A. in Attention and Time (eds Nobre, A. C. & Coull, J. T.) Ch. 26 (Oxford Univ. Press, 2010).

  14. Griffin, I. C., Miniussi, C. & Nobre, A. C. Multiple mechanisms of selective attention: differential modulation of stimulus processing by attention to space or time. Neuropsychologia 40, 2325–2340 (2002).

    Article  PubMed  Google Scholar 

  15. Miniussi, C., Wilding, E. L., Coull, J. T. & Nobre, A. C. Orienting attention in time: modulation of brain potentials. Brain 122, 1507–1518 (1999).

    Article  PubMed  Google Scholar 

  16. Carrasco, M. Visual attention: the past 25 years. Vis. Res. 51, 1484–1525 (2011).

    Article  PubMed  Google Scholar 

  17. Maunsell, J. H. R. Neuronal mechanisms of visual attention. Annu. Rev. Vis. Sci. 1, 373–391 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bar, M. & Biederman, I. Subliminal visual priming. Psychol. Sci. 9, 464–468 (1998).

    Article  Google Scholar 

  19. Cicchini, G. M., Mikellidou, K. & Burr, D. Serial dependencies act directly on perception. J. Vis. 17, 6 (2017).

    Article  PubMed  Google Scholar 

  20. Denison, R. N., Piazza, E. A. & Silver, M. A. Predictive context influences perceptual selection during binocular rivalry. Front. Human Neurosci. 5, 166 (2011).

    Article  Google Scholar 

  21. Pearson, J. & Brascamp, J. Sensory memory for ambiguous vision. Trends Cogn. Sci. 12, 334–341 (2008).

    Article  PubMed  Google Scholar 

  22. Webster, M. A. Visual adaptation. Annu. Rev. Vis. Sci. 1, 547–567 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wandell, B. A. & Winawer, J. Imaging retinotopic maps in the human brain. Vis. Res. 51, 718–737 (2011).

    Article  PubMed  Google Scholar 

  24. Finnerty, G. T., Shadlen, M. N., Jazayeri, M., Nobre, A. C. & Buonomano, D. V. Time in cortical circuits. J. Neurosci. 35, 13912–13916 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhou, S., Masmanidis, S. C. & Buonomano, D. V. Neural sequences as an optimal dynamical regime for the readout of time. Neuron 108, 651–658 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Coull, J. T., Frith, C. D., Büchel, C. & Nobre, A. C. Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia 38, 808–819 (2000).

    Article  PubMed  Google Scholar 

  27. Lawrence, M. A. & Klein, R. M. Isolating exogenous and endogenous modes of temporal attention. J. Exp. Psychol. Gen. 142, 560–572 (2013).

    Article  PubMed  Google Scholar 

  28. McCormick, C. R., Redden, R. S., Lawrence, M. A. & Klein, R. M. The independence of endogenous and exogenous temporal attention. Atten. Percept. Psychophys. 80, 1885–1891 (2018).

    Article  PubMed  Google Scholar 

  29. Rohenkohl, G., Coull, J. T. & Nobre, A. C. Behavioural dissociation between exogenous and endogenous temporal orienting of attention. PLoS One 6, e14620 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Duyar, A., Denison, R. N. & Carrasco, M. Exogenous temporal attention varies with temporal uncertainty. J. Vis. 23, 9 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cheal, M. & Lyon, D. R. Central and peripheral precuing of forced-choice discrimination. Q. J. Exp. Psychol. A 43, 859–880 (1991).

    Article  PubMed  Google Scholar 

  32. Ling, S. & Carrasco, M. Sustained and transient covert attention enhance the signal via different contrast response functions. Vis. Res. 46, 1210–1220 (2006).

    Article  PubMed  Google Scholar 

  33. Müller, H. J. & Rabbitt, P. M. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol. Hum. Percept. Perform. 15, 315–330 (1989).

    Article  PubMed  Google Scholar 

  34. Nakayama, K. & Mackeben, M. Sustained and transient components of focal visual attention. Vis. Res. 29, 1631–1647 (1989).

    Article  PubMed  Google Scholar 

  35. van Schie, M. K. M., Lammers, G. J., Fronczek, R., Middelkoop, H. A. M. & van Dijk, J. G. Vigilance: discussion of related concepts and proposal for a definition. Sleep Med. 83, 175–181 (2021).

    Article  PubMed  Google Scholar 

  36. Weinbach, N., Shofty, I., Gabay, S. & Henik, A. Endogenous temporal and spatial orienting: evidence for two distinct attentional mechanisms. Psychon. Bull. Rev. 22, 967–973 (2015).

    Article  PubMed  Google Scholar 

  37. Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorff, M. G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).

    Article  PubMed  Google Scholar 

  38. Posner, M. I. Measuring alertness. Ann. NY Acad. Sci. 1129, 193–199 (2008).

    Article  PubMed  Google Scholar 

  39. Denison, R. N., Heeger, D. J. & Carrasco, M. Attention flexibly trades off across points in time. Psychon. Bull. Rev. 24, 1142–1151 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Denison, R. N., Yuval-Greenberg, S. & Carrasco, M. Directing voluntary temporal attention increases fixational stability. J. Neurosci. 39, 353–363 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Anderson, B. There is no such thing as attention. Front. Psychol. 2, 246 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hommel, B. et al. No one knows what attention is. Atten. Percept. Psychophys. 81, 2288–2303 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Krauzlis, R. J., Bollimunta, A., Arcizet, F. & Wang, L. Attention as an effect not a cause. Trends Cogn. Sci. 18, 457–464 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. James, W. Principles of Psychology (Henry Holt, 1890).

  45. Reeves, A. Attention as a unitary concept. Vision 4, 48 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wu, W. We know what attention is! Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2023.11.007 (2023).

    Article  PubMed  Google Scholar 

  47. Liu, T., Stevens, S. T. & Carrasco, M. Comparing the time course and efficacy of spatial and feature-based attention. Vis. Res. 47, 108–113 (2007).

    Article  PubMed  Google Scholar 

  48. Hilkenmeier, F. & Scharlau, I. Rapid allocation of temporal attention in the attentional blink paradigm. Eur. J. Cogn. Psychol. 22, 1222–1234 (2010).

    Article  Google Scholar 

  49. Yeshurun, Y. & Tkacz-Domb, S. The time-course of endogenous temporal attention — super fast voluntary allocation of attention. Cognition 206, 104506 (2021).

    Article  PubMed  Google Scholar 

  50. Klein, R. M. Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000).

    Article  PubMed  Google Scholar 

  51. Lupianez, J., Klein, R. M. & Bartolomeo, P. Inhibition of return: twenty years after. Cogn. Neuropsychol. 23, 1003–1014 (2006).

    Article  PubMed  Google Scholar 

  52. Samuel, A. G. & Kat, D. Inhibition of return: a graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties. Psychon. Bull. Rev. 10, 897–906 (2003).

    Article  PubMed  Google Scholar 

  53. Handy, T., Jha, A. & Mangun, G. Promoting novelty in vision: inhibition of return modulates perceptual-level processing. Psychol. Sci. 10, 157–161 (1999).

    Article  Google Scholar 

  54. Raymond, J. E., Shapiro, K. L. & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: an attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 18, 849–860 (1992).

    Article  PubMed  Google Scholar 

  55. Broadbent, D. E. & Broadbent, M. H. P. From detection to identification: response to multiple targets in rapid serial visual presentation. Percept. Psychophys. 42, 105–113 (1987).

    Article  PubMed  Google Scholar 

  56. Goodbourn, P. T. et al. Reconsidering temporal selection in the attentional blink. Psychol. Sci. 27, 1146–1156 (2016).

    Article  PubMed  Google Scholar 

  57. Recht, S., Mamassian, P. & de Gardelle, V. Temporal attention causes systematic biases in visual confidence. Sci. Rep. 9, 11622 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Snir, G. & Yeshurun, Y. Perceptual episodes, temporal attention, and the role of cognitive control: lessons from the attentional blink. Prog. Brain Res.236, 53-73 (2017).

    Article  PubMed  Google Scholar 

  59. Vul, E., Nieuwenstein, M. & Kanwisher, N. Temporal selection is suppressed, delayed, and diffused during the attentional blink. Psychol. Sci. 19, 55–61 (2008).

    Article  PubMed  Google Scholar 

  60. Hackley, S. A., Schankin, A., Wohlschlaeger, A. & Wascher, E. Localization of temporal preparation effects via trisected reaction time. Psychophysiology 44, 334–338 (2007).

    Article  PubMed  Google Scholar 

  61. Niemi, P. & Näätänen, R. Foreperiod and simple reaction time. Psychol. Bull. 89, 133–162 (1981).

    Article  Google Scholar 

  62. Correa, Á. & Nobre, A. C. Neural modulation by regularity and passage of time. J. Neurophysiol. 100, 1649–1655 (2008).

    Article  PubMed  Google Scholar 

  63. Doherty, J. R., Rao, A., Mesulam, M. M. & Nobre, A. C. Synergistic effect of combined temporal and spatial expectations on visual attention. J. Neurosci. 25, 8259–8266 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M. & Lleras, A. Rescuing stimuli from invisibility: inducing a momentary release from visual masking with pre-target entrainment. Cognition 115, 186–191 (2010).

    Article  PubMed  Google Scholar 

  65. Rohenkohl, G., Cravo, A. M., Wyart, V. & Nobre, A. C. Temporal expectation improves the quality of sensory information. J. Neurosci. 32, 8424–8428 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Shalev, N., Bauer, A.-K. R. & Nobre, A. C. The tempos of performance. Curr. Opin. Psychol. 29, 254–260 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bauer, A.-K. R., van Ede, F., Quinn, A. J. & Nobre, A. C. Rhythmic modulation of visual perception by continuous rhythmic auditory stimulation. J. Neurosci. 41, 7065–7075 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Haegens, S. & Golumbic, E. Z. Rhythmic facilitation of sensory processing: a critical review. Neurosci. Biobehav. Rev. 86, 150–165 (2018).

    Article  PubMed  Google Scholar 

  69. Breska, A. & Deouell, L. Y. Automatic bias of temporal expectations following temporally regular input independently of high-level temporal expectation. J. Cogn. Neurosci. 26, 1555–1571 (2014).

    Article  PubMed  Google Scholar 

  70. Praamstra, P., Kourtis, D., Kwok, H. F. & Oostenveld, R. Neurophysiology of implicit timing in serial choice reaction-time performance. J. Neurosci. 26, 5448–5455 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Busch, N. A. & VanRullen, R. Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc. Natl Acad. Sci. USA 107, 16048–16053 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Dugué, L., Roberts, M. & Carrasco, M. Attention reorients periodically. Curr. Biol. 26, 1595–1601 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fiebelkorn, I. C. & Kastner, S. A rhythmic theory of attention. Trends Cogn. Sci. 23, 87–101 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Landau, A. N. & Fries, P. Attention samples stimuli rhythmically. Curr. Biol. 22, 1000–1004 (2012).

    Article  PubMed  Google Scholar 

  75. Landau, A. N., Schreyer, H. M., van Pelt, S. & Fries, P. Distributed attention is implemented through theta-rhythmic gamma modulation. Curr. Biol 25, 2332–2337 (2015).

    Article  PubMed  Google Scholar 

  76. Song, K., Meng, M., Chen, L., Zhou, K. & Luo, H. Behavioral oscillations in attention: rhythmic α pulses mediated through θ band. J. Neurosci. 34, 4837–4844 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. VanRullen, R. Perceptual cycles. Trends Cogn. Sci. 20, 723–735 (2016).

    Article  PubMed  Google Scholar 

  78. Brookshire, G. Putative rhythms in attentional switching can be explained by aperiodic temporal structure. Nat. Hum. Behav. 34, 1280–1291 (2022).

    Article  Google Scholar 

  79. DeGutis, J. M. & Van Vleet, T. M. Tonic and phasic alertness training: a novel behavioral therapy to improve spatial and non-spatial attention in patients with hemispatial neglect. Front. Hum. Neurosci. 4, 60 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Esterman, M. & Rothlein, D. Models of sustained attention. Curr. Opin. Psychol. 29, 174–180 (2019).

    Article  PubMed  Google Scholar 

  81. Sarter, M., Givens, B. & Bruno, J. P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Rev. 35, 146–160 (2001).

    Article  PubMed  Google Scholar 

  82. deBettencourt, M. T., Cohen, J. D., Lee, R. F., Norman, K. A. & Turk-Browne, N. B. Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. 18, 470–475 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Aston-Jones, G., Rajkowski, J., Kubiak, P. & Alexinsky, T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 14, 4467–4480 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nieuwenhuis, S., Gilzenrat, M. S., Holmes, B. D. & Cohen, J. D. The role of the locus coeruleus in mediating the attentional blink: a neurocomputational theory. J. Exp. Psychol. Gen. 134, 291–307 (2005).

    Article  PubMed  Google Scholar 

  85. Luce, R. D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford Univ. Press, 1986).

  86. Mento, G. The role of the P3 and CNV components in voluntary and automatic temporal orienting: a high spatial-resolution ERP study. Neuropsychologia 107, 31–40 (2017).

    Article  PubMed  Google Scholar 

  87. Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).

    Article  PubMed  Google Scholar 

  88. Summerfield, C. & Egner, T. Feature-based attention and feature-based expectation. Trends Cogn. Sci. 20, 401–404 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Denison, R. N., Carrasco, M. & Heeger, D. J. A dynamic normalization model of temporal attention. Nat. Hum. Behav. 5, 1674–1685 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fernández, A., Denison, R. N. & Carrasco, M. Temporal attention improves perception similarly at foveal and parafoveal locations. J. Vis. 19, 12 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kok, P., Rahnev, D., Jehee, J. F., Lau, H. C. & de Lange, F. P. Attention reverses the effect of prediction in silencing sensory signals. Cereb. Cortex 22, 2197–2206 (2012).

    Article  PubMed  Google Scholar 

  92. Alink, A. & Blank, H. Can expectation suppression be explained by reduced attention to predictable stimuli? Neuroimage 231, 117824 (2021).

    Article  PubMed  Google Scholar 

  93. Rungratsameetaweemana, N. & Serences, J. T. Dissociating the impact of attention and expectation on early sensory processing. Curr. Opin. Psychol. 29, 181–186 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Auksztulewicz, R., Myers, N. E., Schnupp, J. W. & Nobre, A. C. Rhythmic temporal expectation boosts neural activity by increasing neural gain. J. Neurosci. 39, 9806–9817 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Jones, M. R. Time Will Tell: a Theory of Dynamic Attending (Oxford Univ. Press, 2019).

  96. Kusnir, F., Pesin, S., Moscona, G. & Landau, A. N. When temporal certainty doesn’t help. J. Cogn. Neurosci. 32, 315–325 (2020).

    Article  PubMed  Google Scholar 

  97. Badde, S., Myers, C. F., Yuval-Greenberg, S. & Carrasco, M. Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nat. Commun. 11, 3341 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Salet, J. M., Kruijne, W., van Rijn, H., Los, S. A. & Meeter, M. FMTP: a unifying computational framework of temporal preparation across time scales. Psychol. Rev. 129, 911–948 (2022).

    Article  PubMed  Google Scholar 

  99. Gresch, D., Boettcher, S. E. P., van Ede, F. & Nobre, A. C. Shielding working-memory representations from temporally predictable external interference. Cognition 217, 104915 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Gresch, D., Boettcher, S. E. P., Nobre, A. C. & van Ede, F. Consequences of predictable temporal structure in multi-task situations. Cognition 225, 105156 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Jin, W., Nobre, A. C. & van Ede, F. Temporal expectations prepare visual working memory for behavior. J. Cogn. Neurosci. 32, 2320–2332 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Breska, A. & Ivry, R. B. Context-specific control over the neural dynamics of temporal attention by the human cerebellum. Sci. Adv. 6, eabb1141 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Breska, A. & Deouell, L. Y. Neural mechanisms of rhythm-based temporal prediction: delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS Biol. 15, e2001665 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Rohenkohl, G. & Nobre, A. C. α oscillations related to anticipatory attention follow temporal expectations. J. Neurosci. 31, 14076–14084 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Correa, Á., Lupiáñez, J., Milliken, B. & Tudela, P. Endogenous temporal orienting of attention in detection and discrimination tasks. Percept. Psychophys. 66, 264–278 (2004).

    Article  PubMed  Google Scholar 

  106. Correa, Á., Lupiáñez, J. & Tudela, P. Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychon. Bull. Rev. 12, 328–334 (2005).

    Article  PubMed  Google Scholar 

  107. Rohenkohl, G., Gould, I. C., Pessoa, J. & Nobre, A. C. Combining spatial and temporal expectations to improve visual perception. J. Vis. 14, 8 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Samaha, J., Bauer, P., Cimaroli, S. & Postle, B. R. Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction. Proc. Natl Acad. Sci. USA 112, 8439–8444 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Correa, Á., Lupiáñez, J., Madrid, E. & Tudela, P. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials. Brain Res. 1076, 116–128 (2006).

    Article  PubMed  Google Scholar 

  110. Davranche, K., Nazarian, B., Vidal, F. & Coull, J. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. J. Cogn. Neurosci. 23, 3318–3330 (2011).

    Article  PubMed  Google Scholar 

  111. van Ede, F., Rohenkohl, G., Gould, I. & Nobre, A. C. Purpose-dependent consequences of temporal expectations serving perception and action. J. Neurosci. 40, 7877–7886 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Johnson, M. L., Palmer, J., Moore, C. M. & Boynton, G. M. Endogenous cueing effects for detection can be accounted for by a decision model of selective attention. Psychon. Bull. Rev. 27, 315–321 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Ramirez, L. D., Foster, J. J. & Ling, S. Temporal attention selectively enhances target features. J. Vis. 21, 6 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Zhou, A.-B., Sang, H.-B., Wang, A.-J. & Zhang, M. Visual aperiodic temporal prediction increases perceptual sensitivity and reduces response latencies. Acta Psychol. 209, 103129 (2020).

    Article  Google Scholar 

  115. Jing, C. et al. Temporal attention affects contrast response function by response gain. Front. Hum. Neurosci. 16, 1020260 (2022).

    Article  PubMed  Google Scholar 

  116. Martens, S. & Johnson, A. Timing attention: cuing target onset interval attenuates the attentional blink. Mem. Cogn. 33, 234–240 (2005).

    Article  Google Scholar 

  117. Visser, T. A. W., Tang, M. F., Badcock, D. R. & Enns, J. T. Temporal cues and the attentional blink: a further examination of the role of expectancy in sequential object perception. Atten. Percept. Psychophys. 76, 2212–2220 (2014).

    Article  PubMed  Google Scholar 

  118. van den Brink, R. L., Murphy, P. R., Desender, K., Ru, N. D. & Nieuwenhuis, S. Temporal expectation hastens decision onset but does not affect evidence quality. J. Neurosci. 41, 130–143 (2020).

    Article  PubMed  Google Scholar 

  119. Cravo, A. M., Rohenkohl, G., Wyart, V. & Nobre, A. C. Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. J. Neurosci. 33, 4002–4010 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Rolke, B. & Hofmann, P. Temporal uncertainty degrades perceptual processing. Psychon. Bull. Rev. 14, 522–526 (2007).

    Article  PubMed  Google Scholar 

  121. Boettcher, S. E. P., Shalev, N., Wolfe, J. M. & Nobre, A. C. Right place, right time: spatiotemporal predictions guide attention in dynamic visual search. J. Exp. Psychol. Gen. 151, 348–362 (2022).

    Article  PubMed  Google Scholar 

  122. Shalev, N., Boettcher, S., Wilkinson, H., Scerif, G. & Nobre, A. C. Be there on time: spatial‐temporal regularities guide young children’s attention in dynamic environments. Child Dev. 93, 1414–1426 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Moon, J., Choe, S., Lee, S. & Kwon, O.-S. Temporal dynamics of visual attention allocation. Sci. Rep. 9, 3664 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lasley, D. J. & Cohn, T. Detection of a luminance increment: effect of temporal uncertainty. J. Opt. Soc. Am. 71, 845–850 (1981).

    Article  PubMed  Google Scholar 

  125. Westheimer, G. & Ley, E. Temporal uncertainty effects on orientation discrimination and stereoscopic thresholds. J. Opt. Soc. Am. 13, 884-886 (1996).

    Article  Google Scholar 

  126. Denison, R. N., Tian, K., Heeger, D. J. & Carrasco, M. Anticipatory and evoked visual cortical dynamics of voluntary temporal attention. Preprint at bioRxiv https://doi.org/10.1101/2022.11.18.517084 (2024).

  127. Palmieri, H., Fernández, A. & Carrasco, M. Microsaccades and temporal attention at different locations of the visual field. J. Vis. 23, 6 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Dugué, L., Merriam, E. P., Heeger, D. J. & Carrasco, M. Differential impact of endogenous and exogenous attention on activity in human visual cortex. Sci. Rep. 10, 21274 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Montagna, B., Pestilli, F. & Carrasco, M. Attention trades off spatial acuity. Vis. Res. 49, 735–745 (2009).

    Article  PubMed  Google Scholar 

  130. Pestilli, F. & Carrasco, M. Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vis. Res. 45, 1867–1875 (2005).

    Article  PubMed  Google Scholar 

  131. Tkacz-Domb, S. & Yeshurun, Y. Temporal crowding is a unique phenomenon reflecting impaired target encoding over large temporal intervals. Psychon. Bull. Rev. 28, 1885–1893 (2021).

    Article  PubMed  Google Scholar 

  132. Breitmeyer, B. & Ogmen, H. Visual Masking: Time Slices through Conscious and Unconscious Vision (Oxford Univ. Press, 2006).

  133. Rucci, M. & Poletti, M. Control and functions of fixational eye movements. Annu. Rev. Vis. Sci. 1, 499–518 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Ding, N. et al. Temporal modulations in speech and music. Neurosci. Biobehav. Rev. 81, 181–187 (2017).

    Article  PubMed  Google Scholar 

  135. Eckstein, M. P., Peterson, M. F., Pham, B. T. & Droll, J. A. Statistical decision theory to relate neurons to behavior in the study of covert visual attention. Vis. Res. 49, 1097–1128 (2009).

    Article  PubMed  Google Scholar 

  136. Cohen, M. A., Konkle, T., Rhee, J. Y., Nakayama, K. & Alvarez, G. A. Processing multiple visual objects is limited by overlap in neural channels. Proc. Natl Acad. Sci. USA 111, 8955–8960 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  PubMed  Google Scholar 

  138. Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).

    Article  PubMed  Google Scholar 

  139. Hilgetag, C. C., Théoret, H. & Pascual-Leone, A. Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat. Neurosci. 4, 953–957 (2001).

    Article  PubMed  Google Scholar 

  140. Plow, E. B. et al. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI. Front. Hum. Neurosci. 8, 226 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bouchacourt, F. & Buschman, T. J. A flexible model of working memory. Neuron 103, 147–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Oberauer, K., Farrell, S., Jarrold, C. & Lewandowsky, S. What limits working memory capacity? Psychol. Bull. 142, 758–799 (2016).

    Article  PubMed  Google Scholar 

  143. Lennie, P. The cost of cortical computation. Curr. Biol 13, 493–497 (2003).

    Article  PubMed  Google Scholar 

  144. Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci. 25, 757–775 (2021).

    Article  PubMed  Google Scholar 

  145. Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H. & Wang, X.-J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  147. David, S. V., Vinje, W. E. & Gallant, J. L. Natural stimulus statistics alter the receptive field structure of V1 neurons. J. Neurosci. 24, 6991–7006 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Zhou, J., Benson, N. C., Kay, K. & Winawer, J. Compressive temporal summation in human visual cortex. J. Neurosci. 38, 691–709 (2017).

    Article  PubMed  Google Scholar 

  149. Martin, J. G., Cox, P. H., Scholl, C. A. & Riesenhuber, M. A crash in visual processing: interference between feedforward and feedback of successive targets limits detection and categorization. J. Vis. 19, 20 (2019).

    PubMed  Google Scholar 

  150. Marti, S., Sigman, M. & Dehaene, S. A shared cortical bottleneck underlying attentional blink and psychological refractory period. NeuroImage 59, 2883–2898 (2012).

    Article  PubMed  Google Scholar 

  151. Zylberberg, A., Slezak, D. F., Roelfsema, P. R., Dehaene, S. & Sigman, M. The brain’s router: a cortical network model of serial processing in the primate brain. PLoS Comput. Biol. 6, e1000765 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  152. White, A. L., Palmer, J., Boynton, G. M. & Yeatman, J. D. Parallel spatial channels converge at a bottleneck in anterior word-selective cortex. Proc. Natl Acad. Sci. USA 116, 10087–10096 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Chun, M. M. & Potter, M. C. A two-stage model for multiple target detection in rapid serial visual presentation. J. Exp. Psychol. Hum. Percept. Perform. 21, 109–127 (1995).

    Article  PubMed  Google Scholar 

  154. Wyble, B., Potter, M. C., Bowman, H. & Nieuwenstein, M. Attentional episodes in visual perception. J. Exp. Psychol. Gen. 140, 488–505 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Zivony, A. & Lamy, D. What processes are disrupted during the attentional blink? An integrative review of event-related potential research. Psychon. Bull. Rev. 29, 394–414 (2022).

    Article  PubMed  Google Scholar 

  156. Tang, M. F. et al. Neural dynamics of the attentional blink revealed by encoding orientation selectivity during rapid visual presentation. Nat. Commun. 11, 434 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Akyürek, E. G., Hommel, B. & Jolicoeur, P. Direct evidence for a role of working memory in the attentional blink. Mem. Cogn. 35, 621–627 (2007).

    Article  Google Scholar 

  158. Dehaene, S., Sergent, C. & Changeux, J.-P. A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc. Natl Acad. Sci. USA 100, 8520–8525 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Sergent, C. & Dehaene, S. Neural processes underlying conscious perception: experimental findings and a global neuronal workspace framework. J. Physiol. Paris 98, 374–384 (2004).

    Article  PubMed  Google Scholar 

  160. Raffone, A., Srinivasan, N. & van Leeuwen, C. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation. Phil. Trans. R. Soc. Lond. B 369, 20130215 (2014).

    Article  Google Scholar 

  161. Jolicoeur, P. Modulation of the attentional blink by on-line response selection: evidence from speeded and unspeeded Task 1 decisions. Mem. Cogn. 26, 1014–1032 (1998).

    Article  Google Scholar 

  162. Marti, S., King, J.-R. & Dehaene, S. Time-resolved decoding of two processing chains during dual-task interference. Neuron 88, 1297–1307 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Pashler, H. Dual-task interference in simple tasks: data and theory. Psychol. Bull. 116, 220–244 (1994).

    Article  PubMed  Google Scholar 

  164. Rau, P.-L. P. & Zheng, J. Cross-modal psychological refractory period in vision, audition, and haptics. Atten. Percept. Psychophys. 82, 1573–1585 (2020).

    Article  PubMed  Google Scholar 

  165. Welford, A. T. The ‘psychological refractory period’ and the timing of high‐speed performance — a review and a theory. Br. J. Psychol. Gen. Sect. 43, 2–19 (1952).

    Article  Google Scholar 

  166. Aston-Jones, G. & Cohen, J. D. Adaptive gain and the role of the locus coeruleus–norepinephrine system in optimal performance. J. Comp. Neurol. 493, 99–110 (2005).

    Article  PubMed  Google Scholar 

  167. Denison, R. N., Parker, J. A. & Carrasco, M. Modeling pupil responses to rapid sequential events. Behav. Res. Meth. 52, 1991–2007 (2020).

    Article  Google Scholar 

  168. Zivony, A. & Eimer, M. The diachronic account of attentional selectivity. Psychon. Bull. Rev. 29, 1118–1142 (2021).

    Article  PubMed  Google Scholar 

  169. Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Boynton, G. M. A framework for describing the effects of attention on visual responses. Vis. Res. 49, 1129–1143 (2009).

    Article  PubMed  Google Scholar 

  171. Lee, J. & Maunsell, J. H. R. A normalization model of attentional modulation of single unit responses. PLoS One 4, e4651 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Ni, A. M. & Maunsell, J. H. R. Spatially tuned normalization explains attention modulation variance within neurons. J. Neurophysiol. 118, 1903–1913 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ni, A. M. & Maunsell, J. H. R. Neuronal effects of spatial and feature attention differ due to normalization. J. Neurosci. 39, 5493–5505 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Schwedhelm, P., Krishna, B. S. & Treue, S. An extended normalization model of attention accounts for feature-based attentional enhancement of both response and coherence gain. PLoS Comput. Biol. 12, e1005225 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  175. Smith, P. L., Sewell, D. K. & Lilburn, S. D. From shunting inhibition to dynamic normalization: attentional selection and decision-making in brief visual displays. Vis. Res. 116, 219–240 (2015).

    Article  PubMed  Google Scholar 

  176. Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).

    Article  Google Scholar 

  177. Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).

    Article  PubMed  Google Scholar 

  178. Herrmann, K., Heeger, D. J. & Carrasco, M. Feature-based attention enhances performance by increasing response gain. Vis. Res. 74, 10–20 (2012).

    Article  PubMed  Google Scholar 

  179. Herrmann, K., Montaser-Kouhsari, L., Carrasco, M. & Heeger, D. J. When size matters: attention affects performance by contrast or response gain. Nat. Neurosci. 13, 1554–1559 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Zhang, X., Japee, S., Safiullah, Z., Mlynaryk, N. & Ungerleider, L. G. A normalization framework for emotional attention. PLoS Biol. 14, e1002578 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Smith, P. L. A competitive interaction theory of attentional selection and decision making in brief, multielement displays. Psychol. Rev. 120, 589–627 (2013).

    Article  PubMed  Google Scholar 

  182. Smith, P. L. & Ratcliff, R. An integrated theory of attention and decision making in visual signal detection. Psychol. Rev. 116, 283–317 (2009).

    Article  PubMed  Google Scholar 

  183. Bundesen, C. A theory of visual attention. Psychol. Rev. 97, 523–547 (1990).

    Article  PubMed  Google Scholar 

  184. Bundesen, C., Habekost, T. & Kyllingsbæk, S. A neural theory of visual attention: bridging cognition and neurophysiology. Psychol. Rev. 112, 291–328 (2005).

    Article  PubMed  Google Scholar 

  185. Tünnermann, J., Kristjánsson, Á., Petersen, A., Schubö, A. & Scharlau, I. Advances in the application of a computational theory of visual attention (TVA): moving towards more naturalistic stimuli and game-like tasks. Open Psychol. 4, 27–46 (2022).

    Article  Google Scholar 

  186. Cox, G. E., Palmeri, T. J., Logan, G. D., Smith, P. L. & Schall, J. D. Salience by competitive and recurrent interactions: bridging neural spiking and computation in visual attention. Psychol. Rev. 129, 1144–1182 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Bundesen, C., Vangkilde, S. & Petersen, A. Recent developments in a computational theory of visual attention (TVA). Vis. Res. 116, 210–218 (2015).

    Article  PubMed  Google Scholar 

  188. Sørensen, T. A., Vangkilde, S. & Bundesen, C. Components of attention modulated by temporal expectation. J. Exp. Psychol. Learn. Mem. Cogn. 41, 178–192 (2014).

    Article  PubMed  Google Scholar 

  189. Vangkilde, S., Coull, J. T. & Bundesen, C. Great expectations: temporal expectation modulates perceptual processing speed. J. Exp. Psychol. Hum. Percept. Perform. 38, 1183–1191 (2012).

    Article  PubMed  Google Scholar 

  190. Vangkilde, S., Petersen, A. & Bundesen, C. Temporal expectancy in the context of a theory of visual attention. Phil. Trans. R. Soc. B 368, 20130054 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Reeves, A. & Sperling, G. Attention gating in short-term visual memory. Psychol. Rev. 93, 180–206 (1986).

    Article  PubMed  Google Scholar 

  192. Sperling, G. & Weichselgartner, E. Episodic theory of the dynamics of spatial attention. Psychol. Rev. 102, 503–532 (1995).

    Article  Google Scholar 

  193. Bowman, H. & Wyble, B. The simultaneous type, serial token model of temporal attention and working memory. Psychol. Rev. 114, 38–70 (2007).

    Article  PubMed  Google Scholar 

  194. Jones, W., Pincham, H., Gootjes-Dreesbach, E. L. & Bowman, H. Fleeting perceptual experience and the possibility of recalling without seeing. Sci. Rep. 10, 8540 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Wyble, B., Bowman, H. & Nieuwenstein, M. The attentional blink provides episodic distinctiveness: sparing at a cost. J. Exp. Psychol. Hum. Percept. Perform. 35, 787–807 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Zalta, A., Petkoski, S. & Morillon, B. Natural rhythms of periodic temporal attention. Nat. Commun. 11, 1051–1012 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Beuth, F. & Hamker, F. H. A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vis. Res. 116, 241–257 (2015).

    Article  PubMed  Google Scholar 

  198. Olivers, C. N. & Meeter, M. A boost and bounce theory of temporal attention. Psychol. Rev. 115, 836–863 (2008).

    Article  PubMed  Google Scholar 

  199. Poder, E. Attentional gating models of object substitution masking. J. Exp. Psychol. Gen. 142, 1130–1141 (2013).

    Article  PubMed  Google Scholar 

  200. Shih, S. I. The attention cascade model and attentional blink. Cogn. Psychol. 56, 210–236 (2008).

    Article  PubMed  Google Scholar 

  201. Coull, J. T. fMRI studies of temporal attention: allocating attention within, or towards, time. Cogn. Brain Res. 21, 216–226 (2004).

    Article  Google Scholar 

  202. Kay, K., Bonnen, K., Denison, R. N., Arcaro, M. J. & Barack, D. L. Tasks and their role in visual neuroscience. Neuron 111, 1697–1713 (2023).

    Article  PubMed  Google Scholar 

  203. Anderson, B. & Sheinberg, D. L. Effects of temporal context and temporal expectancy on neural activity in inferior temporal cortex. Neuropsychologia 46, 947–957 (2008).

    Article  PubMed  Google Scholar 

  204. van Ede, F., Chekroud, S. R., Stokes, M. G. & Nobre, A. C. Decoding the influence of anticipatory states on visual perception in the presence of temporal distractors. Nat. Commun. 9, 1449 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Fischer, R., Plessow, F. & Ruge, H. Priming of visual cortex by temporal attention? The effects of temporal predictability on stimulus(-specific) processing in early visual cortical areas. NeuroImage 66, 261–269 (2012).

    Article  PubMed  Google Scholar 

  206. Bonnefond, M. & Jensen, O. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr. Biol. 22, 1969–1974 (2012).

    Article  PubMed  Google Scholar 

  207. van Diepen, R. M., Cohen, M. X., Denys, D. & Mazaheri, A. Attention and temporal expectations modulate power, not phase, of ongoing alpha oscillations. J. Cogn. Neurosci. 27, 1573–1586 (2015).

    Article  PubMed  Google Scholar 

  208. van Diepen, R. M. & Mazaheri, A. The caveats of observing inter-trial phase-coherence in cognitive neuroscience. Sci. Rep. 8, 2990 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Lima, B., Singer, W. & Neuenschwander, S. Gamma responses correlate with temporal expectation in monkey primary visual cortex. J. Neurosci. 31, 15919–15931 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  210. Ghose, G. M. & Maunsell, J. H. R. Attentional modulation in visual cortex depends on task timing. Nature 419, 616–620 (2002).

    Article  PubMed  Google Scholar 

  211. Sharma, J. et al. Spatial attention and temporal expectation under timed uncertainty predictably modulate neuronal responses in monkey V1. Cereb. Cortex 25, 2894–2906 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Snyder, A. C., Morais, M. J. & Smith, M. A. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention. J. Neurophysiol. 116, 1807–1820 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Amit, R., Abeles, D., Carrasco, M. & Yuval-Greenberg, S. Oculomotor inhibition reflects temporal expectations. NeuroImage 184, 279–292 (2018).

    Article  PubMed  Google Scholar 

  214. Dankner, Y., Shalev, L., Carrasco, M. & Yuval-Greenberg, S. Prestimulus inhibition of saccades in adults with and without attention-deficit/hyperactivity disorder as an index of temporal expectations. Psychol. Sci. 28, 835–850 (2017).

    Article  PubMed  Google Scholar 

  215. Findlay, J. M. Direction perception and human fixation eye movements. Vis. Res. 14, 703–711 (1974).

    Article  PubMed  Google Scholar 

  216. Pastukhov, A. & Braun, J. Rare but precious: microsaccades are highly informative about attentional allocation. Vis. Res. 50, 1173–1184 (2010).

    Article  PubMed  Google Scholar 

  217. Abeles, D., Amit, R., Tal-Perry, N., Carrasco, M. & Yuval-Greenberg, S. Oculomotor inhibition precedes temporally expected auditory targets. Nat. Commun. 11, 3524 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Jigo, M. & Carrasco, M. Differential impact of exogenous and endogenous attention on the contrast sensitivity function across eccentricity. J. Vis. 20, 11 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Lu, Z. L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vis. Res. 38, 1183–1198 (1998).

    Article  PubMed  Google Scholar 

  220. Sharp, P., Melcher, D. & Hickey, C. Different effects of spatial and temporal attention on the integration and segregation of stimuli in time. Atten. Percept. Psychophys. 81, 433–441 (2019).

    Article  PubMed  Google Scholar 

  221. Cotti, J., Rohenkohl, G., Stokes, M., Nobre, A. C. & Coull, J. T. Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus. NeuroImage 54, 1221–1230 (2011).

    Article  PubMed  Google Scholar 

  222. Coull, J. T., Cotti, J. & Vidal, F. Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: dissociating prior from posterior temporal probabilities with fMRI. NeuroImage 141, 40–51 (2016).

    Article  PubMed  Google Scholar 

  223. Coull, J. T., Davranche, K., Nazarian, B. & Vidal, F. Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia 51, 309–319 (2013).

    Article  PubMed  Google Scholar 

  224. Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J. & Luo, L. Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Breska, A. & Ivry, R. B. Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson’s disease. Proc. Natl Acad. Sci. USA 115, 12283–12288 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Breska, A. & Ivry, R. B. The human cerebellum is essential for modulating perceptual sensitivity based on temporal expectations. Elife 10, e66743 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  227. White, A. L., Rolfs, M. & Carrasco, M. Stimulus competition mediates the joint effects of spatial and feature-based attention. J. Vis. 15, 7 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Laidlaw, K. & Kingstone, A. If not when, then where? Ignoring temporal information eliminates reflexive but not volitional spatial orienting. Vision 1, 12 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Menceloglu, M., Grabowecky, M. & Suzuki, S. Probability-driven and stimulus-driven orienting of attention to time and sensory modality. Atten. Percept. Psychophys. 10, 433–413 (2019).

    Google Scholar 

  230. Warren, S. G., Yacoub, E. & Ghose, G. M. Featural and temporal attention selectively enhance task-appropriate representations in human primary visual cortex. Nat. Commun. 5, 5643 (2014).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks S. Badde, M. Carrasco, A. Chapman, M. Epstein, K. Tian, M. Walsh, J. Wang, W. Wu and J. Zhu for helpful comments. Support for this work was provided by Boston University startup funding to R.N.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel N. Denison.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denison, R.N. Visual temporal attention from perception to computation. Nat Rev Psychol 3, 261–274 (2024). https://doi.org/10.1038/s44159-024-00294-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-024-00294-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing