Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms for individual, group-based and crowd-based attention to social information

Abstract

Two or more interacting individuals make up a social group. In this Review, we show that human attention plays a key part in the selection, management and maintenance of social interactions between individual members of social groups of any size. Three attentional mechanisms are presented here. The individual cue-selection mechanism facilitates the selection of social cues, such as gaze, facial or head information, from individual group members. The group-based selection mechanism enables selection based on the perceived quality of social cues derived from individual group members or the emerging interactions between individual group members. Finally, the crowd-based selection mechanism enables selection based on an overall representation of the social information derived from assessing the majority of consistent cues in the crowd. The three attentional mechanisms are used flexibly, interchangeably and dynamically as a function of group size and the ability to individuate group members.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classic and the emerging interactive social attention paradigms.
Fig. 2: Unidirectional and bidirectional gaze-based communicative actions.
Fig. 3: Group-based selection versus crowd-based selection.
Fig. 4: Individual cue selection, group-based selection, and crowd-based selection mechanisms.

Similar content being viewed by others

References

  1. Ashton, B. J., Kennedy, P. & Radford, A. N. Interactions with conspecific outsiders as drivers of cognitive evolution. Nat. Commun. 11, 4937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bastardoz, N. & Van Vugt, M The nature of followership: evolutionary analysis and review. Leadersh. Q. 30, 81–95 (2019).

    Article  Google Scholar 

  3. Turner, J. C. Social categorization and the self-concept: a social cognitive theory of group behavior. In Rediscovering Social Identity (eds Postmes, T. & Branscombe, N. R.) 243–272 (Psychology Press, 2010).

  4. Will, P., Merritt, E., Jenkins, R. & Kingstone, A. The Medusa effect reveals levels of mind perception in pictures. Proc. Natl. Acad. Sci. USA 118, e2106640118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kingstone, A., Smilek, D. & Eastwood, J. D. Cognitive ethology: a new approach for studying human cognition. Br. J. Psychol. 99, 317–340 (2008). This seminal paper challenges exclusively laboratory-based approaches to the study of human cognition.

    Article  PubMed  Google Scholar 

  6. Smilek, D., Birmingham, E., Cameron, D., Bischof, W. & Kingstone, A. Cognitive ethology and exploring attention in real-world scenes. Brain Res. 1080, 101–119 (2006).

    Article  PubMed  Google Scholar 

  7. Kingstone, A., Laidlaw, K. E. W., Nasiopoulos, E. & Risko, E. F. in On Human Nature: Biology, Psychology, Ethics, Politics, and Religion (eds Tibayrenc, M. & Ayala, F. J.) 365–382 (Academic, 2017).

  8. Kingstone, A. Everyday human cognition and behaviour. Can. J. Exp. Psychol. 74, 267–274 (2020).

    Article  PubMed  Google Scholar 

  9. Schilbach, L. et al. Toward a second-person neuroscience. Behav. Brain Sci. 36, 393–414 (2013).

    Article  PubMed  Google Scholar 

  10. Hari, R., Henriksson, L., Malinen, S. & Parkkonen, L. Centrality of social interaction in human brain function. Neuron 88, 181–193 (2015).

    Article  PubMed  Google Scholar 

  11. Caruana, N., McArthur, G., Woolgar, A. & Brock, J. Simulating social interactions for the experimental investigation of joint attention. Neurosci. Biobehav. Rev. 74, 115–125 (2017).

    Article  PubMed  Google Scholar 

  12. Redcay, E. & Schilbach, L. Using second-person neuroscience to elucidate the mechanisms of social interaction. Nat. Rev. Neurosci. 20, 495–505 (2019). This review highlights recent research efforts to develop a ‘second-person’ approach to investigating neural processes during real-time reciprocal social interactions.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Risko, E. F., Richardson, D. C. & Kingstone, A. Breaking the fourth wall of cognitive science: real-world social attention and the dual function of gaze. Curr. Dir. Psychol. Sci. 25, 70–74 (2016).

    Article  Google Scholar 

  14. Pfeiffer, U. J., Vogeley, K. & Schilbach, L. From gaze cueing to dual eye-tracking: novel approaches to investigate the neural correlates of gaze in social interaction. Neurosci. Biobehav. Rev. 37, 2516–2528 (2013).

    Article  PubMed  Google Scholar 

  15. Gobel, M. S., Kim, H. S. & Richardson, D. C. The dual function of social gaze. Cognition 136, 359–364 (2015). This study shows that merely believing that we are being looked back at by an interactive partner fundamentally changes the way we look at others.

    Article  PubMed  Google Scholar 

  16. Levine, J. M. Socially-shared cognition and consensus in small groups. Curr. Opin. Psychol. 23, 52–56 (2018).

    Article  PubMed  Google Scholar 

  17. Shteynberg, G. Shared attention. Perspect. Psychol. Sci. 10, 579–590 (2015).

    Article  PubMed  Google Scholar 

  18. Posner, M. I. Chronometric Explorations of Mind (Lawrence Erlbaum, 1978).

  19. Bindemann, M., Burton, A. M., Hooge, I. T. C., Jenkins, R. & de Haan, E. H. F. Faces retain attention. Psychon. Bull. Rev. 12, 1048–1053 (2005).

    Article  PubMed  Google Scholar 

  20. Rösler, L., End, A. & Gamer, M. Orienting towards social features in naturalistic scenes is reflexive. PLoS ONE 12, e0182037 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stein, T., Sterzer, P. & Peelen, M. V. Privileged detection of conspecifics: evidence from inversion effects during continuous flash suppression. Cognition 125, 64–79 (2012).

    Article  PubMed  Google Scholar 

  22. Capozzi, F., Bayliss, A. P. & Ristic, J. Gaze following in multi-agent contexts: evidence for a quorum-like principle. Psychon. Bull. Rev. 25, 2260–2266 (2018).

    Article  PubMed  Google Scholar 

  23. Capozzi, F. & Ristic, J. Attentional gaze dynamics in group interactions. Vis. Cogn. 30, 135–150 (2022).

    Article  Google Scholar 

  24. Gallup, A. C. et al. Visual attention and the acquisition of information in human crowds. Proc. Natl Acad. Sci. USA 109, 7245–7250 (2012). This study investigates gaze-following behaviours in real-life, crowded contexts and shows that behavioural contagion of gaze-following by passers-by plateaus at about 10–15 individuals showing consistent gaze.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Griffiths, S., Rhodes, G., Jeffery, L., Palermo, R. & Neumann, M. F. The average facial expression of a crowd influences impressions of individual expressions. J. Exp. Psychol. Hum. Percept. Perform. 44, 311–319 (2018).

    Article  PubMed  Google Scholar 

  26. Capozzi, F. & Ristic, J. How attention gates social interactions. Ann. N. Y. Acad. Sci. 1426, 179–198 (2018). This review shows that the attentional system interacts with three core processes — perception, interpretation and evaluation — to modulate selective responses to social environments.

    Article  Google Scholar 

  27. Ristic, J. & Enns, J. T. The changing face of attentional development. Curr. Dir. Psychol. Sci. 24, 24–31 (2015).

    Article  Google Scholar 

  28. Dalmaso, M., Castelli, L. & Galfano, G. Social modulators of gaze-mediated orienting of attention: a review. Psychon. Bull. Rev. 27, 833–855 (2020).

    Article  PubMed  Google Scholar 

  29. Jording, M., Hartz, A., Bente, G. & Vogeley, K. The “social gaze space”: gaze-based communication in triadic interactions. Front. Psychol. 9, 226 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stephenson, L. J., Edwards, S. G. & Bayliss, A. P. From gaze perception to social cognition: the shared attention system. Perspect. Psychol. Sci. 16, 553–576 (2021). This review integrates current knowledge about the building blocks of shared attention (gaze perception and joint attention) into a neurocognitive model (the shared-attention system) that encompasses the perceptual, cognitive and affective processes that are involved in shared-attention episodes.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Emery, N. J. The eyes have it: the neuroethology, function and evolution of social gaze. Neurosci. Biobehav. Rev. 24, 581–604 (2000).

    Article  PubMed  Google Scholar 

  32. Zuberbühler, K. Gaze following. Curr. Biol. 18, R453–R455 (2008).

    Article  PubMed  Google Scholar 

  33. Mundy, P. & Newell, L. Attention, joint attention, and social cognition. Curr. Dir. Psychol. Sci. 16, 269–274 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Edwards, S. G., Stephenson, L. J., Dalmaso, M. & Bayliss, A. P. Social orienting in gaze leading: a mechanism for shared attention. Proc. R. Soc. B 282, 20151141 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hietanen, J. K., Myllyneva, A., Helminen, T. M. & Lyyra, P. The effects of genuine eye contact on visuospatial and selective attention. J. Exp. Psychol. Gen. 145, 1102–1106 (2016).

    Article  PubMed  Google Scholar 

  36. Myllyneva, A. & Hietanen, J. K. There is more to eye contact than meets the eye. Cognition 134, 100–109 (2015). This study shows that eye contact resulted in greater autonomic and brain responses compared to averted gaze if a participant believed that the stimulus person was able to see them through the electronic shutter between them.

    Article  PubMed  Google Scholar 

  37. Hietanen, J. K. & Peltola, M. J. The eye contact smile: the effects of sending and receiving a direct gaze. Vis. Cogn. 29, 446–462 (2021).

    Article  Google Scholar 

  38. Goelman, G. et al. Bidirectional signal exchanges and their mechanisms during joint attention interaction — a hyperscanning fMRI study. Neuroimage 198, 242–254 (2019).

    Article  PubMed  Google Scholar 

  39. Klein, J. T., Shepherd, S. V. & Platt, M. L. Social attention and the brain. Curr. Biol. 19, R958–R962 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Driver, J. et al. Gaze perception triggers reflexive visuospatial orienting. Vis. Cogn. 6, 509–540 (1999).

    Article  Google Scholar 

  41. Friesen, C. K. & Kingstone, A. The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychon. Bull. Rev. 5, 490–495 (1998).

    Article  Google Scholar 

  42. Pereira, E. J., Birmingham, E. & Ristic, J. The eyes don’t have it after all? Attention is not automatically biased towards faces or eyes. Psychol. Res. 84, 1407–1423 (2020).

    Article  PubMed  Google Scholar 

  43. Farroni, T., Johnson, M. H., Brockbank, M. & Simion, F. Infants’ use of gaze direction to cue attention: the importance of perceived motion. Vis. Cogn. 7, 705–718 (2000).

    Article  Google Scholar 

  44. Ristic, J. et al. Eyes are special but not for everyone: the case of autism. Cogn. Brain Res. 24, 715–718 (2005).

    Article  Google Scholar 

  45. Shepherd, S. V. & Platt, M. L. Spontaneous social orienting and gaze following in ringtailed lemurs (Lemur catta). Anim. Cogn. 11, 13–20 (2008).

    Article  PubMed  Google Scholar 

  46. Ciardo, F., Marino, B. F. M., Actis-Grosso, R., Rossetti, A. & Ricciardelli, P. Face age modulates gaze following in young adults. Sci. Rep. 4, 4746 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rosati, A. G., Arre, A. M., Platt, M. L. & Santos, L. R. Rhesus monkeys show human-like changes in gaze following across the lifespan. Proc. R. Soc. B 283, 20160376 (2016). This study revealed that semi-free-ranging rhesus monkeys experience substantial ontogenetic changes in gaze-following, with striking similarities to gaze changes over the human lifespan.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hayward, D. A., Pereira, E. J., Otto, R. A. & Ristic, J. Smile! Social reward drives attention. J. Exp. Psychol. Hum. Percept. Perform. 44, 206–214 (2018).

    Article  PubMed  Google Scholar 

  49. Hayward, D. A. & Ristic, J. Feature and motion-based gaze cuing is linked with reduced social competence. Sci. Rep. 7, 44221 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hayward, D. A., Voorhies, W., Morris, J. L., Capozzi, F. & Ristic, J. Staring reality in the face: a comparison of social attention across laboratory and real world measures suggests little common ground. Can. J. Exp. Psychol. 71, 212–225 (2017).

    Article  PubMed  Google Scholar 

  51. Laidlaw, K. E. W., Foulsham, T., Kuhn, G. & Kingstone, A. Potential social interactions are important to social attention. Proc. Natl Acad. Sci. USA 108, 5548–5553 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dalmaso, M., Edwards, S. G. & Bayliss, A. P. Re-encountering individuals who previously engaged in joint gaze modulates subsequent gaze cueing. J. Exp. Psychol. Learn. Mem. Cogn. 42, 271–284 (2015).

    Article  PubMed  Google Scholar 

  53. Capozzi, F., Bayliss, A. P. & Ristic, J. Standing out from the crowd: both cue numerosity and social information affect attention in multi-agent contexts. Q. J. Exp. Psychol. 74, 1737–1746 (2021).

    Article  Google Scholar 

  54. Capozzi, F., Becchio, C., Willemse, C. & Bayliss, A. P. Followers are not followed: observed group interactions modulate subsequent social attention. J. Exp. Psychol. Gen. 145, 531–535 (2016).

    Article  PubMed  Google Scholar 

  55. Kinreich, S., Djalovski, A., Kraus, L., Louzoun, Y. & Feldman, R. Brain-to-brain synchrony during naturalistic social interactions. Sci. Rep. 7, 17060 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Fitzpatrick, P., Mitchell, T., Schmidt, R. C., Kennedy, D. & Frazier, J. A. Alpha band signatures of social synchrony. Neurosci. Lett. 699, 24–30 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Hietanen, J. K., Kylliäinen, A. & Peltola, M. J. The effect of being watched on facial EMG and autonomic activity in response to another individual’s facial expressions. Sci. Rep. 9, 1–10 (2019).

    Article  Google Scholar 

  58. Rocca, M. & Cavallo, A. Wired actions: anticipatory kinematic interference during a dyadic sequential motor interaction task. J. Exp. Psychol. Gen. 150, 1387–1397 (2021).

    Article  Google Scholar 

  59. Capozzi, F. et al. Tracking the leader: gaze behavior in group interactions. iScience 16, 242–249 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wolfe, J. M. & Horowitz, T. S. Five factors that guide attention in visual search. Nat. Hum. Behav. 1, 0058 (2017).

    Article  Google Scholar 

  61. Yarbus, A. L. Eye Movements and Vision Vol. 148 (Springer Science+Business Media, 1967).

  62. Hessels, R. S. How does gaze to faces support face-to-face interaction? A review and perspective. Psychon. Bull. Rev. 27, 856–881 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Colombatto, C., Chen, Y. C. & Scholl, B. J. Gaze deflection reveals how gaze cueing is tuned to extract the mind behind the eyes. Proc. Natl Acad. Sci. USA 117, 19825–19829 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Perez-Osorio, J., Müller, H. J., Wiese, E. & Wykowska, A. Gaze following is modulated by expectations regarding others’ action goals. PLoS One 10, e0143614 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  65. McCrackin, S. D. & Itier, R. J. Individual differences in the emotional modulation of gaze-cuing. Cogn. Emot. 33, 768–800 (2019).

    Article  PubMed  Google Scholar 

  66. Apperly, I. A. & Butterfill, S. A. Do humans have two systems to track beliefs and belief-like states? Psychol. Rev. 116, 953–970 (2009).

    Article  PubMed  Google Scholar 

  67. Lanthier, S. N., Zhu, M. J. H., Byun, C. S. J., Jarick, M. & Kingstone, A. The costs and benefits to memory when observing and experiencing live eye contact. Vis. Cogn. 30, 70–84 (2022).

    Article  Google Scholar 

  68. Horn, A., Mergenthaler, L. & Gamer, M. Situational and personality determinants of social attention in a waiting room scenario. Vis. Cogn. 30, 86–99 (2022).

    Article  Google Scholar 

  69. McCrackin, S. D., Capozzi, F., Mayrand, F. & Ristic, J. Face masks impair basic emotion recognition: group effects and individual variability. Soc. Psychol. https://doi.org/10.1027/1864-9335/a000470 (2022).

    Article  Google Scholar 

  70. Dalmaso, M., Pavan, G., Castelli, L. & Galfano, G. Social status gates social attention in humans. Biol. Lett. 8, 450–452 (2012).

    Article  PubMed  Google Scholar 

  71. Liuzza, M. T. et al. Follow my eyes: the gaze of politicians reflexively captures the gaze of ingroup voters. PLoS ONE 6, e25117 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wiese, E., Wykowska, A., Zwickel, J. & Müller, H. J. I see what you mean: how attentional selection is shaped by ascribing intentions to others. PLoS One 7, e45391 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Hudson, M., Nijboer, T. C. W. & Jellema, T. Implicit social learning in relation to autistic-like traits. J. Autism Dev. Disord. 42, 2534–2545 (2012).

    Article  PubMed  Google Scholar 

  74. Capozzi, F., Human, L. J. & Ristic, J. Attention promotes accurate impression formation. J. Pers. 88, 544–554 (2020).

    Article  PubMed  Google Scholar 

  75. Latif, N., Human, L. J., Capozzi, F. & Ristic, J. Intrapersonal behavioral coordination and expressive accuracy during first impressions. Soc. Psychol. Personal. Sci. 13, 150–159 (2022).

    Article  PubMed  Google Scholar 

  76. Dawson, J. & Foulsham, T. Your turn to speak? Audiovisual social attention in the lab and in the wild. Vis. Cogn. 30, 116–134 (2022).

    Article  Google Scholar 

  77. Haensel, J. X., Smith, T. J. & Senju, A. Cultural differences in mutual gaze during face-to-face interactions: a dual head-mounted eye-tracking study. Vis. Cogn. 30, 100–115 (2022).

    Article  Google Scholar 

  78. Isik, L., Mynick, A., Pantazis, D. & Kanwisher, N. The speed of human social interaction perception. NeuroImage 215, 116844 (2020).

    Article  PubMed  Google Scholar 

  79. Feinman, S., Roberts, D., Hsieh, K.-F., Sawyer, D. & Swanson, D. in Social Referencing And The Social Construction Of Reality In Infancy (ed. Feinman, S.) 15–54 (Plenum, 1992).

  80. Pierro, A., Mannetti, L., De Grada, E., Livi, S. & Kruglanski, A. W. Autocracy bias in informal groups under need for closure. Personal. Soc. Psychol. Bull. 29, 405–417 (2003).

    Article  Google Scholar 

  81. Ellyson, S. L. & Dovidio, J. F. Power, Dominance, And Nonverbal Behavior (Springer, 1985).

  82. Foddy, M. Patterns of gaze in cooperative and competitive negotiation. Hum. Relat. 31, 925–938 (1978).

    Article  Google Scholar 

  83. Kurzban, R. The social psychophysics of cooperation: nonverbal communication in a public good game. J. Nonverbal Behav. 25, 241–259 (2001).

    Article  Google Scholar 

  84. Dunbar, R. I. M., Duncan, N. D. C. & Nettle, D. Size and structure of freely forming conversational groups. Hum. Nat. 6, 67–78 (1995).

    Article  PubMed  Google Scholar 

  85. Sun, Z., Yu, W., Zhou, J. & Shen, M. Perceiving crowd attention: gaze following in human crowds with conflicting cues. Atten. Percept. Psychophys. 79, 1039–1049 (2017).

    Article  PubMed  Google Scholar 

  86. Baumeister, R. F., Ainsworth, S. E. & Vohs, K. D. Are groups more or less than the sum of their members? The moderating role of individual identification. Behav. Brain Sci. 29, e137 (2016).

    Article  Google Scholar 

  87. Feigenson, L., Dehaene, S. & Spelke, E. S. Core systems of number. Trends Cogn. Sci. 8, 307–314 (2004).

    Article  PubMed  Google Scholar 

  88. Hyde, D. C. Two systems of non-symbolic numerical cognition. Front. Hum. Neurosci. 5, 150 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Katzin, N., Cohen, Z. Z. & Henik, A. If it looks, sounds, or feels like subitizing, is it subitizing? A modulated definition of subitizing. Psychon. Bull. Rev. 26, 790–797 (2019).

    Article  PubMed  Google Scholar 

  90. Trick, L. M. & Pylyshyn, Z. W. Why are small and large numbers enumerated differently? A limited-capacity preattentive stage in vision. Psychol. Rev. 101, 80–102 (1994).

    Article  PubMed  Google Scholar 

  91. Cavanagh, P. & Alvarez, G. A. Tracking multiple targets with multifocal attention. Trends Cogn. Sci. 9, 349–354 (2005).

    Article  PubMed  Google Scholar 

  92. Cowan, N. The magical mystery four: how is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 19, 51–57 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Pylyshyn, Z. W. & Storm, R. W. Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spat. Vis. 3, 179–197 (1988).

    Article  PubMed  Google Scholar 

  94. Cohen, M. A., Dennett, D. C. & Kanwisher, N. What is the bandwidth of perceptual experience? Trends Cogn. Sci. 20, 324–335 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Piazza, M., Fumarola, A., Chinello, A. & Melcher, D. Subitizing reflects visuo-spatial object individuation capacity. Cognition 121, 147–153 (2011).

    Article  PubMed  Google Scholar 

  96. Tokita, M., Ueda, S. & Ishiguchi, A. Evidence for a global sampling process in extraction of summary statistics of item sizes in a set. Front. Psychol. 7, 711 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Brannon, E. M. The representation of numerical magnitude. Curr. Opin. Neurobiol. 16, 222–229 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lourenco, S. F. & Longo, M. R. General magnitude representation in human infants. Psychol. Sci. 21, 873–881 (2010).

    Article  PubMed  Google Scholar 

  99. Mix, K. S., Huttenlocher, J. & Levine, S. C. Multiple cues for quantification in infancy: is number one of them? Psychol. Bull. 128, 278–294 (2002).

    Article  PubMed  Google Scholar 

  100. Pun, A., Birch, S. A. J. & Baron, A. S. Foundations of reasoning about social dominance. Child. Dev. Perspect. 11, 155–160 (2017).

    Article  Google Scholar 

  101. Xu, F. & Spelke, E. S. Large number discrimination in 6-month-old infants. Cognition 74, B1–B11 (2000).

    Article  PubMed  Google Scholar 

  102. Whitney, D. & Yamanashi Leib, A. Ensemble perception. Annu. Rev. Psychol. 69, 105–129 (2018).

    Article  PubMed  Google Scholar 

  103. Capozzi, F., Cavallo, A., Furlanetto, T. & Becchio, C. Altercentric intrusions from multiple perspectives: beyond dyads. PLoS One 9, e114210 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Capozzi, F., Bayliss, A. P., Elena, M. R. & Becchio, C. One is not enough: group size modulates social gaze-induced object desirability effects. Psychon. Bull. Rev. 22, 850–855 (2015).

    Article  PubMed  Google Scholar 

  105. Capozzi, F., Wahn, B., Ristic, J. & Kingstone, A. Prior attentional bias is modulated by social gaze. Atten. Percept. Psychophys. 83, 1–6 (2021).

    Article  PubMed  Google Scholar 

  106. Deaner, R. O., Shepherd, S. V. & Platt, M. L. Familiarity accentuates gaze cuing in women but not men. Biol. Lett. 3, 64–67 (2007).

    Article  PubMed  Google Scholar 

  107. Deaner, R. O., Khera, A. V. & Platt, M. L. Monkeys pay per view: adaptive valuation of social images by rhesus macaques. Curr. Biol. 15, 543–548 (2005).

    Article  PubMed  Google Scholar 

  108. Shepherd, S. V., Deaner, R. O. & Platt, M. L. Social status gates social attention in monkeys. Curr. Biol. 16, R119–R120 (2006).

    Article  PubMed  Google Scholar 

  109. Carlson, J. M. & Aday, J. In the presence of conflicting gaze cues, fearful expression and eye-size guide attention. Cogn. Emot. 32, 1178–1188 (2018).

    Article  PubMed  Google Scholar 

  110. He, X., Yang, Y., Wang, L. & Yin, J. Tracking multiple perspectives: spontaneous computation of what individuals in high entitative groups see. Psychon. Bull. Rev. 28, 879–887 (2021).

    Article  PubMed  Google Scholar 

  111. Cracco, E. et al. Evidence for a two-step model of social group influence. iScience https://doi.org/10.1016/j.isci.2022.104891 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dyer, J. R. G., Johansson, A., Helbing, D., Couzin, I. D. & Krause, J. Leadership, consensus decision making and collective behaviour in humans. Phil. Trans. R. Soc. Lond. B 364, 781–789 (2009).

    Article  Google Scholar 

  113. Kingstone, A., Kachkovski, G., Vasilyev, D., Kuk, M. & Welsh, T. N. Mental attribution is not sufficient or necessary to trigger attentional orienting to gaze. Cognition 189, 35–40 (2019).

    Article  PubMed  Google Scholar 

  114. Lo, R. F., Ng, A. H., Cohen, A. S. & Sasaki, J. Y. Does self-construal shape automatic social attention? PLoS One 16, e0246577 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Alvarez, G. A. & Oliva, A. The representation of simple ensemble visual features outside the focus of attention. Psychol. Sci. 19, 392–398 (2008).

    Article  PubMed  Google Scholar 

  116. Huis in’t Veld, E. M. J. & De Gelder, B. From personal fear to mass panic: the neurological basis of crowd perception. Hum. Brain Mapp. 36, 2338–2351 (2015).

    Article  PubMed  Google Scholar 

  117. Raafat, R. M., Chater, N. & Frith, C. D. Herding in humans. Trends Cogn. Sci. 13, 420–428 (2009).

    Article  PubMed  Google Scholar 

  118. Alvarez, G. A. Representing multiple objects as an ensemble enhances visual cognition. Trends Cogn. Sci. 15, 122–131 (2011).

    Article  PubMed  Google Scholar 

  119. Weidmann, U., Kirsch, U. & Schreckenberg, M. Pedestrian and Evacuation Dynamics (Springer, 2012).

  120. Shiwakoti, N., Sarvi, M. & Burd, M. Similar crowd behavior in organisms of vastly different body size. J. Insect Behav. 27, 239–250 (2014).

    Article  Google Scholar 

  121. Vicsek, T. & Zafeiris, A. Collective motion. Phys. Rep. 517, 71–140 (2012).

    Article  Google Scholar 

  122. Im, H. Y. et al. Differential hemispheric and visual stream contributions ensemble coding of crowd emotion. Nat. Hum. Behav. 1, 828–842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Ariely, D. Seeing sets: representation by statistical properties. Psychol. Sci. 12, 157–162 (2001).

    Article  PubMed  Google Scholar 

  124. Haberman, J., Brady, T. F. & Alvarez, G. A. Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation. J. Exp. Psychol. Gen. 144, 432–446 (2015).

    Article  PubMed  Google Scholar 

  125. Yamanashi Leib, A. et al. Ensemble crowd perception: a viewpoint-invariant mechanism to represent average crowd identity. J. Vis. 14, 26 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Sweeny, T. D. & Whitney, D. Perceiving crowd attention: ensemble perception of a crowd’s gaze. Psychol. Sci. 25, 1903–1913 (2014). This study shows that humans form a summary representation of a crowd’s attention by rapidly pooling information from the attention of crowd members and combining information from head and pupil rotation.

    Article  PubMed  Google Scholar 

  127. Florey, J., Clifford, C. W. G., Dakin, S. & Mareschal, I. Spatial limitations in averaging social cues. Sci. Rep. 6, 32210 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Neumann, M. F., Schweinberger, S. R. & Burton, A. M. Viewers extract mean and individual identity from sets of famous faces. Cognition 128, 56–63 (2013).

    Article  PubMed  Google Scholar 

  129. Elias, E., Dyer, M. & Sweeny, T. D. Ensemble perception of dynamic emotional groups. Psychol. Sci. 28, 193–203 (2017).

    Article  PubMed  Google Scholar 

  130. Luo, A. X. & Zhou, G. Ensemble perception of facial attractiveness. J. Vis. 18, 1–19 (2018).

    Article  Google Scholar 

  131. Walker, D. & Vul, E. Hierarchical encoding makes individuals in a group seem more attractive. Psychol. Sci. 25, 230–235 (2014).

    Article  PubMed  Google Scholar 

  132. Goodale, B. M., Alt, N. P., Lick, D. J. & Johnson, K. L. Groups at a glance: perceivers infer social belonging in a group based on perceptual summaries of sex ratio. J. Exp. Psychol. Gen. 147, 1660–1676 (2018).

    Article  PubMed  Google Scholar 

  133. Haberman, J. & Whitney, D. Rapid extraction of mean emotion and gender from sets of faces. Curr. Biol. 17, 751–753 (2007).

    Article  Google Scholar 

  134. Haberman, J. & Whitney, D. Seeing the mean: ensemble coding for sets of faces. J. Exp. Psychol. Hum. Percept. Perform. 35, 718–734 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ji, L. & Pourtois, G. Capacity limitations to extract the mean emotion from multiple facial expressions depend on emotion variance. Vis. Res. 145, 39–48 (2018).

    Article  PubMed  Google Scholar 

  136. Alt, N. P., Goodale, B. M., Lick, D. J. & Johnson, K. L. Threat in the company of men: ensemble perception and threat evaluations of groups varying in sex ratio. Soc. Psychol. Personal. Sci. 10, 152–159 (2019).

    Article  Google Scholar 

  137. Jorjafki, E. M., Sagarin, B. J. & Butail, S. Drawing power of virtual crowds. J. R. Soc. Interf. 15, 20180335 (2018).

    Article  Google Scholar 

  138. Goldenberg, A., Weisz, E., Sweeny, T. D., Cikara, M. & Gross, J. J. The crowd-emotion-amplification effect. Psychol. Sci. 32, 437–450 (2021).

    Article  PubMed  Google Scholar 

  139. Papeo, L., Stein, T. & Soto-Faraco, S. The two-body inversion effect. Psychol. Sci. 28, 369–379 (2017).

    Article  PubMed  Google Scholar 

  140. Papeo, L., Goupil, N. & Soto-Faraco, S. Visual search for people among people. Psychol. Sci. 30, 1483–1496 (2019). This study shows that visual search in crowded contexts benefits from perceptual subgrouping of interacting (facing) dyads within a crowd.

    Article  PubMed  Google Scholar 

  141. Ding, X., Gao, Z. & Shen, M. Two equals one: two human actions during social interaction are grouped as one unit in working memory. Psychol. Sci. 28, 1311–1320 (2017).

    Article  PubMed  Google Scholar 

  142. Yin, J., Xu, H., Duan, J. & Shen, M. Object-based attention on social units: visual selection of hands performing a social interaction. Psychol. Sci. 29, 1040–1048 (2018).

    Article  PubMed  Google Scholar 

  143. Vestner, T., Gray, K. L. H. & Cook, R. Why are social interactions found quickly in visual search tasks? Cognition 200, 104270 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ji, L., Pourtois, G. & Sweeny, T. D. Averaging multiple facial expressions through subsampling. Vis. Cogn. 28, 41–58 (2020).

    Article  Google Scholar 

  145. Brady, T. F. & Alvarez, G. A. Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychol. Sci. 22, 384–392 (2011).

    Article  PubMed  Google Scholar 

  146. Pesimena, G., Wilson, C. J., Bertamini, M. & Soranzo, A. The role of perspective taking on attention: a review of the special issue on the reflexive attentional shift phenomenon. Vision 3, 1–15 (2019).

    Article  Google Scholar 

  147. Capozzi, F. & Ristic, J. Attention and mentalizing? Reframing a debate on social orienting of attention. Vis. Cogn. 28, 97–105 (2020).

    Article  Google Scholar 

  148. Cole, G. G. & Millett, A. C. The closing of the theory of mind: a critique of perspective-taking. Psychon. Bull. Rev. 26, 1787–1802 (2019).

    Article  PubMed  Google Scholar 

  149. Bukowski, H., Hietanen, J. K. & Samson, D. From gaze cueing to perspective taking: revisiting the claim that we automatically compute where or what other people are looking at. Vis. Cogn. 23, 1020–1042 (2016).

    Article  PubMed Central  Google Scholar 

  150. Ristic, J. & Capozzi, F. Interactive cognition: an introduction. Vis. Cogn. 30, 1–5 (2022).

    Article  Google Scholar 

  151. Feigenson, L. in Space, Time And Number In The Brain (eds Dehaene, S. & Brannon, E. M.) 13–22 (Academic, 2011).

  152. Anderson, B., Laurent, P. & Yantis, S. Value-driven attentional capture. Proc. Natl Acad. Sci. 108, 10367–10371 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Awh, E., Belopolsky, A. V. & Theeuwes, J. Top-down versus bottom-up attentional control: a failed theoretical dichotomy. Trends Cogn. Sci. 16, 437–443 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Süßenbach, F. & Schönbrodt, F. Not afraid to trust you: trustworthiness moderates gaze cueing but not in highly anxious participants. J. Cogn. Psychol. 26, 670–678 (2014).

    Article  Google Scholar 

  155. Lehmann-Willenbrock, N., Hung, H. & Keyton, J. New frontiers in analyzing dynamic group interactions: bridging social and computer science. Small Gr. Res. 48, 519–531 (2017).

    Article  Google Scholar 

  156. Waller, B. M., Hope, L., Burrowes, N. & Morrison, E. R. Twelve (not so) angry men: managing conversational group size increases perceived contribution by decision makers. Group Process. Intergr. Relat. 14, 835–843 (2011).

    Article  Google Scholar 

  157. Tuholski, S. W., Engle, R. W. & Baylis, G. C. Individual differences in working memory capacity and enumeration. Mem. Cogn. 29, 484–492 (2001).

    Article  Google Scholar 

  158. Scholl, B. J. & Pylyshyn, Z. W. Tracking multiple items through occlusion: clues to visual objecthood. Cogn. Psychol. 38, 259–290 (1999).

    Article  PubMed  Google Scholar 

  159. Pylyshyn, Z. Some puzzling findings in multiple object tracking (MOT): II. Inhibition of moving nontargets. Vis. Cogn. 14, 175–198 (2006).

    Article  Google Scholar 

  160. Pylyshyn, Z. W. Some puzzling findings in multiple object tracking: I. Tracking without keeping track of object identities. Vis. Cogn. 11, 801–822 (2004).

    Article  Google Scholar 

  161. Blaser, E., Pylyshyn, Z. W. & Holcombe, A. O. Tracking an object through feature space. Nature 408, 196–199 (2000).

    Article  PubMed  Google Scholar 

  162. VanMarle, K. & Scholl, B. J. Attentive tracking of objects vs. substances. Psychol. Sci. 14, 498–504 (2003).

    Article  PubMed  Google Scholar 

  163. Meyer, M. L. & Lieberman, M. D. Social working memory: neurocognitive networks and directions for future research. Front. Psychol. 3, 571 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Meyer, M. L., Spunt, R. P., Berkman, E. T., Taylor, S. E. & Lieberman, M. D. Evidence for social working memory from a parametric functional MRI study. Proc. Natl Acad. Sci. USA 109, 1883–1888 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Natural Sciences and Engineering Council (J.R.), the Social Sciences Engineering Council (J.R. and F.C.), the McGill University’s William Dawson Scholar award (J.R.) and the Fonds de recherche du Québec (F.C.).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Jelena Ristic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Gareth Edwards, HeeYeon Im and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cognitive ethology

A scientific approach that seeks to understand how human cognition unfolds in real-life natural conditions.

Second-person neuroscience

A scientific approach that seeks to understand how reciprocal and emotional engagement with other people influences human cognition and social behaviour.

Spectator-based paradigms

Paradigms that aim to study basic perceptual and evaluative processes using static displays of stimuli in highly controlled laboratory settings.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ristic, J., Capozzi, F. Mechanisms for individual, group-based and crowd-based attention to social information. Nat Rev Psychol 1, 721–732 (2022). https://doi.org/10.1038/s44159-022-00118-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00118-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing