Abstract
Visual attention unfolds across space and time to prioritize a subset of incoming visual information. Distinct in key ways from spatial attention, temporal attention is a growing research area with its own conceptual and mechanistic territory. Here I review key conceptual issues, data and models in the field of visual temporal attention, with an emphasis on voluntary temporal attention. I first situate voluntary temporal attention in the broader domains of temporal attention and attentional dynamics, with the goal of organizing concepts and findings related to dynamic attention. Next, I review findings that voluntary temporal attention affects visual perception in a selective fashion — prioritizing certain time points at the expense of other time points. Selectivity is a hallmark of attention and implies a limitation in computational resources that prevents sustained maximal processing of all time points. I discuss a computational model of temporal attention that captures limited resources across time and review other models of attentional dynamics. Finally, I discuss productive future directions for the study of temporal attention.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$59.00 per year
only $4.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Rucci, M., Ahissar, E. & Burr, D. Temporal coding of visual space. Trends Cogn. Sci. 22, 883–895 (2018).
Zangrossi, A., Cona, G., Celli, M., Zorzi, M. & Corbetta, M. Visual exploration dynamics are low-dimensional and driven by intrinsic factors. Commun. Biol. 4, 1100 (2021).
Cuthill, I. C., Matchette, S. R. & Scott-Samuel, N. E. Camouflage in a dynamic world. Curr. Opin. Behav. Sci. 30, 109–115 (2019).
Hayhoe, M. M. Vision and action. Annu. Rev. Vis. Sci. 3, 389–413 (2017).
Land, M. F. & Furneaux, S. The knowledge base of the oculomotor system. Phil. Trans. R Soc. Lond. B 352, 1231–1239 (1997).
Coull, J. T. & Nobre, A. C. Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J. Neurosci. 18, 7426–7435 (1998).
Nobre, A. C. Orienting attention to instants in time. Neuropsychologia 39, 1317–1328 (2001).
Nobre, A. C. & van Ede, F. Anticipated moments: temporal structure in attention. Nat. Rev. Neurosci. 19, 34–48 (2018).
Nobre, A. C. & Rohenkohl, G. in The Oxford Handbook of Attention (eds Nobre, A. C. & Kastner, S.) Ch. 24 (Oxford Univ. Press, 2014).
Nobre, A. C. & van Ede, F. Attention in flux. Neuron 111, 971–986 (2023).
Kingstone, A. Combining expectancies. Q. J. Exp. Psychol. A 44, 69–104 (1992).
Woodrow, H. The Measurement of Attention (Kessinger, 1914).
Correa, A. in Attention and Time (eds Nobre, A. C. & Coull, J. T.) Ch. 26 (Oxford Univ. Press, 2010).
Griffin, I. C., Miniussi, C. & Nobre, A. C. Multiple mechanisms of selective attention: differential modulation of stimulus processing by attention to space or time. Neuropsychologia 40, 2325–2340 (2002).
Miniussi, C., Wilding, E. L., Coull, J. T. & Nobre, A. C. Orienting attention in time: modulation of brain potentials. Brain 122, 1507–1518 (1999).
Carrasco, M. Visual attention: the past 25 years. Vis. Res. 51, 1484–1525 (2011).
Maunsell, J. H. R. Neuronal mechanisms of visual attention. Annu. Rev. Vis. Sci. 1, 373–391 (2015).
Bar, M. & Biederman, I. Subliminal visual priming. Psychol. Sci. 9, 464–468 (1998).
Cicchini, G. M., Mikellidou, K. & Burr, D. Serial dependencies act directly on perception. J. Vis. 17, 6 (2017).
Denison, R. N., Piazza, E. A. & Silver, M. A. Predictive context influences perceptual selection during binocular rivalry. Front. Human Neurosci. 5, 166 (2011).
Pearson, J. & Brascamp, J. Sensory memory for ambiguous vision. Trends Cogn. Sci. 12, 334–341 (2008).
Webster, M. A. Visual adaptation. Annu. Rev. Vis. Sci. 1, 547–567 (2015).
Wandell, B. A. & Winawer, J. Imaging retinotopic maps in the human brain. Vis. Res. 51, 718–737 (2011).
Finnerty, G. T., Shadlen, M. N., Jazayeri, M., Nobre, A. C. & Buonomano, D. V. Time in cortical circuits. J. Neurosci. 35, 13912–13916 (2015).
Zhou, S., Masmanidis, S. C. & Buonomano, D. V. Neural sequences as an optimal dynamical regime for the readout of time. Neuron 108, 651–658 (2020).
Coull, J. T., Frith, C. D., Büchel, C. & Nobre, A. C. Orienting attention in time: behavioural and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia 38, 808–819 (2000).
Lawrence, M. A. & Klein, R. M. Isolating exogenous and endogenous modes of temporal attention. J. Exp. Psychol. Gen. 142, 560–572 (2013).
McCormick, C. R., Redden, R. S., Lawrence, M. A. & Klein, R. M. The independence of endogenous and exogenous temporal attention. Atten. Percept. Psychophys. 80, 1885–1891 (2018).
Rohenkohl, G., Coull, J. T. & Nobre, A. C. Behavioural dissociation between exogenous and endogenous temporal orienting of attention. PLoS One 6, e14620 (2011).
Duyar, A., Denison, R. N. & Carrasco, M. Exogenous temporal attention varies with temporal uncertainty. J. Vis. 23, 9 (2023).
Cheal, M. & Lyon, D. R. Central and peripheral precuing of forced-choice discrimination. Q. J. Exp. Psychol. A 43, 859–880 (1991).
Ling, S. & Carrasco, M. Sustained and transient covert attention enhance the signal via different contrast response functions. Vis. Res. 46, 1210–1220 (2006).
Müller, H. J. & Rabbitt, P. M. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol. Hum. Percept. Perform. 15, 315–330 (1989).
Nakayama, K. & Mackeben, M. Sustained and transient components of focal visual attention. Vis. Res. 29, 1631–1647 (1989).
van Schie, M. K. M., Lammers, G. J., Fronczek, R., Middelkoop, H. A. M. & van Dijk, J. G. Vigilance: discussion of related concepts and proposal for a definition. Sleep Med. 83, 175–181 (2021).
Weinbach, N., Shofty, I., Gabay, S. & Henik, A. Endogenous temporal and spatial orienting: evidence for two distinct attentional mechanisms. Psychon. Bull. Rev. 22, 967–973 (2015).
Weissman, D. H., Roberts, K. C., Visscher, K. M. & Woldorff, M. G. The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006).
Posner, M. I. Measuring alertness. Ann. NY Acad. Sci. 1129, 193–199 (2008).
Denison, R. N., Heeger, D. J. & Carrasco, M. Attention flexibly trades off across points in time. Psychon. Bull. Rev. 24, 1142–1151 (2017).
Denison, R. N., Yuval-Greenberg, S. & Carrasco, M. Directing voluntary temporal attention increases fixational stability. J. Neurosci. 39, 353–363 (2019).
Anderson, B. There is no such thing as attention. Front. Psychol. 2, 246 (2011).
Hommel, B. et al. No one knows what attention is. Atten. Percept. Psychophys. 81, 2288–2303 (2019).
Krauzlis, R. J., Bollimunta, A., Arcizet, F. & Wang, L. Attention as an effect not a cause. Trends Cogn. Sci. 18, 457–464 (2014).
James, W. Principles of Psychology (Henry Holt, 1890).
Reeves, A. Attention as a unitary concept. Vision 4, 48 (2020).
Wu, W. We know what attention is! Trends Cogn. Sci. https://doi.org/10.1016/j.tics.2023.11.007 (2023).
Liu, T., Stevens, S. T. & Carrasco, M. Comparing the time course and efficacy of spatial and feature-based attention. Vis. Res. 47, 108–113 (2007).
Hilkenmeier, F. & Scharlau, I. Rapid allocation of temporal attention in the attentional blink paradigm. Eur. J. Cogn. Psychol. 22, 1222–1234 (2010).
Yeshurun, Y. & Tkacz-Domb, S. The time-course of endogenous temporal attention — super fast voluntary allocation of attention. Cognition 206, 104506 (2021).
Klein, R. M. Inhibition of return. Trends Cogn. Sci. 4, 138–147 (2000).
Lupianez, J., Klein, R. M. & Bartolomeo, P. Inhibition of return: twenty years after. Cogn. Neuropsychol. 23, 1003–1014 (2006).
Samuel, A. G. & Kat, D. Inhibition of return: a graphical meta-analysis of its time course and an empirical test of its temporal and spatial properties. Psychon. Bull. Rev. 10, 897–906 (2003).
Handy, T., Jha, A. & Mangun, G. Promoting novelty in vision: inhibition of return modulates perceptual-level processing. Psychol. Sci. 10, 157–161 (1999).
Raymond, J. E., Shapiro, K. L. & Arnell, K. M. Temporary suppression of visual processing in an RSVP task: an attentional blink? J. Exp. Psychol. Hum. Percept. Perform. 18, 849–860 (1992).
Broadbent, D. E. & Broadbent, M. H. P. From detection to identification: response to multiple targets in rapid serial visual presentation. Percept. Psychophys. 42, 105–113 (1987).
Goodbourn, P. T. et al. Reconsidering temporal selection in the attentional blink. Psychol. Sci. 27, 1146–1156 (2016).
Recht, S., Mamassian, P. & de Gardelle, V. Temporal attention causes systematic biases in visual confidence. Sci. Rep. 9, 11622 (2019).
Snir, G. & Yeshurun, Y. Perceptual episodes, temporal attention, and the role of cognitive control: lessons from the attentional blink. Prog. Brain Res.236, 53-73 (2017).
Vul, E., Nieuwenstein, M. & Kanwisher, N. Temporal selection is suppressed, delayed, and diffused during the attentional blink. Psychol. Sci. 19, 55–61 (2008).
Hackley, S. A., Schankin, A., Wohlschlaeger, A. & Wascher, E. Localization of temporal preparation effects via trisected reaction time. Psychophysiology 44, 334–338 (2007).
Niemi, P. & Näätänen, R. Foreperiod and simple reaction time. Psychol. Bull. 89, 133–162 (1981).
Correa, Á. & Nobre, A. C. Neural modulation by regularity and passage of time. J. Neurophysiol. 100, 1649–1655 (2008).
Doherty, J. R., Rao, A., Mesulam, M. M. & Nobre, A. C. Synergistic effect of combined temporal and spatial expectations on visual attention. J. Neurosci. 25, 8259–8266 (2005).
Mathewson, K. E., Fabiani, M., Gratton, G., Beck, D. M. & Lleras, A. Rescuing stimuli from invisibility: inducing a momentary release from visual masking with pre-target entrainment. Cognition 115, 186–191 (2010).
Rohenkohl, G., Cravo, A. M., Wyart, V. & Nobre, A. C. Temporal expectation improves the quality of sensory information. J. Neurosci. 32, 8424–8428 (2012).
Shalev, N., Bauer, A.-K. R. & Nobre, A. C. The tempos of performance. Curr. Opin. Psychol. 29, 254–260 (2019).
Bauer, A.-K. R., van Ede, F., Quinn, A. J. & Nobre, A. C. Rhythmic modulation of visual perception by continuous rhythmic auditory stimulation. J. Neurosci. 41, 7065–7075 (2021).
Haegens, S. & Golumbic, E. Z. Rhythmic facilitation of sensory processing: a critical review. Neurosci. Biobehav. Rev. 86, 150–165 (2018).
Breska, A. & Deouell, L. Y. Automatic bias of temporal expectations following temporally regular input independently of high-level temporal expectation. J. Cogn. Neurosci. 26, 1555–1571 (2014).
Praamstra, P., Kourtis, D., Kwok, H. F. & Oostenveld, R. Neurophysiology of implicit timing in serial choice reaction-time performance. J. Neurosci. 26, 5448–5455 (2006).
Busch, N. A. & VanRullen, R. Spontaneous EEG oscillations reveal periodic sampling of visual attention. Proc. Natl Acad. Sci. USA 107, 16048–16053 (2010).
Dugué, L., Roberts, M. & Carrasco, M. Attention reorients periodically. Curr. Biol. 26, 1595–1601 (2016).
Fiebelkorn, I. C. & Kastner, S. A rhythmic theory of attention. Trends Cogn. Sci. 23, 87–101 (2018).
Landau, A. N. & Fries, P. Attention samples stimuli rhythmically. Curr. Biol. 22, 1000–1004 (2012).
Landau, A. N., Schreyer, H. M., van Pelt, S. & Fries, P. Distributed attention is implemented through theta-rhythmic gamma modulation. Curr. Biol 25, 2332–2337 (2015).
Song, K., Meng, M., Chen, L., Zhou, K. & Luo, H. Behavioral oscillations in attention: rhythmic α pulses mediated through θ band. J. Neurosci. 34, 4837–4844 (2014).
VanRullen, R. Perceptual cycles. Trends Cogn. Sci. 20, 723–735 (2016).
Brookshire, G. Putative rhythms in attentional switching can be explained by aperiodic temporal structure. Nat. Hum. Behav. 34, 1280–1291 (2022).
DeGutis, J. M. & Van Vleet, T. M. Tonic and phasic alertness training: a novel behavioral therapy to improve spatial and non-spatial attention in patients with hemispatial neglect. Front. Hum. Neurosci. 4, 60 (2010).
Esterman, M. & Rothlein, D. Models of sustained attention. Curr. Opin. Psychol. 29, 174–180 (2019).
Sarter, M., Givens, B. & Bruno, J. P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Rev. 35, 146–160 (2001).
deBettencourt, M. T., Cohen, J. D., Lee, R. F., Norman, K. A. & Turk-Browne, N. B. Closed-loop training of attention with real-time brain imaging. Nat. Neurosci. 18, 470–475 (2015).
Aston-Jones, G., Rajkowski, J., Kubiak, P. & Alexinsky, T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 14, 4467–4480 (1994).
Nieuwenhuis, S., Gilzenrat, M. S., Holmes, B. D. & Cohen, J. D. The role of the locus coeruleus in mediating the attentional blink: a neurocomputational theory. J. Exp. Psychol. Gen. 134, 291–307 (2005).
Luce, R. D. Response Times: Their Role in Inferring Elementary Mental Organization (Oxford Univ. Press, 1986).
Mento, G. The role of the P3 and CNV components in voluntary and automatic temporal orienting: a high spatial-resolution ERP study. Neuropsychologia 107, 31–40 (2017).
Summerfield, C. & Egner, T. Expectation (and attention) in visual cognition. Trends Cogn. Sci. 13, 403–409 (2009).
Summerfield, C. & Egner, T. Feature-based attention and feature-based expectation. Trends Cogn. Sci. 20, 401–404 (2016).
Denison, R. N., Carrasco, M. & Heeger, D. J. A dynamic normalization model of temporal attention. Nat. Hum. Behav. 5, 1674–1685 (2021).
Fernández, A., Denison, R. N. & Carrasco, M. Temporal attention improves perception similarly at foveal and parafoveal locations. J. Vis. 19, 12 (2019).
Kok, P., Rahnev, D., Jehee, J. F., Lau, H. C. & de Lange, F. P. Attention reverses the effect of prediction in silencing sensory signals. Cereb. Cortex 22, 2197–2206 (2012).
Alink, A. & Blank, H. Can expectation suppression be explained by reduced attention to predictable stimuli? Neuroimage 231, 117824 (2021).
Rungratsameetaweemana, N. & Serences, J. T. Dissociating the impact of attention and expectation on early sensory processing. Curr. Opin. Psychol. 29, 181–186 (2019).
Auksztulewicz, R., Myers, N. E., Schnupp, J. W. & Nobre, A. C. Rhythmic temporal expectation boosts neural activity by increasing neural gain. J. Neurosci. 39, 9806–9817 (2019).
Jones, M. R. Time Will Tell: a Theory of Dynamic Attending (Oxford Univ. Press, 2019).
Kusnir, F., Pesin, S., Moscona, G. & Landau, A. N. When temporal certainty doesn’t help. J. Cogn. Neurosci. 32, 315–325 (2020).
Badde, S., Myers, C. F., Yuval-Greenberg, S. & Carrasco, M. Oculomotor freezing reflects tactile temporal expectation and aids tactile perception. Nat. Commun. 11, 3341 (2020).
Salet, J. M., Kruijne, W., van Rijn, H., Los, S. A. & Meeter, M. FMTP: a unifying computational framework of temporal preparation across time scales. Psychol. Rev. 129, 911–948 (2022).
Gresch, D., Boettcher, S. E. P., van Ede, F. & Nobre, A. C. Shielding working-memory representations from temporally predictable external interference. Cognition 217, 104915 (2021).
Gresch, D., Boettcher, S. E. P., Nobre, A. C. & van Ede, F. Consequences of predictable temporal structure in multi-task situations. Cognition 225, 105156 (2022).
Jin, W., Nobre, A. C. & van Ede, F. Temporal expectations prepare visual working memory for behavior. J. Cogn. Neurosci. 32, 2320–2332 (2020).
Breska, A. & Ivry, R. B. Context-specific control over the neural dynamics of temporal attention by the human cerebellum. Sci. Adv. 6, eabb1141 (2020).
Breska, A. & Deouell, L. Y. Neural mechanisms of rhythm-based temporal prediction: delta phase-locking reflects temporal predictability but not rhythmic entrainment. PLoS Biol. 15, e2001665 (2017).
Rohenkohl, G. & Nobre, A. C. α oscillations related to anticipatory attention follow temporal expectations. J. Neurosci. 31, 14076–14084 (2011).
Correa, Á., Lupiáñez, J., Milliken, B. & Tudela, P. Endogenous temporal orienting of attention in detection and discrimination tasks. Percept. Psychophys. 66, 264–278 (2004).
Correa, Á., Lupiáñez, J. & Tudela, P. Attentional preparation based on temporal expectancy modulates processing at the perceptual level. Psychon. Bull. Rev. 12, 328–334 (2005).
Rohenkohl, G., Gould, I. C., Pessoa, J. & Nobre, A. C. Combining spatial and temporal expectations to improve visual perception. J. Vis. 14, 8 (2014).
Samaha, J., Bauer, P., Cimaroli, S. & Postle, B. R. Top-down control of the phase of alpha-band oscillations as a mechanism for temporal prediction. Proc. Natl Acad. Sci. USA 112, 8439–8444 (2015).
Correa, Á., Lupiáñez, J., Madrid, E. & Tudela, P. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials. Brain Res. 1076, 116–128 (2006).
Davranche, K., Nazarian, B., Vidal, F. & Coull, J. Orienting attention in time activates left intraparietal sulcus for both perceptual and motor task goals. J. Cogn. Neurosci. 23, 3318–3330 (2011).
van Ede, F., Rohenkohl, G., Gould, I. & Nobre, A. C. Purpose-dependent consequences of temporal expectations serving perception and action. J. Neurosci. 40, 7877–7886 (2020).
Johnson, M. L., Palmer, J., Moore, C. M. & Boynton, G. M. Endogenous cueing effects for detection can be accounted for by a decision model of selective attention. Psychon. Bull. Rev. 27, 315–321 (2020).
Ramirez, L. D., Foster, J. J. & Ling, S. Temporal attention selectively enhances target features. J. Vis. 21, 6 (2021).
Zhou, A.-B., Sang, H.-B., Wang, A.-J. & Zhang, M. Visual aperiodic temporal prediction increases perceptual sensitivity and reduces response latencies. Acta Psychol. 209, 103129 (2020).
Jing, C. et al. Temporal attention affects contrast response function by response gain. Front. Hum. Neurosci. 16, 1020260 (2022).
Martens, S. & Johnson, A. Timing attention: cuing target onset interval attenuates the attentional blink. Mem. Cogn. 33, 234–240 (2005).
Visser, T. A. W., Tang, M. F., Badcock, D. R. & Enns, J. T. Temporal cues and the attentional blink: a further examination of the role of expectancy in sequential object perception. Atten. Percept. Psychophys. 76, 2212–2220 (2014).
van den Brink, R. L., Murphy, P. R., Desender, K., Ru, N. D. & Nieuwenhuis, S. Temporal expectation hastens decision onset but does not affect evidence quality. J. Neurosci. 41, 130–143 (2020).
Cravo, A. M., Rohenkohl, G., Wyart, V. & Nobre, A. C. Temporal expectation enhances contrast sensitivity by phase entrainment of low-frequency oscillations in visual cortex. J. Neurosci. 33, 4002–4010 (2013).
Rolke, B. & Hofmann, P. Temporal uncertainty degrades perceptual processing. Psychon. Bull. Rev. 14, 522–526 (2007).
Boettcher, S. E. P., Shalev, N., Wolfe, J. M. & Nobre, A. C. Right place, right time: spatiotemporal predictions guide attention in dynamic visual search. J. Exp. Psychol. Gen. 151, 348–362 (2022).
Shalev, N., Boettcher, S., Wilkinson, H., Scerif, G. & Nobre, A. C. Be there on time: spatial‐temporal regularities guide young children’s attention in dynamic environments. Child Dev. 93, 1414–1426 (2022).
Moon, J., Choe, S., Lee, S. & Kwon, O.-S. Temporal dynamics of visual attention allocation. Sci. Rep. 9, 3664 (2019).
Lasley, D. J. & Cohn, T. Detection of a luminance increment: effect of temporal uncertainty. J. Opt. Soc. Am. 71, 845–850 (1981).
Westheimer, G. & Ley, E. Temporal uncertainty effects on orientation discrimination and stereoscopic thresholds. J. Opt. Soc. Am. 13, 884-886 (1996).
Denison, R. N., Tian, K., Heeger, D. J. & Carrasco, M. Anticipatory and evoked visual cortical dynamics of voluntary temporal attention. Preprint at bioRxiv https://doi.org/10.1101/2022.11.18.517084 (2024).
Palmieri, H., Fernández, A. & Carrasco, M. Microsaccades and temporal attention at different locations of the visual field. J. Vis. 23, 6 (2023).
Dugué, L., Merriam, E. P., Heeger, D. J. & Carrasco, M. Differential impact of endogenous and exogenous attention on activity in human visual cortex. Sci. Rep. 10, 21274 (2020).
Montagna, B., Pestilli, F. & Carrasco, M. Attention trades off spatial acuity. Vis. Res. 49, 735–745 (2009).
Pestilli, F. & Carrasco, M. Attention enhances contrast sensitivity at cued and impairs it at uncued locations. Vis. Res. 45, 1867–1875 (2005).
Tkacz-Domb, S. & Yeshurun, Y. Temporal crowding is a unique phenomenon reflecting impaired target encoding over large temporal intervals. Psychon. Bull. Rev. 28, 1885–1893 (2021).
Breitmeyer, B. & Ogmen, H. Visual Masking: Time Slices through Conscious and Unconscious Vision (Oxford Univ. Press, 2006).
Rucci, M. & Poletti, M. Control and functions of fixational eye movements. Annu. Rev. Vis. Sci. 1, 499–518 (2015).
Ding, N. et al. Temporal modulations in speech and music. Neurosci. Biobehav. Rev. 81, 181–187 (2017).
Eckstein, M. P., Peterson, M. F., Pham, B. T. & Droll, J. A. Statistical decision theory to relate neurons to behavior in the study of covert visual attention. Vis. Res. 49, 1097–1128 (2009).
Cohen, M. A., Konkle, T., Rhee, J. Y., Nakayama, K. & Alvarez, G. A. Processing multiple visual objects is limited by overlap in neural channels. Proc. Natl Acad. Sci. USA 111, 8955–8960 (2014).
Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).
Moran, J. & Desimone, R. Selective attention gates visual processing in the extrastriate cortex. Science 229, 782–784 (1985).
Hilgetag, C. C., Théoret, H. & Pascual-Leone, A. Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nat. Neurosci. 4, 953–957 (2001).
Plow, E. B. et al. The compensatory dynamic of inter-hemispheric interactions in visuospatial attention revealed using rTMS and fMRI. Front. Hum. Neurosci. 8, 226 (2014).
Bouchacourt, F. & Buschman, T. J. A flexible model of working memory. Neuron 103, 147–160 (2019).
Oberauer, K., Farrell, S., Jarrold, C. & Lewandowsky, S. What limits working memory capacity? Psychol. Bull. 142, 758–799 (2016).
Lennie, P. The cost of cortical computation. Curr. Biol 13, 493–497 (2003).
Musslick, S. & Cohen, J. D. Rationalizing constraints on the capacity for cognitive control. Trends Cogn. Sci. 25, 757–775 (2021).
Chaudhuri, R., Knoblauch, K., Gariel, M.-A., Kennedy, H. & Wang, X.-J. A large-scale circuit mechanism for hierarchical dynamical processing in the primate cortex. Neuron 88, 419–431 (2015).
Hasson, U., Yang, E., Vallines, I., Heeger, D. J. & Rubin, N. A hierarchy of temporal receptive windows in human cortex. J. Neurosci. 28, 2539–2550 (2008).
David, S. V., Vinje, W. E. & Gallant, J. L. Natural stimulus statistics alter the receptive field structure of V1 neurons. J. Neurosci. 24, 6991–7006 (2004).
Zhou, J., Benson, N. C., Kay, K. & Winawer, J. Compressive temporal summation in human visual cortex. J. Neurosci. 38, 691–709 (2017).
Martin, J. G., Cox, P. H., Scholl, C. A. & Riesenhuber, M. A crash in visual processing: interference between feedforward and feedback of successive targets limits detection and categorization. J. Vis. 19, 20 (2019).
Marti, S., Sigman, M. & Dehaene, S. A shared cortical bottleneck underlying attentional blink and psychological refractory period. NeuroImage 59, 2883–2898 (2012).
Zylberberg, A., Slezak, D. F., Roelfsema, P. R., Dehaene, S. & Sigman, M. The brain’s router: a cortical network model of serial processing in the primate brain. PLoS Comput. Biol. 6, e1000765 (2010).
White, A. L., Palmer, J., Boynton, G. M. & Yeatman, J. D. Parallel spatial channels converge at a bottleneck in anterior word-selective cortex. Proc. Natl Acad. Sci. USA 116, 10087–10096 (2019).
Chun, M. M. & Potter, M. C. A two-stage model for multiple target detection in rapid serial visual presentation. J. Exp. Psychol. Hum. Percept. Perform. 21, 109–127 (1995).
Wyble, B., Potter, M. C., Bowman, H. & Nieuwenstein, M. Attentional episodes in visual perception. J. Exp. Psychol. Gen. 140, 488–505 (2011).
Zivony, A. & Lamy, D. What processes are disrupted during the attentional blink? An integrative review of event-related potential research. Psychon. Bull. Rev. 29, 394–414 (2022).
Tang, M. F. et al. Neural dynamics of the attentional blink revealed by encoding orientation selectivity during rapid visual presentation. Nat. Commun. 11, 434 (2020).
Akyürek, E. G., Hommel, B. & Jolicoeur, P. Direct evidence for a role of working memory in the attentional blink. Mem. Cogn. 35, 621–627 (2007).
Dehaene, S., Sergent, C. & Changeux, J.-P. A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc. Natl Acad. Sci. USA 100, 8520–8525 (2003).
Sergent, C. & Dehaene, S. Neural processes underlying conscious perception: experimental findings and a global neuronal workspace framework. J. Physiol. Paris 98, 374–384 (2004).
Raffone, A., Srinivasan, N. & van Leeuwen, C. The interplay of attention and consciousness in visual search, attentional blink and working memory consolidation. Phil. Trans. R. Soc. Lond. B 369, 20130215 (2014).
Jolicoeur, P. Modulation of the attentional blink by on-line response selection: evidence from speeded and unspeeded Task 1 decisions. Mem. Cogn. 26, 1014–1032 (1998).
Marti, S., King, J.-R. & Dehaene, S. Time-resolved decoding of two processing chains during dual-task interference. Neuron 88, 1297–1307 (2015).
Pashler, H. Dual-task interference in simple tasks: data and theory. Psychol. Bull. 116, 220–244 (1994).
Rau, P.-L. P. & Zheng, J. Cross-modal psychological refractory period in vision, audition, and haptics. Atten. Percept. Psychophys. 82, 1573–1585 (2020).
Welford, A. T. The ‘psychological refractory period’ and the timing of high‐speed performance — a review and a theory. Br. J. Psychol. Gen. Sect. 43, 2–19 (1952).
Aston-Jones, G. & Cohen, J. D. Adaptive gain and the role of the locus coeruleus–norepinephrine system in optimal performance. J. Comp. Neurol. 493, 99–110 (2005).
Denison, R. N., Parker, J. A. & Carrasco, M. Modeling pupil responses to rapid sequential events. Behav. Res. Meth. 52, 1991–2007 (2020).
Zivony, A. & Eimer, M. The diachronic account of attentional selectivity. Psychon. Bull. Rev. 29, 1118–1142 (2021).
Reynolds, J. H. & Heeger, D. J. The normalization model of attention. Neuron 61, 168–185 (2009).
Boynton, G. M. A framework for describing the effects of attention on visual responses. Vis. Res. 49, 1129–1143 (2009).
Lee, J. & Maunsell, J. H. R. A normalization model of attentional modulation of single unit responses. PLoS One 4, e4651 (2009).
Ni, A. M. & Maunsell, J. H. R. Spatially tuned normalization explains attention modulation variance within neurons. J. Neurophysiol. 118, 1903–1913 (2017).
Ni, A. M. & Maunsell, J. H. R. Neuronal effects of spatial and feature attention differ due to normalization. J. Neurosci. 39, 5493–5505 (2019).
Schwedhelm, P., Krishna, B. S. & Treue, S. An extended normalization model of attention accounts for feature-based attentional enhancement of both response and coherence gain. PLoS Comput. Biol. 12, e1005225 (2016).
Smith, P. L., Sewell, D. K. & Lilburn, S. D. From shunting inhibition to dynamic normalization: attentional selection and decision-making in brief visual displays. Vis. Res. 116, 219–240 (2015).
Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62 (2012).
Heeger, D. J. Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9, 181–197 (1992).
Herrmann, K., Heeger, D. J. & Carrasco, M. Feature-based attention enhances performance by increasing response gain. Vis. Res. 74, 10–20 (2012).
Herrmann, K., Montaser-Kouhsari, L., Carrasco, M. & Heeger, D. J. When size matters: attention affects performance by contrast or response gain. Nat. Neurosci. 13, 1554–1559 (2010).
Zhang, X., Japee, S., Safiullah, Z., Mlynaryk, N. & Ungerleider, L. G. A normalization framework for emotional attention. PLoS Biol. 14, e1002578 (2016).
Smith, P. L. A competitive interaction theory of attentional selection and decision making in brief, multielement displays. Psychol. Rev. 120, 589–627 (2013).
Smith, P. L. & Ratcliff, R. An integrated theory of attention and decision making in visual signal detection. Psychol. Rev. 116, 283–317 (2009).
Bundesen, C. A theory of visual attention. Psychol. Rev. 97, 523–547 (1990).
Bundesen, C., Habekost, T. & Kyllingsbæk, S. A neural theory of visual attention: bridging cognition and neurophysiology. Psychol. Rev. 112, 291–328 (2005).
Tünnermann, J., Kristjánsson, Á., Petersen, A., Schubö, A. & Scharlau, I. Advances in the application of a computational theory of visual attention (TVA): moving towards more naturalistic stimuli and game-like tasks. Open Psychol. 4, 27–46 (2022).
Cox, G. E., Palmeri, T. J., Logan, G. D., Smith, P. L. & Schall, J. D. Salience by competitive and recurrent interactions: bridging neural spiking and computation in visual attention. Psychol. Rev. 129, 1144–1182 (2022).
Bundesen, C., Vangkilde, S. & Petersen, A. Recent developments in a computational theory of visual attention (TVA). Vis. Res. 116, 210–218 (2015).
Sørensen, T. A., Vangkilde, S. & Bundesen, C. Components of attention modulated by temporal expectation. J. Exp. Psychol. Learn. Mem. Cogn. 41, 178–192 (2014).
Vangkilde, S., Coull, J. T. & Bundesen, C. Great expectations: temporal expectation modulates perceptual processing speed. J. Exp. Psychol. Hum. Percept. Perform. 38, 1183–1191 (2012).
Vangkilde, S., Petersen, A. & Bundesen, C. Temporal expectancy in the context of a theory of visual attention. Phil. Trans. R. Soc. B 368, 20130054 (2013).
Reeves, A. & Sperling, G. Attention gating in short-term visual memory. Psychol. Rev. 93, 180–206 (1986).
Sperling, G. & Weichselgartner, E. Episodic theory of the dynamics of spatial attention. Psychol. Rev. 102, 503–532 (1995).
Bowman, H. & Wyble, B. The simultaneous type, serial token model of temporal attention and working memory. Psychol. Rev. 114, 38–70 (2007).
Jones, W., Pincham, H., Gootjes-Dreesbach, E. L. & Bowman, H. Fleeting perceptual experience and the possibility of recalling without seeing. Sci. Rep. 10, 8540 (2020).
Wyble, B., Bowman, H. & Nieuwenstein, M. The attentional blink provides episodic distinctiveness: sparing at a cost. J. Exp. Psychol. Hum. Percept. Perform. 35, 787–807 (2009).
Zalta, A., Petkoski, S. & Morillon, B. Natural rhythms of periodic temporal attention. Nat. Commun. 11, 1051–1012 (2020).
Beuth, F. & Hamker, F. H. A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vis. Res. 116, 241–257 (2015).
Olivers, C. N. & Meeter, M. A boost and bounce theory of temporal attention. Psychol. Rev. 115, 836–863 (2008).
Poder, E. Attentional gating models of object substitution masking. J. Exp. Psychol. Gen. 142, 1130–1141 (2013).
Shih, S. I. The attention cascade model and attentional blink. Cogn. Psychol. 56, 210–236 (2008).
Coull, J. T. fMRI studies of temporal attention: allocating attention within, or towards, time. Cogn. Brain Res. 21, 216–226 (2004).
Kay, K., Bonnen, K., Denison, R. N., Arcaro, M. J. & Barack, D. L. Tasks and their role in visual neuroscience. Neuron 111, 1697–1713 (2023).
Anderson, B. & Sheinberg, D. L. Effects of temporal context and temporal expectancy on neural activity in inferior temporal cortex. Neuropsychologia 46, 947–957 (2008).
van Ede, F., Chekroud, S. R., Stokes, M. G. & Nobre, A. C. Decoding the influence of anticipatory states on visual perception in the presence of temporal distractors. Nat. Commun. 9, 1449 (2018).
Fischer, R., Plessow, F. & Ruge, H. Priming of visual cortex by temporal attention? The effects of temporal predictability on stimulus(-specific) processing in early visual cortical areas. NeuroImage 66, 261–269 (2012).
Bonnefond, M. & Jensen, O. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr. Biol. 22, 1969–1974 (2012).
van Diepen, R. M., Cohen, M. X., Denys, D. & Mazaheri, A. Attention and temporal expectations modulate power, not phase, of ongoing alpha oscillations. J. Cogn. Neurosci. 27, 1573–1586 (2015).
van Diepen, R. M. & Mazaheri, A. The caveats of observing inter-trial phase-coherence in cognitive neuroscience. Sci. Rep. 8, 2990 (2018).
Lima, B., Singer, W. & Neuenschwander, S. Gamma responses correlate with temporal expectation in monkey primary visual cortex. J. Neurosci. 31, 15919–15931 (2011).
Ghose, G. M. & Maunsell, J. H. R. Attentional modulation in visual cortex depends on task timing. Nature 419, 616–620 (2002).
Sharma, J. et al. Spatial attention and temporal expectation under timed uncertainty predictably modulate neuronal responses in monkey V1. Cereb. Cortex 25, 2894–2906 (2014).
Snyder, A. C., Morais, M. J. & Smith, M. A. Dynamics of excitatory and inhibitory networks are differentially altered by selective attention. J. Neurophysiol. 116, 1807–1820 (2016).
Amit, R., Abeles, D., Carrasco, M. & Yuval-Greenberg, S. Oculomotor inhibition reflects temporal expectations. NeuroImage 184, 279–292 (2018).
Dankner, Y., Shalev, L., Carrasco, M. & Yuval-Greenberg, S. Prestimulus inhibition of saccades in adults with and without attention-deficit/hyperactivity disorder as an index of temporal expectations. Psychol. Sci. 28, 835–850 (2017).
Findlay, J. M. Direction perception and human fixation eye movements. Vis. Res. 14, 703–711 (1974).
Pastukhov, A. & Braun, J. Rare but precious: microsaccades are highly informative about attentional allocation. Vis. Res. 50, 1173–1184 (2010).
Abeles, D., Amit, R., Tal-Perry, N., Carrasco, M. & Yuval-Greenberg, S. Oculomotor inhibition precedes temporally expected auditory targets. Nat. Commun. 11, 3524 (2020).
Jigo, M. & Carrasco, M. Differential impact of exogenous and endogenous attention on the contrast sensitivity function across eccentricity. J. Vis. 20, 11 (2020).
Lu, Z. L. & Dosher, B. A. External noise distinguishes attention mechanisms. Vis. Res. 38, 1183–1198 (1998).
Sharp, P., Melcher, D. & Hickey, C. Different effects of spatial and temporal attention on the integration and segregation of stimuli in time. Atten. Percept. Psychophys. 81, 433–441 (2019).
Cotti, J., Rohenkohl, G., Stokes, M., Nobre, A. C. & Coull, J. T. Functionally dissociating temporal and motor components of response preparation in left intraparietal sulcus. NeuroImage 54, 1221–1230 (2011).
Coull, J. T., Cotti, J. & Vidal, F. Differential roles for parietal and frontal cortices in fixed versus evolving temporal expectations: dissociating prior from posterior temporal probabilities with fMRI. NeuroImage 141, 40–51 (2016).
Coull, J. T., Davranche, K., Nazarian, B. & Vidal, F. Functional anatomy of timing differs for production versus prediction of time intervals. Neuropsychologia 51, 309–319 (2013).
Wagner, M. J., Kim, T. H., Savall, J., Schnitzer, M. J. & Luo, L. Cerebellar granule cells encode the expectation of reward. Nature 544, 96–100 (2017).
Breska, A. & Ivry, R. B. Double dissociation of single-interval and rhythmic temporal prediction in cerebellar degeneration and Parkinson’s disease. Proc. Natl Acad. Sci. USA 115, 12283–12288 (2018).
Breska, A. & Ivry, R. B. The human cerebellum is essential for modulating perceptual sensitivity based on temporal expectations. Elife 10, e66743 (2021).
White, A. L., Rolfs, M. & Carrasco, M. Stimulus competition mediates the joint effects of spatial and feature-based attention. J. Vis. 15, 7 (2015).
Laidlaw, K. & Kingstone, A. If not when, then where? Ignoring temporal information eliminates reflexive but not volitional spatial orienting. Vision 1, 12 (2017).
Menceloglu, M., Grabowecky, M. & Suzuki, S. Probability-driven and stimulus-driven orienting of attention to time and sensory modality. Atten. Percept. Psychophys. 10, 433–413 (2019).
Warren, S. G., Yacoub, E. & Ghose, G. M. Featural and temporal attention selectively enhance task-appropriate representations in human primary visual cortex. Nat. Commun. 5, 5643 (2014).
Acknowledgements
The author thanks S. Badde, M. Carrasco, A. Chapman, M. Epstein, K. Tian, M. Walsh, J. Wang, W. Wu and J. Zhu for helpful comments. Support for this work was provided by Boston University startup funding to R.N.D.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Psychology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Denison, R.N. Visual temporal attention from perception to computation. Nat Rev Psychol 3, 261–274 (2024). https://doi.org/10.1038/s44159-024-00294-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44159-024-00294-0
This article is cited by
-
Task demand mediates the interaction of spatial and temporal attention
Scientific Reports (2024)