Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Universality, domain-specificity and development of psychological responses to music

Abstract

Humans can find music happy, sad, fearful or spiritual. They can be soothed by it or urged to dance. Whether these psychological responses reflect cognitive adaptations that evolved expressly for responding to music is an ongoing topic of study. In this Review, we examine three features of music-related psychological responses that help to elucidate whether the underlying cognitive systems are specialized adaptations: universality, domain-specificity and early expression. Focusing on emotional and behavioural responses, we find evidence that the relevant psychological mechanisms are universal and arise early in development. However, the existing evidence cannot establish that these mechanisms are domain-specific. To the contrary, many findings suggest that universal psychological responses to music reflect more general properties of emotion, auditory perception and other human cognitive capacities that evolved for non-musical purposes. Cultural evolution, driven by the tinkering of musical performers, evidently crafts music to compellingly appeal to shared psychological mechanisms, resulting in both universal patterns (such as form–function associations) and culturally idiosyncratic styles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Musical response and music perception comprise distinct psychological processes, both of which are at work in human musicality.
Fig. 2: Emotional communication in music.
Fig. 3: Ontogeny of emotional and behavioural responses.
Fig. 4: Evidence of universal form–function inferences in song.

Similar content being viewed by others

References

  1. Mehr, S. A. et al. Universality and diversity in human song. Science 366, eaax0868 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Savage, P. E., Brown, S., Sakai, E. & Currie, T. E. Statistical universals reveal the structures and functions of human music. Proc. Natl Acad. Sci. 112, 8987–8992 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trehub, S. E., Becker, J. & Morley, I. Cross-cultural perspectives on music and musicality. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140096 (2015).

    Article  Google Scholar 

  4. Cross, I. Music, cognition, culture, and evolution. Ann. N. Y. Acad. Sci. 930, 28–42 (2001).

    Article  PubMed  Google Scholar 

  5. Mehr, S. A., Singh, M., York, H., Glowacki, L. & Krasnow, M. M. Form and function in human song. Curr. Biol. 28, 356–368 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lomax, A. Folk Song Style and Culture (Routledge, 1968).

  7. Yan, R. et al. Across demographics and recent history, most parents sing to their infants and toddlers daily. Philos. Trans. R. Soc. Lond. B Biol. Sci. 376, 20210089 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mehr, S. A. Music in the home: new evidence for an intergenerational link. J. Res. Music Educ. 62, 78–88 (2014).

    Article  Google Scholar 

  9. North, A. C., Hargreaves, D. J. & O’Neill, S. A. The importance of music to adolescents. Br. J. Educ. Psychol. 70, 255–272 (2000).

    Article  PubMed  Google Scholar 

  10. Juslin, P. N. & Laukka, P. Expression, perception, and induction of musical emotions: a review and a questionnaire study of everyday listening. J. New Music Res. 33, 217–238 (2004).

    Article  Google Scholar 

  11. Laukka, P. Uses of music and psychological well-being among the elderly. J. Happiness Stud. 8, 215–241 (2007).

    Article  Google Scholar 

  12. Cirelli, L. K. & Trehub, S. E. Familiar songs reduce infant distress. Dev. Psychol. 56, 861–868 (2020).

    Article  PubMed  Google Scholar 

  13. Cirelli, L. K., Jurewicz, Z. B. & Trehub, S. E. Effects of maternal singing style on mother-infant arousal and behavior. J. Cogn. Neurosci. 32, 1213–1220 (2020).

    Article  PubMed  Google Scholar 

  14. Bainbridge, C. M. et al. Infants relax in response to unfamiliar foreign lullabies. Nat. Hum. Behav. 5, 256–264 (2021).

    Article  PubMed  Google Scholar 

  15. Hilton, B. C. et al. Acoustic regularities in infant-directed speech and song across cultures. Nat. Hum. Behav. 6, 1545–1556 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Riches, G. Embracing the chaos: mosh pits, extreme metal music and liminality. J. Cult. Res. 15, 315–332 (2011).

    Article  Google Scholar 

  17. McDermott, J. & Hauser, M. The origins of music: innateness, uniqueness, and evolution. Music Percept. 23, 29–60 (2005).

    Article  Google Scholar 

  18. Mehr, S. A., Krasnow, M. M., Bryant, G. A. & Hagen, E. H. Origins of music in credible signaling. Behav. Brain Sci. 44, e60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Savage, P. E. et al. Music as a coevolved system for social bonding. Behav. Brain Sci. 44, e59 (2021).

    Article  Google Scholar 

  20. Pinker, S. How the Mind Works (W. W. Norton & Company, 1997).

  21. Marcus, G. F. Musicality: instinct or acquired skill? Top. Cogn. Sci. 4, 498–512 (2012).

    Article  PubMed  Google Scholar 

  22. Patel, A. D. & von Rueden, A. Where they sing solo: accounting for cross-cultural variation in collective music-making in theories of music evolution. Behav. Brain Sci. 44, e85 (2021).

    Article  PubMed  Google Scholar 

  23. Martínez-Molina, N., Mas-Herrero, E., Rodríguez-Fornells, A., Zatorre, R. J. & Marco-Pallarés, J. Neural correlates of specific musical anhedonia. Proc. Natl Acad. Sci. USA 113, E7337–E7345 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Barrett, H. C. Towards a cognitive science of the human: cross-cultural approaches and their urgency. Trends Cogn. Sci. 24, 620–638 (2020).

    Article  PubMed  Google Scholar 

  25. Scelza, B. A. et al. Patterns of paternal investment predict cross-cultural variation in jealous response. Nat. Hum. Behav. 4, 20–26 (2020).

    Article  PubMed  Google Scholar 

  26. Koelsch, S. Toward a neural basis of music perception — a review and updated model. Front. Psychol. 2, 110 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Conard, N. J., Malina, M. & Münzel, S. C. New flutes document the earliest musical tradition in southwestern Germany. Nature 460, 737–740 (2009).

    Article  PubMed  Google Scholar 

  28. Mehr, S. A. & Krasnow, M. M. Parent-offspring conflict and the evolution of infant-directed song. Evol. Hum. Behav. 38, 674–684 (2017).

    Article  Google Scholar 

  29. Hagen, E. H. & Bryant, G. A. Music and dance as a coalition signaling system. Hum. Nat. 14, 21–51 (2003).

    Article  PubMed  Google Scholar 

  30. Krumhansl, C. L. The cognition of tonality — as we know it today. J. New Music Res. 33, 253–268 (2004).

    Article  Google Scholar 

  31. Krumhansl, C. L. & Keil, F. C. Acquisition of the hierarchy of tonal functions in music. Mem. Cognit. 10, 243–251 (1982).

    Article  PubMed  Google Scholar 

  32. Dolscheid, S., Hunnius, S., Casasanto, D. & Majid, A. Prelinguistic infants are sensitive to space-pitch associations found across cultures. Psychol. Sci. 25, 1256–1261 (2014).

    Article  PubMed  Google Scholar 

  33. Stevens, C. J. Music perception and cognition: a review of recent cross-cultural research. Top. Cogn. Sci. 4, 653–667 (2012).

    Article  PubMed  Google Scholar 

  34. Hodges, D. A. & Sebald, D. C. Music in the Human Experience: An Introduction to Music Psychology (Routledge, 2011).

  35. Norman-Haignere, S., Kanwisher, N. G. & McDermott, J. H. Distinct cortical pathways for music and speech revealed by hypothesis-free voxel decomposition. Neuron 88, 1281–1296 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chen, X. et al. The human language system, including its inferior frontal component in ‘Broca’s area’, does not support music perception. Preprint at bioRxiv https://doi.org/10.1101/2021.06.01.446439 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Albouy, P., Benjamin, L., Morillon, B. & Zatorre, R. J. Distinct sensitivity to spectrotemporal modulation supports brain asymmetry for speech and melody. Science 367, 1043–1047 (2020).

    Article  PubMed  Google Scholar 

  38. Norman-Haignere, S. V. et al. A neural population selective for song in human auditory cortex. Curr. Biol. 32, 1470–1484.e12 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zatorre, R. J. & Salimpoor, V. N. From perception to pleasure: music and its neural substrates. Proc. Natl Acad. Sci. USA 110, 10430–10437 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mas-Herrero, E., Zatorre, R. J., Rodriguez-Fornells, A. & Marco-Pallarés, J. Dissociation between musical and monetary reward responses in specific musical anhedonia. Curr. Biol. 24, 699–704 (2014).

    Article  PubMed  Google Scholar 

  41. Trainor, L. J. The origins of music in auditory scene analysis and the roles of evolution and culture in musical creation. Philos. Trans. R. Soc. B 370, 20140089 (2015).

    Article  Google Scholar 

  42. Walker, P. & Smith, S. Stroop interference based on the synaesthetic qualities of auditory pitch. Perception 13, 75–81 (1984).

    Article  PubMed  Google Scholar 

  43. Eitan, Z. & Timmers, R. Beethoven’s last piano sonata and those who follow crocodiles: cross-domain mappings of auditory pitch in a musical context. Cognition 114, 405–422 (2010).

    Article  PubMed  Google Scholar 

  44. Cannon, J. J. & Patel, A. D. How beat perception co-opts motor neurophysiology. Trends Cogn. Sci. 25, 137–150 (2021).

    Article  PubMed  Google Scholar 

  45. Patel, A. D. Vocal learning as a preadaptation for the evolution of human beat perception and synchronization. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200326 (2021).

    Article  Google Scholar 

  46. Nozaradan, S., Peretz, I., Missal, M. & Mouraux, A. Tagging the neuronal entrainment to beat and meter. J. Neurosci. 31, 10234–10240 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Herff, S. A. et al. Prefrontal high gamma in ecog tags periodicity of musical rhythms in perception and imagination. eNeuro 7, ENEURO.0413-19.2020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dean, R. T. & Bailes, F. Relationships between generated musical structure, performers’ physiological arousal and listener perceptions in solo piano improvisation. J. New Music Res. 45, 361–374 (2016).

    Article  Google Scholar 

  49. Juslin, P. N. From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Phys. Life Rev. 10, 235–266 (2013).

    Article  PubMed  Google Scholar 

  50. Spivey, M., McRae, K. & Joanisse, M. The Cambridge Handbook of Psycholinguistics (Cambridge University Press, 2012).

  51. McDermott, J. H., Schultz, A. F., Undurraga, E. A. & Godoy, R. A. Indifference to dissonance in native Amazonians reveals cultural variation in music perception. Nature 25, 21–25 (2016).

    Google Scholar 

  52. Zhao, T. C. & Kuhl, P. K. Musical intervention enhances infants’ neural processing of temporal structure in music and speech. Proc. Natl Acad. Sci. USA 113, 5212–5217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Webb, A. R., Heller, H. T., Benson, C. B. & Lahav, A. Mother’s voice and heartbeat sounds elicit auditory plasticity in the human brain before full gestation. Proc. Natl Acad. Sci. USA 112, 3152–3157 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ullal-Gupta, S., Vanden Bosch der Nederlanden, C. M., Tichko, P., Lahav, A. & Hannon, E. E. Linking prenatal experience to the emerging musical mind. Front. Syst. Neurosci. 7, 48 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Linnemann, A., Ditzen, B., Strahler, J., Doerr, J. M. & Nater, U. M. Music listening as a means of stress reduction in daily life. Psychoneuroendocrinology 60, 82–90 (2015).

    Article  PubMed  Google Scholar 

  56. van Goethem, A. & Sloboda, J. The functions of music for affect regulation. Music Sci. 15, 208–228 (2011).

    Article  Google Scholar 

  57. Denora, T. Music as a technology of the self. Poetics 27, 31–56 (1999).

    Article  Google Scholar 

  58. Hays, T. & Minichiello, V. The meaning of music in the lives of older people: a qualitative study. Psychol. Music 33, 437–451 (2005).

    Article  Google Scholar 

  59. Saarikallio, S., Alluri, V., Maksimainen, J. & Toiviainen, P. Emotions of music listening in Finland and in India: comparison of an individualistic and a collectivistic culture. Psychol. Music 49, 989–1005 (2021).

    Article  Google Scholar 

  60. Juslin, P. N. What does music express? Basic emotions and beyond. Front. Psychol. 4, 596 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Flaig, N. K. & Large, E. W. Dynamic musical communication of core affect. Front. Psychol. 5, 72 (2014).

    Article  Google Scholar 

  62. Cespedes-Guevara, J. & Eerola, T. Music communicates affects, not basic emotions - a constructionist account of attribution of emotional meanings to music. Front. Psychol. 9, 215 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gomez, P. & Danuser, B. Relationships between musical structure and psychophysiological measures of emotion. Emotion 7, 377–387 (2007).

    Article  PubMed  Google Scholar 

  64. Balkwill, L. & Thompson, W. F. A cross-cultural investigation of the perception of emotion in music: psychophysical and cultural cues. Music Percept. 17, 43–64 (1999).

    Article  Google Scholar 

  65. Balkwill, L.-L., Thompson, W. F. & Matsunaga, R. Recognition of emotion in Japanese, Western, and Hindustani music by Japanese listeners. Jpn. Psychol. Res. 46, 337–349 (2004).

    Article  Google Scholar 

  66. Fritz, T. et al. Universal recognition of three basic emotions in music. Curr. Biol. 19, 573–576 (2009).

    Article  PubMed  Google Scholar 

  67. Argstatter, H. Perception of basic emotions in music: culture-specific or multicultural? Psychol. Music 44, 674–690 (2016).

    Article  Google Scholar 

  68. Laukka, P., Eerola, T., Thingujam, N. S., Yamasaki, T. & Beller, G. Universal and culture-specific factors in the recognition and performance of musical affect expressions. Emotion 13, 434–449 (2013).

    Article  PubMed  Google Scholar 

  69. Sievers, B., Polansky, L., Casey, M. & Wheatley, T. Music and movement share a dynamic structure that supports universal expressions of emotion. Proc. Natl Acad. Sci. USA 110, 70–75 (2013).

    Article  PubMed  Google Scholar 

  70. Swaminathan, S. & Schellenberg, E. G. Current emotion research in music psychology. Emot. Rev. 7, 189–197 (2015).

    Article  Google Scholar 

  71. Wang, X., Wei, Y. & Yang, D. Cross‐cultural analysis of the correlation between musical elements and emotion. Cogn. Comput. Syst. https://doi.org/10.1049/ccs2.12032 (2021).

    Article  Google Scholar 

  72. Athanasopoulos, G., Eerola, T., Lahdelma, I. & Kaliakatsos-Papakostas, M. Harmonic organisation conveys both universal and culture-specific cues for emotional expression in music. PLoS One 16, e0244964 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lahdelma, I., Athanasopoulos, G. & Eerola, T. Sweetness is in the ear of the beholder: chord preference across United Kingdom and Pakistani listeners. Ann. N. Y. Acad. Sci. 1502, 72–84 (2021).

    Article  PubMed  Google Scholar 

  74. Fang, L., Shang, J. & Chen, N. Perception of western musical modes: a Chinese study. Front. Psychol. 8, 1–8 (2017).

    Article  Google Scholar 

  75. Smit, E. A., Milne, A. J., Sarvasy, H. S. & Dean, R. T. Emotional responses in Papua New Guinea show negligible evidence for a universal effect of major versus minor music. PLoS One 17, e0269597 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Franco, F., Chew, M. & Swaine, J. S. Preschoolers’ attribution of affect to music: a comparison between vocal and instrumental performance. Psychol. Music 45, 131–149 (2017).

    Article  Google Scholar 

  77. Stachó, L., Saarikallio, S., Van Zijl, A., Huotilainen, M. & Toiviainen, P. Perception of emotional content in musical performances by 3-7-year-old children. Music Sci. 17, 495–512 (2013).

    Article  Google Scholar 

  78. Hunter, P. G., Glenn Schellenberg, E. & Stalinski, S. M. Liking and identifying emotionally expressive music: age and gender differences. J. Exp. Child Psychol. 110, 80–93 (2011).

    Article  PubMed  Google Scholar 

  79. Dalla Bella, S., Peretz, I., Rousseau, L. & Gosselin, N. A developmental study of the affective value of tempo and mode in music. Cognition 80, B1–10 (2001).

    Article  PubMed  Google Scholar 

  80. Dolgin, K. G. & Adelson, E. H. Age changes in the ability to interpret affect in sung and instrumentally-presented melodies. Psychol. Music 18, 87–98 (1990).

    Article  Google Scholar 

  81. Vidas, D., Dingle, G. A. & Nelson, N. L. Children’s recognition of emotion in music and speech. Music Sci. 1, 205920431876265 (2018).

    Article  Google Scholar 

  82. Vidas, D., Calligeros, R., Nelson, N. L. & Dingle, G. A. Development of emotion recognition in popular music and vocal bursts. Cogn. Emot. 34, 906–919 (2020).

    Article  PubMed  Google Scholar 

  83. Flom, R. & Pick, A. D. Dynamics of infant habituation: infants’ discrimination of musical excerpts. Infant Behav. Dev. 35, 697–704 (2012).

    Article  PubMed  Google Scholar 

  84. Flom, R., Gentile, D. A. & Pick, A. D. Infants’ discrimination of happy and sad music. Infant Behav. Dev. 31, 716–728 (2008).

    Article  PubMed  Google Scholar 

  85. Xiao, N. G. et al. Older but not younger infants associate own-race faces with happy music and other-race faces with sad music. Dev. Sci. 21, 12537 (2018).

    Article  Google Scholar 

  86. Nawrot, E. S. The perception of emotional expression in music: evidence from infants, children and adults. Psychol. Music 31, 75–92 (2003).

    Article  Google Scholar 

  87. Mendoza, J. K. & Fausey, C. M. Everyday music in infancy. Dev. Sci. 24, 1–15 (2021).

    Article  Google Scholar 

  88. Davidov, M., Zahn-Waxler, C., Roth-Hanania, R. & Knafo, A. Concern for others in the first year of life: theory, evidence, and avenues for research. Child Dev. Perspect. 7, 126–131 (2013).

    Article  Google Scholar 

  89. Roth-Hanania, R., Davidov, M. & Zahn-Waxler, C. Empathy development from 8 to 16 months: early signs of concern for others. Infant Behav. Dev. 34, 447–458 (2011).

    Article  PubMed  Google Scholar 

  90. Juslin, P. N. & Laukka, P. Communication of emotions in vocal expression and music performance: different channels, same code? Psychol. Bull. 129, 770–814 (2003).

    Article  PubMed  Google Scholar 

  91. Ilie, G. & Thompson, W. F. A comparison of acoustic cues in music and speech for three dimensions of affect. Music Percept. 23, 319–330 (2006).

    Article  Google Scholar 

  92. Ilie, G. & Thompson, W. F. Experiential and cognitive changes following seven minutes exposure to music and speech. Music Percept. 28, 247–264 (2011).

    Article  Google Scholar 

  93. Bowling, D. L., Sundararajan, J., Han, S. & Purves, D. Expression of emotion in eastern and western music mirrors vocalization. PLoS One 7, e31942 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Kragness, H. E. & Trainor, L. J. Nonmusicians express emotions in musical productions using conventional cues. Music Sci. 2, 205920431983494 (2019).

    Article  Google Scholar 

  95. Saarikallio, S., Tervaniemi, M., Yrtti, A. & Huotilainen, M. Expression of emotion through musical parameters in 3- and 5-year-olds. Music Educ. Res. 21, 596–605 (2019).

    Article  Google Scholar 

  96. Ma, W. & Thompson, W. F. Human emotions track changes in the acoustic environment. Proc. Natl Acad. Sci. USA 112, 14563–14568 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Proverbio, A. M., De Benedetto, F. & Guazzone, M. Shared neural mechanisms for processing emotions in music and vocalizations. Eur. J. Neurosci. 51, 1987–2007 (2020).

    Article  PubMed  Google Scholar 

  98. Koelsch, S. Brain correlates of music-evoked emotions. Nat. Rev. Neurosci. 15, 170–180 (2014).

    Article  PubMed  Google Scholar 

  99. Gosselin, N., Peretz, I., Johnsen, E. & Adolphs, R. Amygdala damage impairs emotion recognition from music. Neuropsychologia 45, 236–244 (2007).

    Article  PubMed  Google Scholar 

  100. Gosselin, N., Peretz, I., Hasboun, D., Baulac, M. & Samson, S. Impaired recognition of musical emotions and facial expressions following anteromedial temporal lobe excision. Cortex 47, 1116–1125 (2011).

    Article  PubMed  Google Scholar 

  101. Escoffier, N., Zhong, J., Schirmer, A. & Qiu, A. Emotional expressions in voice and music: same code, same effect? Hum. Brain Mapp. 34, 1796–1810 (2013).

    Article  PubMed  Google Scholar 

  102. Peelen, M. V., Atkinson, A. P. & Vuilleumier, P. Supramodal representations of perceived emotions in the human brain. J. Neurosci. 30, 10127–10134 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sievers, B. et al. Visual and auditory brain areas share a representational structure that supports emotion perception. Curr. Biol. 31, 5192–5203.e4 (2021).

    Article  PubMed  Google Scholar 

  104. Morton, J. B. & Trehub, S. E. Children’s understanding of emotion in speech. Child Dev. 72, 834–843 (2001).

    Article  PubMed  Google Scholar 

  105. Grosbras, M. H., Ross, P. D. & Belin, P. Categorical emotion recognition from voice improves during childhood and adolescence. Sci. Rep. 8, 1–11 (2018).

    Article  Google Scholar 

  106. Chronaki, G., Wigelsworth, M., Pell, M. D. & Kotz, S. A. The development of cross-cultural recognition of vocal emotion during childhood and adolescence. Sci. Rep. 8, 1–17 (2018).

    Article  Google Scholar 

  107. Keltner, D., Sauter, D., Tracy, J. & Cowen, A. Emotional expression: advances in basic emotion theory. J. Nonverbal Behav. 43, 133–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ruba, A. L. & Repacholi, B. M. Do preverbal infants understand discrete facial expressions of emotion? Emot. Rev. 12, 235–250 (2020).

    Article  Google Scholar 

  109. Hoemann, K., Devlin, M. & Barrett, L. F. Comment: emotions are abstract, conceptual categories that are learned by a predicting brain. Emot. Rev. 12, 253–255 (2020).

    Article  Google Scholar 

  110. Zentner, M., Grandjean, D. & Scherer, K. R. Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8, 494–521 (2008).

    Article  PubMed  Google Scholar 

  111. Cowen, A. S., Fang, X., Sauter, D. & Keltner, D. What music makes us feel: at least 13 dimensions organize subjective experiences associated with music across different cultures. Proc. Natl Acad. Sci. USA 117, 1924–1934 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Miller, G. In The Origins of Music (eds Wallin, N. L., Merker, B. & Brown, S.) 329–360 (MIT Press, 2000).

  113. Searcy, W. A. & Nowicki, S. The Evolution of Animal Communication: Reliability and Deception in Signaling Systems (Princeton University Press, 2006).

  114. Morton, E. S. On the occurrence and significance of motivation-structural rules in some bird and mammal sounds. Am. Nat. 111, 855–869 (1977).

    Article  Google Scholar 

  115. Clutton-Brock, T. H. & Albon, S. D. The roaring of red deer and the evolution of honest advertisement. Behaviour 69, 145–170 (1979).

    Article  Google Scholar 

  116. Bryant, G. A. et al. The perception of spontaneous and volitional laughter across 21 societies. Psychol. Sci. 29, 1515–1525 (2018).

    Article  PubMed  Google Scholar 

  117. Hilton, C. B., Thierry, L. C., Yan, R., Martin, A. & Mehr, S. Children infer the behavioral contexts of unfamiliar foreign songs. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0001289 (2022).

    Article  PubMed  Google Scholar 

  118. Trehub, S. E., Unyk, A. M. & Trainor, L. J. Adults identify infant-directed music across cultures. Infant Behav. Dev. 16, 193–211 (1993).

    Article  Google Scholar 

  119. Yurdum, L. et al. Cultural invariance in musical communication. In Proceedings of the Annual Meeting of the Cognitive Science Society 44 (Cognitive Science Society, 2022).

  120. Fink, B., Bläsing, B., Ravignani, A. & Shackelford, T. K. Evolution and functions of human dance. Evol. Hum. Behav. 42, 351–360 (2021).

    Article  Google Scholar 

  121. Trainor, L. J. Infant preferences for infant-directed versus noninfant-directed playsongs and lullabies. Infant Behav. Dev. 19, 83–92 (1996).

    Article  Google Scholar 

  122. Nakata, T. & Trehub, S. E. Infants’ responsiveness to maternal speech and singing. Infant Behav. Dev. 27, 455–464 (2004).

    Article  Google Scholar 

  123. Kinzler, K. D., Dupoux, E. & Spelke, E. S. The native language of social cognition. Proc. Natl Acad. Sci. USA 104, 12577–12580 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liberman, Z., Woodward, A. L., Sullivan, K. R. & Kinzler, K. D. Early emerging system for reasoning about the social nature of food. Proc. Natl Acad. Sci. USA 113, 9480–9485 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mehr, S. A. & Spelke, E. S. Shared musical knowledge in 11-month-old infants. Dev. Sci. https://doi.org/10.1111/desc.12542 (2017).

    Article  PubMed  Google Scholar 

  126. Mehr, S. A., Song, L. A. & Spelke, E. S. For 5-month-old infants, melodies are social. Psychol. Sci. 27, 486–501 (2016).

    Article  PubMed  Google Scholar 

  127. Scarratt, R. J., Heggli, O. A., Vuust, P. & Jespersen, K. V. The music that people use to sleep: universal and subgroup characteristics. Preprint at PsyArxiv https://doi.org/10.31234/osf.io/5mbyv (2021).

    Article  Google Scholar 

  128. Möller, E. L., de Vente, W. & Rodenburg, R. Infant crying and the calming response: Parental versus mechanical soothing using swaddling, sound, and movement. PLoS One 14, 1–16 (2019).

    Article  Google Scholar 

  129. Spencer, J. A. D., Moran, D. J., Lee, A. & Talbert, D. White noise and sleep induction. Arch. Dis. Child. 65, 135–137 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Hawkins, T. E. & Stevens, S. S. The masking of pure tones and of speech by white noise. J. Acoust. Soc. Am. 22, 6–13 (1950).

    Article  Google Scholar 

  131. Ebben, M. R., Yan, P. & Krieger, A. C. The effects of white noise on sleep and duration in individuals living in a high noise environment in New York City. Sleep Med. 83, 256–259 (2021).

    Article  PubMed  Google Scholar 

  132. Gasparini, L., Langus, A., Tsuji, S. & Boll-Avetisyan, N. Quantifying the role of rhythm in infants’ language discrimination abilities: a meta-analysis. Cognition 213, 104757 (2021).

    Article  PubMed  Google Scholar 

  133. Winkler, I., Háden, G. P., Ladinig, O., Sziller, I. & Honing, H. Newborn infants detect the beat in music. Proc. Natl Acad. Sci. USA 106, 2468–2471 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Háden, G. P., Honing, H., Török, M. & Winkler, I. Detecting the temporal structure of sound sequences in newborn infants. Int. J. Psychophysiol. 96, 23–28 (2015).

    Article  PubMed  Google Scholar 

  135. Baruch, C. & Drake, C. Tempo discrimination in infants. Infant Behav. Dev. 20, 573–577 (1997).

    Article  Google Scholar 

  136. Demany, L., McKenzie, B. & Vurpillot, E. Rhythm perception in early infancy. Nature 266, 718–719 (1977).

    Article  PubMed  Google Scholar 

  137. Otte, R. A. et al. Detecting violations of temporal regularities in waking and sleeping two-month-old infants. Biol. Psychol. 92, 315–322 (2013).

    Article  PubMed  Google Scholar 

  138. Cirelli, L. K., Spinelli, C., Nozaradan, S. & Trainor, L. J. Measuring neural entrainment to beat and meter in infants: effects of music background. Front. Neurosci. 10, 229 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hannon, E. E. & Trehub, S. E. Tuning in to musical rhythms: Infants learn more readily than adults. Proc. Natl Acad. Sci. USA 102, 12639–12643 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Hannon, E. E. & Trehub, S. E. Metrical categories in infancy and adulthood. Psychol. Sci. 16, 48–55 (2005).

    Article  PubMed  Google Scholar 

  141. Zentner, M. & Eerola, T. Rhythmic engagement with music in infancy. Proc. Natl Acad. Sci. USA 107, 5768–5773 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kim, M. & Schachner, A. The origins of dance: characterizing the development of infants’ earliest dance behavior. Dev. Psychol. 59, 691–706 (2023).

    Article  PubMed  Google Scholar 

  143. Hannon, E. E., Nave-Blodgett, J. E. & Nave, K. M. The developmental origins of the perception and production of musical rhythm. Child Dev. Perspect. 12, 194–198 (2018).

    Article  Google Scholar 

  144. Hannon, E. E., Schachner, A. & Nave-Blodgett, J. E. Babies know bad dancing when they see it: older but not younger infants discriminate between synchronous and asynchronous audiovisual musical displays. J. Exp. Child Psychol. 159, 159–174 (2017).

    Article  PubMed  Google Scholar 

  145. Yu, L. & Myowa, M. The early development of tempo adjustment and synchronization during joint drumming: a study of 18- to 42-month-old children. Infancy 26, 635–646 (2021).

    Article  PubMed  Google Scholar 

  146. Kirschner, S. & Tomasello, M. Joint drumming: social context facilitates synchronization in preschool children. J. Exp. Child Psychol. 102, 299–314 (2009).

    Article  PubMed  Google Scholar 

  147. Drake, C., Jones, M. R. & Baruch, C. The development of rhythmic attending in auditory sequences: attunement, referent period, focal attending. Cognition 77, 251–288 (2000).

    Article  PubMed  Google Scholar 

  148. McAuley, J. D., Jones, M. R., Holub, S., Johnston, H. M. & Miller, N. S. The time of our lives: life span development of timing and event tracking. J. Exp. Psychol. Gen. 135, 348–367 (2006).

    Article  PubMed  Google Scholar 

  149. Schachner, A., Brady, T. F., Pepperberg, I. M. & Hauser, M. D. Spontaneous motor entrainment to music in multiple vocal mimicking species. Curr. Biol. 19, 831–836 (2009).

    Article  PubMed  Google Scholar 

  150. Patel, A. D., Iversen, J. R., Bregman, M. R. & Schulz, I. Experimental evidence for synchronization to a musical beat in a nonhuman animal. Curr. Biol. 19, 827–830 (2009).

    Article  PubMed  Google Scholar 

  151. Vuust, P., Heggli, O. A., Friston, K. J. & Kringelbach, M. L. Music in the brain. Nat. Rev. Neurosci. 23, 287–305 (2022).

    Article  PubMed  Google Scholar 

  152. Bernardi, N. F., Bellemare-Pepin, A. & Peretz, I. Enhancement of pleasure during spontaneous dance. Front. Hum. Neurosci. 11, 572 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Foster Vander Elst, O., Vuust, P. & Kringelbach, M. L. Sweet anticipation and positive emotions in music, groove, and dance. Curr. Opin. Behav. Sci. 39, 79–84 (2021).

    Article  Google Scholar 

  154. Cirelli, L. K. & Trehub, S. E. Dancing to Metallica and Dora: case study of a 19-month-old. Front. Psychol. 10, 1073 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Witek, M. A. G., Clarke, E. F., Wallentin, M., Kringelbach, M. L. & Vuust, P. Syncopation, body-movement and pleasure in groove music. PLoS One 9, e94446 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Schachner, A. Auditory-motor entrainment in vocal mimicking species: additional ontogenetic and phylogenetic factors. Commun. Integr. Biol. 3, 290–293 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Laland, K., Wilkins, C. & Clayton, N. The evolution of dance. Curr. Biol. 26, R5–R9 (2016).

    Article  PubMed  Google Scholar 

  158. Niarchou, M. et al. Genome-wide association study of musical beat synchronization demonstrates high polygenicity. Nat. Hum. Behav. https://doi.org/10.1038/s41562-022-01359-x (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Cahill, J. A. et al. Positive selection in noncoding genomic regions of vocal learning birds is associated with genes implicated in vocal learning and speech functions in humans. Genome Res 31, 2035–2049 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Jarvis, E. D. Evolution of vocal learning and spoken language. Science 366, 50–54 (2019).

    Article  PubMed  Google Scholar 

  161. Gordon, R. L. et al. Linking the genomic signatures of human beat synchronization and learned song in birds. Philos. Trans. R. Soc. B Biol. Sci. 376, 20200329 (2021).

    Article  Google Scholar 

  162. Savage, P. Cultural evolution of music. Palgrave Comm. 5, 16 (2019).

    Article  Google Scholar 

  163. Ravignani, A., Delgado, T. & Kirby, S. Musical evolution in the lab exhibits rhythmic universals. Nat. Hum. Behav. 1, 0007 (2017).

    Google Scholar 

  164. Lumaca, M., Haumann, N. T., Vuust, P., Brattico, E. & Baggio, G. From random to regular: neural constraints on the emergence of isochronous rhythm during cultural transmission. Soc. Cogn. Affect. Neurosci. 13, 877–888 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kirby, S., Cornish, H. & Smith, K. Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language. Proc. Natl Acad. Sci. USA 105, 10681–10686 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Gibson, E. et al. How efficiency shapes human language. Trends Cogn. Sci. 23, 389–407 (2019).

    Article  PubMed  Google Scholar 

  167. Ferdinand, V., Kirby, S. & Smith, K. The cognitive roots of regularization in language. Cognition 184, 53–68 (2019).

    Article  PubMed  Google Scholar 

  168. Verhoef, T. & Ravignani, A. Melodic universals emerge or are sustained through cultural evolution. Front. Psychol. 12, 668300 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Singh, M. Subjective selection and the evolution of complex culture. Evol. Anthropol. 31, 266–280 (2022).

    Article  PubMed  Google Scholar 

  170. Allen, K. R., Smith, K. A. & Tenenbaum, J. B. Rapid trial-and-error learning with simulation supports flexible tool use and physical reasoning. Proc. Natl Acad. Sci. USA 117, 29302–29310 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Singh, M., Wrangham, R. W. & Glowacki, L. Self-interest and the design of rules. Hum. Nat. 28, 457–480 (2017).

    Article  PubMed  Google Scholar 

  172. Fitouchi, L., André, J. & Baumard, N. Moral disciplining: the cognitive and evolutionary foundations of puritanical morality. Behav. Brain Sci. https://doi.org/10.1017/S0140525X22002047 (2021).

    Article  Google Scholar 

  173. Dubourg, E. & Baumard, N. Why imaginary worlds? The psychological foundations and cultural evolution of fictions with imaginary worlds. Behav. Brain Sci. 45, e276 (2021).

    Article  PubMed  Google Scholar 

  174. Singh, M. The sympathetic plot, its psychological origins, and implications for the evolution of fiction. Emot. Rev. 13, 183–198 (2021).

    Article  Google Scholar 

  175. Singh, M. The cultural evolution of shamanism. Behav. Brain Sci. 41, e66 (2018).

    Article  Google Scholar 

  176. Hong, Z. & Henrich, J. The cultural evolution of epistemic practices: the case of divination. Hum. Nat. 32, 622–651 (2021).

    Article  PubMed  Google Scholar 

  177. Singh, M. Magic, explanations, and evil: the origins and design of witches and sorcerers. Curr. Anthropol. 62, 2–29 (2021).

    Article  Google Scholar 

  178. Feld, S. Sound structure as social structure. Ethnomusicology 28, 383–409 (1984).

    Article  Google Scholar 

  179. Miton, H., Wolf, T., Vesper, C., Knoblich, G. & Sperber, D. Motor constraints influence cultural evolution of rhythm. Proc. R. Soc. B Biol. Sci. 287, 20202001 (2020).

    Article  Google Scholar 

  180. Demorest, S. M., Morrison, S. J., Nguyen, V. Q. & Bodnar, E. N. The influence of contextual cues on cultural bias in music memory. Music Percept. 33, 590–600 (2016).

    Article  Google Scholar 

  181. Herff, S. A., Olsen, K. N. & Dean, R. T. Resilient memory for melodies: the number of intervening melodies does not influence novel melody recognition. Q. J. Exp. Psychol. 71, 1150–1171 (2018).

    Article  Google Scholar 

  182. Herff, S. A., Olsen, K. N., Dean, R. T. & Prince, J. Memory for melodies in unfamiliar tuning systems: investigating effects of recency and number of intervening items. Q. J. Exp. Psychol. 71, 1367–1381 (2018).

    Article  Google Scholar 

  183. Povel, D.-J. & Essens, P. Perception of temporal patterns. Music Percept. 2, 411–440 (1985).

    Article  Google Scholar 

  184. Povel, D. J. Internal representation of simple temporal patterns. J. Exp. Psychol. Hum. Percept. Perform. 7, 3–18 (1981).

    Article  PubMed  Google Scholar 

  185. Collier, G. L. & Wright, C. E. Temporal rescaling of simple and complex ratios in rhythmic tapping. J. Exp. Psychol. Hum. Percept. Perform. 21, 602–627 (1995).

    Article  PubMed  Google Scholar 

  186. Polak, R. et al. Rhythmic prototypes across cultures: a comparative study of tapping synchronization. Music Percept. 36, 1–23 (2018).

    Article  Google Scholar 

  187. Hannon, E. E. & Trainor, L. J. Music acquisition: effects of enculturation and formal training on development. Trends Cogn. Sci. 11, 466–472 (2007).

    Article  PubMed  Google Scholar 

  188. Jacoby, N. et al. Universality and cross-cultural variation in mental representations of music revealed by global comparison of rhythm priors. PsyArXiv https://doi.org/10.31234/osf.io/b879v (2021).

    Article  Google Scholar 

  189. Le Bomin, S., Lecointre, G. & Heyer, E. The evolution of musical diversity: the key role of vertical transmission. PLoS One 11, e0151570 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  190. Brown, S. et al. Correlations in the population structure of music, genes and language. Proc. R. Soc. B Biol. Sci. 281, 2072 (2013).

    Google Scholar 

  191. Pamjav, H., Juhász, Z., Zalán, A., Németh, E. & Damdin, B. A comparative phylogenetic study of genetics and folk music. Mol. Genet. Genomics 287, 337–349 (2012).

    Article  PubMed  Google Scholar 

  192. Youngblood, M., Baraghith, K. & Savage, P. E. Phylogenetic reconstruction of the cultural evolution of electronic music via dynamic community detection (1975–1999). Evol. Hum. Behav. 42, 573–582 (2021).

    Article  Google Scholar 

  193. Asano, R., Boeckx, C. & Fujita, K. Moving beyond domain-specific vs. domain-general options in cognitive neuroscience. Cortex 154, 259–268 (2022).

    Article  PubMed  Google Scholar 

  194. Feld, S. Sound and Sentiment: Birds, Weeping, Poetics, and Song in Kaluli Expression (University of Pennsylvania Press, 1982).

  195. Nettl, B. The Study of Ethnomusicology: Thirty-one Issues and Concepts (University of Illinois Press, 2005).

  196. Savage, P. E. et al. Sequence alignment of folk song melodies reveals cross-cultural regularities of musical evolution. Curr. Biol. 32, e1–e8 (2022).

    Article  Google Scholar 

  197. Henrich, J. The Weirdest People in the World: How the West Became Psychologically Peculiar and Particularly Prosperous (Farrar, Straus and Giroux, 2020).

  198. Smaldino, P. E., Lukaszewski, A., von Rueden, C. & Gurven, M. Niche diversity can explain cross-cultural differences in personality structure. Nat. Hum. Behav. 3, 1276–1283 (2019).

    Article  PubMed  Google Scholar 

  199. Herff, S. A., Cecchetti, G., Taruffi, L. & Déguernel, K. Music influences vividness and content of imagined journeys in a directed visual imagery task. Sci. Rep. 11, 15990 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Strickland, J. C., Garcia-Romeu, A. & Johnson, M. W. Set and setting: a randomized study of different musical genres in supporting psychedelic therapy. ACS Pharmacol. Transl. Sci. 4, 472–478 (2021).

    Article  PubMed  Google Scholar 

  201. Aubinet, S. The problem of universals in cross-cultural studies: insights from Sámi animal melodies (yoik). Psychol. Music https://doi.org/10.1177/03057356211024346 (2021).

    Article  Google Scholar 

  202. Fritz, T. H., Schmude, P., Jentschke, S., Friederici, A. D. & Koelsch, S. From understanding to appreciating music cross-culturally. PLoS One 8, e72500 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Sievers, B., Lee, C., Haslett, W. & Wheatley, T. A multi-sensory code for emotional arousal. Proc. R. Soc. B 286, 20190513 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Pinker, S. Sex and drugs and rock and roll. Behav. Brain Sci. 44, e109 (2021).

    Article  PubMed  Google Scholar 

  205. Mehr, S. A., Krasnow, M. M., Bryant, G. A. & Hagen, E. H. Toward a productive evolutionary understanding of music. Behav. Brain Sci. 44, e122 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Alex Mackiel for assistance with the preparation of Fig. 3, and members of The Music Lab for feedback on the manuscript. M.S. acknowledges IAST funding from the French National Research Agency (ANR) under grant ANR-17-EURE-0010 (Investissements d’Avenir programme). S.A.M. acknowledges funding from the US NIH Director’s Early Independence Award DP5OD024566 and the Royal Society of New Zealand Te Apārangi Rutherford Discovery Fellowship RDF-UOA2103.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Manvir Singh or Samuel A. Mehr.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Asifa Majid, Steffen Herff, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Dedication

We dedicate this article to Sandra Trehub (1938–2023), whose pioneering and inspiring work touched every corner of the psychology of music.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Auditory scene analysis

The auditory system process involved in gathering information about which sounding objects are present in the environment and determining where they are located.

Harmonic structure

The grouping of harmonies in a musical example, where harmonies are combinations of tones (such as chords) that are functionally related to one another; when listeners hear a melody, they automatically build representations of its potential harmonic structure.

Integer ratios

In music, the organization of pitch or duration information in a melody or rhythm via a simple ratio of integers, such as a duration pattern of 2:1, where the first musical event is twice as long as the second.

Isochronous beat

Periodic rhythm in which beats have the same duration; most music is structured around the isochronous beat, and it is typically perceived as the basic rhythmic foundation of the music (for example, when one taps one’s foot to music, one typically taps to the isochronous beat).

Major mode

In western classical and popular music, a collection of notes (which can be played at the same time, as in a chord, or not, as in a melody) the third note of which is four semitones from the tonal centre.

Minor mode

In western classical and popular music, a collection of notes (which can be played at the same time, as in a chord, or not, as in a melody) the third note of which is three semitones from the tonal centre.

Timbre

Perceived quality of a sound that makes notes produced by different sources, such as the human voice and a piano, sound different from each other, even when produced at the same pitch, duration and intensity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Mehr, S.A. Universality, domain-specificity and development of psychological responses to music. Nat Rev Psychol 2, 333–346 (2023). https://doi.org/10.1038/s44159-023-00182-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-023-00182-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing