Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spatial coding for action across spatial scales

Abstract

Humans perform goal-directed actions such as reaching for a light switch or grasping a coffee mug thousands of times a day. Behind the scenes of these seemingly simple actions, the brain performs sophisticated calculations to locate the target object of the action and correctly guide the hand towards it. In this Review, we discuss how the brain establishes spatial representations used for visually guided actions. In addition to reviewing simple tasks and paradigms, we discuss spatial coding in complex and naturalistic environments. We highlight the importance of high-level cognitive factors, such as memory, task constraints, and object semantics, which influence the use of spatial representations for action. To move the field forward, we suggest that future research should integrate across different scales of action spaces from small-scale finger movements to large-scale navigation. Doing so would enable the identification of general mechanisms that underlie spatial coding across different actions and spaces.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Example experimental tasks used to study spatial coding for action.
Fig. 2: Example trial structure of a pro-reach and anti-reach task.
Fig. 3: Reference frames coding the location of a target object (mug) for grasping.
Fig. 4: Stimuli, eye movement patterns, and use of reference frames in an object shift task130.
Fig. 5: Classification of different types of space173.

References

  1. Colby, C. L. Action-oriented spatial reference frames in cortex. Neuron 20, 15–24 (1998).

    Article  Google Scholar 

  2. Klatzky, R. L. in Spatial Cognition: An Interdisciplinary Approach to Representing and Processing Spatial Knowledge (eds Freska, C., Habel, C. & Wender K. F.) 1–17 (Springer, 1998).

  3. Crawford, J. D., Henriques, D. Y. P. & Medendorp, W. P. Three-dimensional transformations for goal-directed action. Annu. Rev. Neurosci. 34, 309–331 (2011).

    Article  Google Scholar 

  4. McGuire, L. M. M. & Sabes, P. N. Sensory transformations and the use of multiple reference frames for reach planning. Nat. Neurosci. 12, 1056–1061 (2009).

    Article  Google Scholar 

  5. O’Regan, J. K. & Noë, A. A sensorimotor account of vision and visual consciousness. Behav. Brain Sci. 24, 939–973 (2001).

    Article  Google Scholar 

  6. Hommel, B., Müsseler, J., Aschersleben, G. & Prinz, W. The Theory of Event Coding (TEC): a framework for perception and action planning. Behav. Brain Sci. 24, 849–878 (2001).

    Article  Google Scholar 

  7. Rizzolatti, G. & Craighero, L. The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004).

    Article  Google Scholar 

  8. Flanders, M., Tillery, S. I. H. & Soechting, J. F. Early stages in a sensorimotor transformation. Behav. Brain Sci. 15, 309–320 (1992).

    Article  Google Scholar 

  9. Blohm, G. & Crawford, J. D. Computations for geometrically accurate visually guided reaching in 3-D space. J. Vis. 7, 4 (2007).

    Article  Google Scholar 

  10. Crawford, J. D. & Guitton, D. Visual–motor transformations required for accurate and kinematically correct saccades. J. Neurophysiol. 78, 1447–1467 (1997).

    Article  Google Scholar 

  11. Henriques, D. Y. P., Klier, E. M., Smith, M. A., Lowy, D. & Crawford, J. D. Gaze-centered remapping of remembered visual space in an open-loop pointing task. J. Neurosci. 18, 1583–1594 (1998).

    Article  Google Scholar 

  12. Batista, A. P., Buneo, C. A., Snyder, L. H. & Andersen, R. A. Reach plans in eye-centered coordinates. Science 285, 257–260 (1999).

    Article  Google Scholar 

  13. Voudouris, D., Smeets, J. B. J., Fiehler, K. & Brenner, E. Gaze when reaching to grasp a glass. J. Vis. 18, 16 (2018).

    Article  Google Scholar 

  14. van Beers, R. J., van Mierlo, C. M., Smeets, J. B. J. & Brenner, E. Reweighting visual cues by touch. J. Vis. 11, 20 (2011).

  15. Camponogara, I. & Volcic, R. Integration of haptics and vision in human multisensory grasping. Cortex. 135, 173–185 (2021).

    Article  Google Scholar 

  16. Cuijpers, R. H., Brenner, E. & Smeets, J. B. J. Consistent haptic feedback is required but it is not enough for natural reaching to virtual cylinders. Hum. Mov. Sci. 27, 857–872 (2008).

    Article  Google Scholar 

  17. Medendorp, W. P. Spatial constancy mechanisms in motor control. Phil. Trans. R. Soc. Lond. B 366, 476–491 (2011).

    Article  Google Scholar 

  18. Blohm, G. et al. Neuromagnetic signatures of the spatiotemporal transformation for manual pointing. Neuroimage 197, 306–319 (2019).

    Article  Google Scholar 

  19. Medendorp, W. P., Beurze, S. M., van Pelt, S. & van der Werf, J. Behavioral and cortical mechanisms for spatial coding and action planning. Cortex 44, 587–597 (2008).

    Article  Google Scholar 

  20. Culham, J. C. & Valyear, K. F. Human parietal cortex in action. Curr. Opin. Neurobiol. 16, 205–212 (2006).

    Article  Google Scholar 

  21. Perenin, M. T. & Vighetto, A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain 111, 643–674 (1988).

    Article  Google Scholar 

  22. Hallett, P. E. Primary and secondary saccades to goals defined by instructions. Vis. Res. 18, 1279–1296 (1978).

    Article  Google Scholar 

  23. Gail, A. & Andersen, R. A. Neural dynamics in monkey parietal reach region reflect context-specific sensorimotor transformations. J. Neurosci. 26, 9376–9384 (2006).

    Article  Google Scholar 

  24. DeSouza, J. F. X. et al. Eye position signal modulates a human parietal pointing region during memory-guided movements. J. Neurosci. 20, 5835–5840 (2000).

    Article  Google Scholar 

  25. Medendorp, W. P., Goltz, H. C., Crawford, J. D. & Vilis, T. Integration of target and effector information in human posterior parietal cortex for the planning of action. J. Neurophysiol. 93, 954–962 (2005).

    Article  Google Scholar 

  26. Gail, A., Klaes, C. & Westendorff, S. Implementation of spatial transformation rules for goal-directed reaching via gain modulation in monkey parietal and premotor cortex. J. Neurosci. 29, 9490–9499 (2009).

    Article  Google Scholar 

  27. Gertz, H., Lingnau, A. & Fiehler, K. Decoding movement goals from the fronto-parietal reach network. Front. Hum. Neurosci. 11, 84 (2017).

    Article  Google Scholar 

  28. Westendorff, S., Klaes, C. & Gail, A. The cortical timeline for deciding on reach motor goals. J. Neurosci. 30, 5426–5436 (2010).

    Article  Google Scholar 

  29. Fernandez-Ruiz, J., Goltz, H. C., DeSouza, J. F. X., Vilis, T. & Crawford, J. D. Human parietal “reach region” primarily encodes intrinsic visual direction, not extrinsic movement direction, in a visual motor dissociation task. Cereb. Cortex 17, 2283–2292 (2007).

    Article  Google Scholar 

  30. Dum, R. P. & Strick, P. L. Frontal lobe inputs to the digit representations of the motor areas on the lateral surface of the hemisphere. J. Neurosci. 25, 1375–1386 (2005).

    Article  Google Scholar 

  31. He, S. Q., Dum, R. P. & Strick, P. L. Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J. Neurosci. 13, 952–980 (1993).

    Article  Google Scholar 

  32. Connolly, J. D., Goodale, M. A., DeSouza, J. F., Menon, R. S. & Vilis, T. A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. J. Neurophysiol. 84, 1645–1655 (2000).

    Article  Google Scholar 

  33. Gertz, H. & Fiehler, K. Human posterior parietal cortex encodes the movement goal in a pro-/anti-reach task. J. Neurophysiol. 114, 170–183 (2015).

    Article  Google Scholar 

  34. Beurze, S. M., Lange, F. P., de, Toni, I. & Medendorp, W. P. Integration of target and effector information in the human brain during reach planning. J. Neurophysiol. 97, 188–199 (2007).

    Article  Google Scholar 

  35. Chapman, C. S. et al. Reaching for the unknown: multiple target encoding and real-time decision-making in a rapid reach task. Cognition 116, 168–176 (2010).

    Article  Google Scholar 

  36. Stewart, B. M., Baugh, L. A., Gallivan, J. P. & Flanagan, J. R. Simultaneous encoding of the direction and orientation of potential targets during reach planning: evidence of multiple competing reach plans. J. Neurophysiol. 110, 807–816 (2013).

    Article  Google Scholar 

  37. Hesse, C., Kangur, K. & Hunt, A. R. Decision making in slow and rapid reaching: sacrificing success to minimize effort. Cognition 205, 104426 (2020).

    Article  Google Scholar 

  38. Onagawa, R. & Kudo, K. Sensorimotor strategy selection under time constraints in the presence of two motor targets with different values. Sci. Rep. 11, 22207 (2021).

    Article  Google Scholar 

  39. Stewart, B. M., Gallivan, J. P., Baugh, L. A. & Flanagan, J. R. Motor, not visual, encoding of potential reach targets. Curr. Biol. 24, R953–R954 (2014).

    Article  Google Scholar 

  40. Gallivan, J. P., Stewart, B. M., Baugh, L. A., Wolpert, D. M. & Flanagan, J. R. Rapid automatic motor encoding of competing reach options. Cell Rep. 18, 1619–1626 (2017).

    Article  Google Scholar 

  41. Gallivan, J. P., Logan, L., Wolpert, D. M. & Flanagan, J. R. Parallel specification of competing sensorimotor control policies for alternative action options. Nat. Neurosci. 19, 320–326 (2016).

    Article  Google Scholar 

  42. Praamstra, P., Kourtis, D. & Nazarpour, K. Simultaneous preparation of multiple potential movements: opposing effects of spatial proximity mediated by premotor and parietal cortex. J. Neurophysiol. 102, 2084–2095 (2009).

    Article  Google Scholar 

  43. Cisek, P. Cortical mechanisms of action selection: the affordance competition hypothesis. Phil. Trans. R. Soc. Lond. B 362, 1585–1599 (2007).

    Article  Google Scholar 

  44. Cisek, P. & Kalaska, J. F. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron 45, 801–814 (2005).

    Article  Google Scholar 

  45. Gallivan, J. P., Barton, K. S., Chapman, C. S., Wolpert, D. M. & Flanagan, J. R. Action plan co-optimization reveals the parallel encoding of competing reach movements. Nat. Commun. 6, 7428 (2015).

    Article  Google Scholar 

  46. Alhussein, L. & Smith, M. A. Motor planning under uncertainty. eLife 10, e67019 (2021).

    Article  Google Scholar 

  47. Battaglia-Mayer, A., Caminiti, R., Lacquaniti, F. & Zago, M. Multiple levels of representation of reaching in the parieto-frontal network. Cereb. Cortex 13, 1009–1022 (2003).

    Article  Google Scholar 

  48. Soechting, J. F. & Flanders, M. Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu. Rev. Neurosci. 15, 167–191 (1992).

    Article  Google Scholar 

  49. Thompson, A. A. & Henriques, D. Y. P. The coding and updating of visuospatial memory for goal-directed reaching and pointing. Vis. Res. 51, 819–826 (2011).

    Article  Google Scholar 

  50. Bock, O. Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp. Brain Res. 64, 476–482 (1986).

    Article  Google Scholar 

  51. Selen, L. P. J. & Medendorp, W. P. Saccadic updating of object orientation for grasping movements. Vis. Res. 51, 898–907 (2011).

    Article  Google Scholar 

  52. Medendorp, W. P. & Crawford, J. D. Visuospatial updating of reaching targets in near and far space. Neuroreport 13, 633–636 (2002).

    Article  Google Scholar 

  53. Mueller, S. & Fiehler, K. Effector movement triggers gaze-dependent spatial coding of tactile and proprioceptive-tactile reach targets. Neuropsychologia 62, 184–193 (2014).

    Article  Google Scholar 

  54. Lewald, J. & Ehrenstein, W. H. The effect of eye position on auditory lateralization. Exp. Brain Res. 108, 473–485 (1996).

    Article  Google Scholar 

  55. Pouget, A., Deneve, S. & Duhamel, J.-R. A computational perspective on the neural basis of multisensory spatial representations. Nat. Rev. Neurosci. 3, 741–747 (2002).

    Article  Google Scholar 

  56. Medendorp, W. P., Goltz, H. C., Vilis, T. & Crawford, J. D. Gaze-centered updating of visual space in human parietal cortex. J. Neurosci. 23, 6209–6214 (2003).

    Article  Google Scholar 

  57. Leoné, F. T. M., Monaco, S., Henriques, D. Y. P., Toni, I. & Medendorp, W. P. Flexible reference frames for grasp planning in human parietofrontal cortex. eNeuro 2, ENEURO.0008-15.2015 (2015).

  58. Dijkerman, H. C. et al. Reaching errors in optic ataxia are linked to eye position rather than head or body position. Neuropsychologia 44, 2766–2773 (2006).

    Article  Google Scholar 

  59. Khan, A. Z., Pisella, L., Rossetti, Y., Vighetto, A. & Crawford, J. D. Impairment of gaze-centered updating of reach targets in bilateral parietal-occipital damaged patients. Cereb. Cortex 15, 1547–1560 (2005).

    Article  Google Scholar 

  60. Ambrosini, E. et al. Behavioral investigation on the frames of reference involved in visuomotor transformations during peripheral arm reaching. PLoS One 7, e51856 (2012).

    Article  Google Scholar 

  61. Bernier, P.-M. & Grafton, S. T. Human posterior parietal cortex flexibly determines reference frames for reaching based on sensory context. Neuron 68, 776–788 (2010).

    Article  Google Scholar 

  62. Mullette-Gillman, O. A., Cohen, Y. E. & Groh, J. M. Eye-centered, head-centered, and complex coding of visual and auditory targets in the intraparietal sulcus. J. Neurophysiol. 94, 2331–2352 (2005).

    Article  Google Scholar 

  63. Mullette-Gillman, O. A., Cohen, Y. E. & Groh, J. M. Motor-related signals in the intraparietal cortex encode locations in a hybrid, rather than eye-centered reference frame. Cereb. Cortex 19, 1761–1775 (2009).

    Article  Google Scholar 

  64. Obhi, S. S. & Goodale, M. A. The effects of landmarks on the performance of delayed and real-time pointing movements. Exp. Brain Res. 167, 335–344 (2005).

    Article  Google Scholar 

  65. Krigolson, O. & Heath, M. Background visual cues and memory-guided reaching. Hum. Mov. Sci. 23, 861–877 (2004).

    Article  Google Scholar 

  66. Krigolson, O., Clark, N., Heath, M. & Binsted, G. The proximity of visual landmarks impacts reaching performance. Spat. Vis. 20, 317–336 (2007).

    Article  Google Scholar 

  67. Byrne, P. A. & Crawford, J. D. Cue reliability and a landmark stability heuristic determine relative weighting between egocentric and allocentric visual information in memory-guided reach. J. Neurophysiol. 103, 3054–3069 (2010).

    Article  Google Scholar 

  68. Taghizadeh, B. & Gail, A. Spatial task context makes short-latency reaches prone to induced Roelofs illusion. Front. Hum. Neurosci. 8, 673 (2014).

    Google Scholar 

  69. Schenk, T. An allocentric rather than perceptual deficit in patient D.F. Nat. Neurosci. 9, 1369–1370 (2006).

    Article  Google Scholar 

  70. Chen, Y. et al. Allocentric versus egocentric representation of remembered reach targets in human cortex. J. Neurosci. 34, 12515–12526 (2014).

    Article  Google Scholar 

  71. Chen, Y., Monaco, S. & Crawford, J. D. Neural substrates for allocentric-to-egocentric conversion of remembered reach targets in humans. Eur. J. Neurosci. 47, 901–917 (2018).

    Article  Google Scholar 

  72. Taghizadeh, B., Fortmann, O. & Gail, A. Position- and scale-invariant object-centered spatial selectivity in monkey frontoparietal cortex dynamically adapts to task demand. Preprint at bioRxiv https://doi.org/10.1101/2022.01.26.477941 (2022).

    Article  Google Scholar 

  73. Carrozzo, M., Stratta, F., McIntyre, J. & Lacquaniti, F. Cognitive allocentric representations of visual space shape pointing errors. Exp. Brain Res. 147, 426–436 (2002).

    Article  Google Scholar 

  74. Neely, K. A., Tessmer, A., Binsted, G. & Heath, M. Goal-directed reaching: movement strategies influence the weighting of allocentric and egocentric visual cues. Exp. Brain Res. 186, 375–384 (2008).

    Article  Google Scholar 

  75. Thompson, A. A. & Henriques, D. Y. P. Locations of serial reach targets are coded in multiple reference frames. Vis. Res. 50, 2651–2660 (2010).

    Article  Google Scholar 

  76. Ernst, M. O. & Banks, M. S. Humans integrate visual and haptic information in a statistically optimal fashion. Nature. 415, 429–433 (2002).

    Article  Google Scholar 

  77. Knill, D. C. Robust cue integration: a Bayesian model and evidence from cue-conflict studies with stereoscopic and figure cues to slant. J. Vis. 7, 5 (2007).

    Article  Google Scholar 

  78. Körding, K. P. & Wolpert, D. M. Bayesian decision theory in sensorimotor control. Trends Cogn. Sci. 10, 319–326 (2006).

    Article  Google Scholar 

  79. Vaziri, S., Diedrichsen, J. & Shadmehr, R. Why does the brain predict sensory consequences of oculomotor commands? Optimal integration of the predicted and the actual sensory feedback. J. Neurosci. 26, 4188–4197 (2006).

    Article  Google Scholar 

  80. Landy, M. S., Maloney, L. T., Johnston, E. B. & Young, M. Measurement and modeling of depth cue combination: in defense of weak fusion. Vis. Res. 35, 389–412 (1995).

    Article  Google Scholar 

  81. Knill, D. C. & Richards, W. Perception As Bayesian Inference (Cambridge Univ. Press, 1996).

  82. Tagliabue, M. & McIntyre, J. A modular theory of multisensory integration for motor control. Front. Comput. Neurosci. 8, 1 (2014).

    Article  Google Scholar 

  83. Karimpur, H., Kurz, J. & Fiehler, K. The role of perception and action on the use of allocentric information in a large-scale virtual environment. Exp. Brain Res. 238, 1813–1826 (2020).

    Article  Google Scholar 

  84. Klinghammer, M., Blohm, G. & Fiehler, K. Scene configuration and object reliability affect the use of allocentric information for memory-guided reaching. Front. Neurosci. 11, 204 (2017).

    Article  Google Scholar 

  85. Camors, D., Jouffrais, C., Cottereau, B. R. & Durand, J. B. Allocentric coding: spatial range and combination rules. Vis. Res. 109, 87–98 (2015).

    Article  Google Scholar 

  86. Körding, K. P. et al. Causal inference in multisensory perception. PLoS One 2, e943 (2007).

    Article  Google Scholar 

  87. Sato, Y., Toyoizumi, T. & Aihara, K. Bayesian inference explains perception of unity and ventriloquism aftereffect: identification of common sources of audiovisual stimuli. Neural Comput. 19, 3335–3355 (2007).

    Article  Google Scholar 

  88. Diedrichsen, J., Werner, S., Schmidt, T. & Trommershäuser, J. Immediate spatial distortions of pointing movements induced by visual landmarks. Percept. Psychophys. 66, 89–103 (2004).

    Article  Google Scholar 

  89. Neggers, S. F. W., Schölvinck, M. L., van der Lubbe, R. H. J. & Postma, A. Quantifying the interactions between allo- and egocentric representations of space. Acta Psychol. 118, 25–45 (2005).

    Article  Google Scholar 

  90. Ruotolo, F., van der Ham, I. J. M., Iachini, T. & Postma, A. The relationship between allocentric and egocentric frames of reference and categorical and coordinate spatial information processing. Q. J. Exp. Psychol. 64, 1138–1156 (2011).

    Article  Google Scholar 

  91. Goodale, M. A. & Milner, A. Separate visual pathways for perception and action. Trends Neurosci. 15, 20–25 (1992).

    Article  Google Scholar 

  92. Heath, M. & Westwood, D. A. Can a visual representation support the online control of memory-dependent reaching? Evident from a variable spatial mapping paradigm. Mot. Control. 7, 346–361 (2003).

    Google Scholar 

  93. Westwood, D. A., Heath, M. & Roy, E. A. No evidence for accurate visuomotor memory: systematic and variable error in memory-guided reaching. J. Mot. Behav. 35, 127–133 (2003).

    Article  Google Scholar 

  94. Hesse, C. & Franz, V. H. Memory mechanisms in grasping. Neuropsychologia 47, 1532–1545 (2009).

    Article  Google Scholar 

  95. Hesse, C. & Franz, V. H. Grasping remembered objects: exponential decay of the visual memory. Vis. Res. 50, 2642–2650 (2010).

    Article  Google Scholar 

  96. Franz, V. H., Hesse, C. & Kollath, S. Visual illusions, delayed grasping, and memory: no shift from dorsal to ventral control. Neuropsychologia 47, 1518–1531 (2009).

    Article  Google Scholar 

  97. Fiehler, K. et al. Working memory maintenance of grasp-target information in the human posterior parietal cortex. Neuroimage 54, 2401–2411 (2011).

    Article  Google Scholar 

  98. Freud, E., Plaut, D. C. & Behrmann, M. ‘What’ is happening in the dorsal visual pathway. Trends Cogn. Sci. 20, 773–784 (2016).

    Article  Google Scholar 

  99. Himmelbach, M. et al. Brain activation during immediate and delayed reaching in optic ataxia. Neuropsychologia 47, 1508–1517 (2009).

    Article  Google Scholar 

  100. Goodale, M. Frames of reference for perception and action in the human visual system. Neurosci. Biobehav. Rev. 22, 161–172 (1998).

    Article  Google Scholar 

  101. Westwood, D. A. & Goodale, M. A. Perceptual illusion and the real-time control of action. Spat. Vis. 16, 243–254 (2003).

    Article  Google Scholar 

  102. Schenk, T. & McIntosh, R. D. Do we have independent visual streams for perception and action? Cogn. Neurosci. 1, 52–62 (2010).

    Article  Google Scholar 

  103. Schenk, T. & Hesse, C. Do we have distinct systems for immediate and delayed actions? A selective review on the role of visual memory in action. Cortex 98, 228–248 (2018).

    Article  Google Scholar 

  104. Schütz, I., Henriques, D. Y. P. & Fiehler, K. Gaze-centered spatial updating in delayed reaching even in the presence of landmarks. Vis. Res. 87, 46–52 (2013).

    Article  Google Scholar 

  105. Schütz, I., Henriques, D. Y. P. & Fiehler, K. No effect of delay on the spatial representation of serial reach targets. Exp. Brain Res. 233, 1225–1235 (2015).

    Article  Google Scholar 

  106. Bridgemen, B., Kirch, M. & Sperling, A. Segregation of cognitive and motor aspects of visual function using induced motion. Percept. Psychophys. 29, 336–342 (1981).

    Article  Google Scholar 

  107. Brenner, E. & Smeets, J. B. Fast responses of the human hand to changes in target position. J. Mot. Behav. 29, 297–310 (1997).

    Article  Google Scholar 

  108. Grave, D. D. J., de, Brenner, E. & Smeets, J. B. J. Illusions as a tool to study the coding of pointing movements. Exp. Brain Res. 155, 56–62 (2004).

    Article  Google Scholar 

  109. Gomi, H. Implicit online corrections of reaching movements. Curr. Opin. Neurobiol. 18, 558–564 (2008).

    Article  Google Scholar 

  110. Lu, Z. & Fiehler, K. Spatial updating of allocentric landmark information in real-time and memory-guided reaching. Cortex 125, 203–214 (2020).

    Article  Google Scholar 

  111. Bridgeman, B., Peery, S. & Anand, S. Interaction of cognitive and sensorimotor maps of visual space. Percept. Psychophys. 59, 456–469 (1997).

    Article  Google Scholar 

  112. Chen, Y., Byrne, P. & Crawford, J. D. Time course of allocentric decay, egocentric decay, and allocentric-to-egocentric conversion in memory-guided reach. Neuropsychologia 49, 49–60 (2011).

    Article  Google Scholar 

  113. Hay, L. & Redon, C. Response delay and spatial representation in pointing movements. Neurosci. Lett. 408, 194–198 (2006).

    Article  Google Scholar 

  114. Sheth, B. R. & Shimojo, S. Extrinsic cues suppress the encoding of intrinsic cues. J. Cogn. Neurosci. 16, 339–350 (2004).

    Article  Google Scholar 

  115. Crowe, E. M. et al. Further evidence that people rely on egocentric information to guide a cursor to a visible target. Perception 50, 904–907 (2021).

    Article  Google Scholar 

  116. Crowe, E. M., Bossard, M. & Brenner, E. Can ongoing movements be guided by allocentric visual information when the target is visible? J. Vis. 21, 6 (2021).

    Article  Google Scholar 

  117. Land, M. F. & Hayhoe, M. In what ways do eye movements contribute to everyday activities? Vis. Res. 41, 3559–3565 (2001).

    Article  Google Scholar 

  118. Rothkopf, C. A., Ballard, D. H. & Hayhoe, M. M. Task and context determine where you look. J. Vis. 7, 16 (2007).

    Article  Google Scholar 

  119. Broadbent, D. E. Perception And Communication (Pergamon Press, 1958).

  120. Bisley, J. W. & Goldberg, M. E. Attention, intention, and priority in the parietal lobe. Annu. Rev. Neurosci. 33, 1–21 (2010).

    Article  Google Scholar 

  121. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  Google Scholar 

  122. Fecteau, J. H. & Munoz, D. P. Salience, relevance, and firing: a priority map for target selection. Trends Cogn. Sci. 10, 382–390 (2006).

    Article  Google Scholar 

  123. Carrasco, M. Visual attention: the past 25 years. Vis. Res. 51, 1484–1525 (2011).

    Article  Google Scholar 

  124. Moehler, T. & Fiehler, K. Effects of spatial congruency on saccade and visual discrimination performance in a dual-task paradigm. Vis. Res. 105, 100–111 (2014).

    Article  Google Scholar 

  125. Moehler, T. & Fiehler, K. The influence of spatial congruency and movement preparation time on saccade curvature in simultaneous and sequential dual-tasks. Vis. Res. 116, 25–35 (2015).

    Article  Google Scholar 

  126. Behrmann, M. & Tipper, S. P. Attention accesses multiple reference frames: evidence from visual neglect. J. Exp. Psychol. Hum. Percept. Perform. 25, 83–101 (1999).

    Article  Google Scholar 

  127. Chun, M. M., Golomb, J. D. & Turk-Browne, N. B. A taxonomy of external and internal attention. Annu. Rev. Psychol. 62, 73–101 (2011).

    Article  Google Scholar 

  128. Abrams, R. A. & Dobkin, R. S. Inhibition of return: effects of attentional cuing on eye movement latencies. J. Exp. Psychol. Hum. Percept. Perform. 20, 467–477 (1994).

    Article  Google Scholar 

  129. Tipper, S. P., Weaver, B., Jerreat, L. M. & Burak, A. L. Object-based and environment-based inhibition of return of visual attention. J. Exp. Psychol. Hum. Percept. Perform. 20, 478–499 (1994).

    Article  Google Scholar 

  130. Klinghammer, M., Blohm, G. & Fiehler, K. Contextual factors determine the use of allocentric information for reaching in a naturalistic scene. J. Vis. 15, 24 (2015).

    Article  Google Scholar 

  131. Posner, M. I. Orienting of attention. Q. J. Exp. Psychol. 32, 3–25 (1980).

    Article  Google Scholar 

  132. Ballard, D. H. & Hayhoe, M. M. Modelling the role of task in the control of gaze. Vis. Cogn. 17, 1185–1204 (2009).

    Article  Google Scholar 

  133. Mills, M., Hollingworth, A., van der Stigchel, S., Hoffman, L. & Dodd, M. D. Examining the influence of task set on eye movements and fixations. J. Vis. 11, 17 (2011).

    Article  Google Scholar 

  134. Golomb, J. D., Pulido, V. Z., Albrecht, A. R., Chun, M. M. & Mazer, J. A. Robustness of the retinotopic attentional trace after eye movements. J. Vis. 10, 19 (2010).

    Article  Google Scholar 

  135. Jonikaitis, D. & Moore, T. The interdependence of attention, working memory and gaze control: behavior and neural circuitry. Curr. Opin. Psychol. 29, 126–134 (2019).

    Article  Google Scholar 

  136. Maxcey-Richard, A. M. & Hollingworth, A. The strategic retention of task-relevant objects in visual working memory. J. Exp. Psychol. Learn. Mem. Cogn. 39, 760–772 (2013).

    Article  Google Scholar 

  137. Schneider, W. X., Einhäuser, W. & Horstmann, G. Attentional selection in visual perception, memory and action: a quest for cross-domain integration. Phil. Trans. R. Soc. Lond. B 368, 20130053 (2013).

    Article  Google Scholar 

  138. Lu, Z., Klinghammer, M. & Fiehler, K. The role of gaze and prior knowledge on allocentric coding of reach targets. J. Vis. 18, 22 (2018).

    Article  Google Scholar 

  139. Jiang, Y. V., Swallow, K. M. & Sun, L. Egocentric coding of space for incidentally learned attention: effects of scene context and task instructions. J. Exp. Psychol. Learn. Mem. Cogn. 40, 233–250 (2014).

    Article  Google Scholar 

  140. Henderson, J. M. Human gaze control during real-world scene perception. Trends Cogn. Sci. 7, 498–504 (2003).

    Article  Google Scholar 

  141. Henderson, J. M. Gaze control as prediction. Trends Cogn. Sci. 21, 15–23 (2017).

    Article  Google Scholar 

  142. Võ, M. L.-H. & Wolfe, J. M. Differential electrophysiological signatures of semantic and syntactic scene processing. Psychol. Sci. 24, 1816–1823 (2013).

    Article  Google Scholar 

  143. Hayes, T. R. & Henderson, J. M. Scene semantics involuntarily guide attention during visual search. Psychon. Bull. Rev. 26, 1683–1689 (2019).

    Article  Google Scholar 

  144. Henderson, J. M. & Hayes, T. R. Meaning-based guidance of attention in scenes as revealed by meaning maps. Nat. Hum. Behav. 1, 743–747 (2017).

    Article  Google Scholar 

  145. Oliva, A. & Torralba, A. Chapter 2 Building the gist of a scene: the role of global image features in recognition. Prog. Brain Res. 155, 23–36 (2006).

    Article  Google Scholar 

  146. Cornelissen, T. H. W. & Võ, M. L.-H. Stuck on semantics: processing of irrelevant object–scene inconsistencies modulates ongoing gaze behavior. Atten. Percept. Psychophys. 79, 154–168 (2017).

    Article  Google Scholar 

  147. Malcolm, G. L., Rattinger, M. & Shomstein, S. Intrusive effects of semantic information on visual selective attention. Atten. Percept. Psychophys. 78, 2066–2078 (2016).

    Article  Google Scholar 

  148. Peacock, C. E., Hayes, T. R. & Henderson, J. M. Meaning guides attention during scene viewing, even when it is irrelevant. Atten. Percept. Psychophys. 81, 20–34 (2019).

    Article  Google Scholar 

  149. Glover, S. & Dixon, P. Semantics affect the planning but not control of grasping. Exp. Brain Res. 146, 383–387 (2002).

    Article  Google Scholar 

  150. Naylor, C. E., Power, T. J. & Buckingham, G. Examining whether semantic cues can affect felt heaviness when lifting novel objects. J. Cogn. 3, 3 (2020).

    Article  Google Scholar 

  151. Yantis, S. Multielement visual tracking: attention and perceptual organization. Cogn. Psychol. 24, 295–340 (1992).

    Article  Google Scholar 

  152. Hock, H. S., Gordon, G. P. & Whitehurst, R. Contextual relations: the influence of familiarity, physical plausibility, and belongingness. Percept. Psychophys. 16, 4–8 (1974).

    Article  Google Scholar 

  153. Karimpur, H., Morgenstern, Y. & Fiehler, K. Facilitation of allocentric coding by virtue of object-semantics. Sci. Rep. 9, 6263 (2019).

    Article  Google Scholar 

  154. Kriegeskorte, N. & Mur, M. Inverse MDS: inferring dissimilarity structure from multiple item arrangements. Front. Psychol. 3, 245 (2012).

    Article  Google Scholar 

  155. Goldstein, E. B. Spatial layout, orientation relative to the observer, and perceived projection in pictures viewed at an angle. J. Exp. Psychol. Hum. Percept. Perform. 13, 256–266 (1987).

    Article  Google Scholar 

  156. Koenderink, J. J. & van Doorn, A. in Looking Into Pictures: An Interdisciplinary Approach To Pictorial Space (eds Hecht, H., Schwartz, R. & Atherton, M.) 239–299 (MIT Press, 2003).

  157. Koenderink, J. & van Doorn, A. The structure of visual spaces. J. Math. Imaging Vis. 31, 171–187 (2008).

    Article  Google Scholar 

  158. Vishwanath, D., Girshick, A. R. & Banks, M. S. Why pictures look right when viewed from the wrong place. Nat. Neurosci. 8, 1401–1410 (2005).

    Article  Google Scholar 

  159. Heidegger, M. Being And Time: A Translation Of Sein Und Zeit (Suny Press, 1996).

  160. Wollheim, R. Wollheim on pictorial representation. J. Aesthet. Art. Crit. 56, 217–226 (1998).

    Google Scholar 

  161. Troje, N. F. Reality check. Perception. 48, 1033–1038 (2019).

    Article  Google Scholar 

  162. Karimpur, H., Eftekharifar, S., Troje, N. F. & Fiehler, K. Spatial coding for memory-guided reaching in visual and pictorial spaces. J. Vis. 20, 1 (2020).

    Article  Google Scholar 

  163. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H. & Acuna, C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38, 871–908 (1975).

    Article  Google Scholar 

  164. Rizzolatti, G., Scandolara, C., Matelli, M. & Gentilucci, M. Afferent properties of periarcuate neurons in macaque monkeys. I. Somatosensory responses. Behav. Brain Res. 2, 125–146 (1981).

    Article  Google Scholar 

  165. Rizzolatti, G., Fadiga, L., Fogassi, L. & Gallese, V. The space around us. Science 277, 190–191 (1997).

    Article  Google Scholar 

  166. Serino, A. et al. Body part-centered and full body-centered peripersonal space representations. Sci. Rep. 5, 18603 (2015).

    Article  Google Scholar 

  167. Iriki, A., Tanaka, M. & Iwamura, Y. Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7, 2325–2330 (1996).

    Article  Google Scholar 

  168. Farnè, A., Serino, A. & Làdavas, E. Dynamic size-change of peri-hand space following tool-use: determinants and spatial characteristics revealed through cross-modal extinction. Cortex 43, 436–443 (2007).

    Article  Google Scholar 

  169. Longo, M. R. & Lourenco, S. F. On the nature of near space: effects of tool use and the transition to far space. Neuropsychologia 44, 977–981 (2006).

    Article  Google Scholar 

  170. Mine, D. & Yokosawa, K. Disconnected hand avatar can be integrated into the peripersonal space. Exp. Brain Res. 239, 237–244 (2021).

    Article  Google Scholar 

  171. Bufacchi, R. J. & Iannetti, G. D. An action field theory of peripersonal space. Trends Cogn. Sci. 22, 1076–1090 (2018).

    Article  Google Scholar 

  172. Noel, J.-P. et al. Full body action remapping of peripersonal space: the case of walking. Neuropsychologia 70, 375–384 (2015).

    Article  Google Scholar 

  173. Montello, D. R. in Spatial Information Theory: A Theoretical Basis For GIS (eds Frank, A. U. & Campari, I.) 312–321 (Proceedings of COSIT’93, Springer, 1993).

  174. Fiehler, K., Wolf, C., Klinghammer, M. & Blohm, G. Integration of egocentric and allocentric information during memory-guided reaching to images of a natural environment. Front. Hum. Neurosci. 8, 636 (2014).

    Article  Google Scholar 

  175. Klinghammer, M., Schütz, I., Blohm, G. & Fiehler, K. Allocentric information is used for memory-guided reaching in depth: a virtual reality study. Vis. Res. 129, 13–24 (2016).

    Article  Google Scholar 

  176. Sadeh, M., Sajad, A., Wang, H., Yan, X. & Crawford, J. D. The influence of a memory delay on spatial coding in the superior colliculus: is visual always visual and motor always motor? Front. Neural Circuits 12, 74 (2018).

    Article  Google Scholar 

  177. Sadeh, M., Sajad, A., Wang, H., Yan, X. & Crawford, J. D. Spatial transformations between superior colliculus visual and motor response fields during head-unrestrained gaze shifts. Eur. J. Neurosci. 42, 2934–2951 (2015).

    Article  Google Scholar 

  178. Sajad, A. et al. Visual–motor transformations within frontal eye fields during head-unrestrained gaze shifts in the monkey. Cereb. Cortex 25, 3932–3952 (2015).

    Article  Google Scholar 

  179. Berger, M., Agha, N. S. & Gail, A. Wireless recording from unrestrained monkeys reveals motor goal encoding beyond immediate reach in frontoparietal cortex. eLife 9, e51322 (2020).

    Article  Google Scholar 

  180. Draschkow, D., Nobre, A. C. & van Ede, F. Multiple spatial frames for immersive working memory. Nat. Hum. Behav. 6, 536–544 (2022).

    Article  Google Scholar 

  181. Meilinger, T., Riecke, B. E. & Bülthoff, H. H. Local and global reference frames for environmental spaces. Q. J. Exp. Psychol. 67, 542–569 (2014).

    Article  Google Scholar 

  182. Meilinger, T., Strickrodt, M. & Bülthoff, H. H. Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation. Cognition 155, 77–95 (2016).

    Article  Google Scholar 

  183. Treisman, A. M. & Gelade, G. A feature-integration theory of attention. Cogn. Psychol. 12, 97–136 (1980).

    Article  Google Scholar 

  184. van Gomple, R. P. G. Eye Movements (Elsevier, 2007).

  185. Wolfe, J. M., Võ, M. L.-H., Evans, K. K. & Greene, M. R. Visual search in scenes involves selective and nonselective pathways. Trends Cogn. Sci. 15, 77–84 (2011).

    Article  Google Scholar 

  186. Engel, A. K., Maye, A., Kurthen, M. & König, P. Where’s the action? The pragmatic turn in cognitive science. Trends Cogn. Sci. 17, 202–209 (2013).

    Article  Google Scholar 

  187. Adam, J. J., Bovend’Eerdt, T. J. H., Schuhmann, T. & Sack, A. T. Allocentric coding in ventral and dorsal routes during real-time reaching: evidence from imaging-guided multi-site brain stimulation. Behav. Brain Res. 300, 143–149 (2016).

    Article  Google Scholar 

  188. Chen, Y. & Crawford, J. D. Allocentric representations for target memory and reaching in human cortex. Ann. N. Y. Acad. Sci. 1464, 142–155 (2020).

    Article  Google Scholar 

  189. Wolbers, T. & Wiener, J. M. Challenges for identifying the neural mechanisms that support spatial navigation: the impact of spatial scale. Front. Hum. Neurosci. 8, 571 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DFG grant FI 1567/6-1 ‘The active observer’ and by ‘The Adaptive Mind’, funded by the Excellence Program of the Hessian Ministry for Higher Education, Research, Science and the Arts.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Katja Fiehler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fiehler, K., Karimpur, H. Spatial coding for action across spatial scales. Nat Rev Psychol 2, 72–84 (2023). https://doi.org/10.1038/s44159-022-00140-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00140-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing