Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The mnemonic basis of subjective experience

Abstract

Conscious experiences involve subjective qualities, such as colours, sounds, smells and emotions. In this Perspective, we argue that these subjective qualities can be understood in terms of their similarity to other experiences. This account highlights the role of memory in conscious experience, even for simple percepts. How an experience feels depends on implicit memory of the relationships between different perceptual representations within the brain. With more complex experiences such as emotions, explicit memories are also recruited. We draw inspiration from work in machine learning as well as the cognitive neuroscience of learning and decision making to make our case and discuss how the account could be tested in future experiments. The resulting findings might help to reveal the functions of subjective experience and inform current theoretical debates on consciousness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An example mental quality space for colour.
Fig. 2: The higher-order mnemonic account of consciousness.
Fig. 3: Prefrontal cortex connections with memory systems.

Similar content being viewed by others

References

  1. Rosenthal, D. How to think about mental qualities. Phil. Issues 20, 368–393 (2010).

    Article  Google Scholar 

  2. Clark, A. A Theory of Sentience (Oxford Univ. Press, 2000).

  3. Sellars, W. Science, Perception and Reality (Humanities Press, 1963).

  4. Squire, L. R. Memory and Brain vol. 315 (Oxford Univ. Press, 1987).

  5. Schacter, D. L., Buckner, R. L. & Koutstaal, W. Memory, consciousness and neuroimaging. Phil. Trans. R. Soc. Lond. B 353, 1861–1878 (1998).

    Article  Google Scholar 

  6. Tulving, E. in The Missing Link In Cognition: Origins Of Self-reflective Consciousness Vol. 364 (ed. Terrace, H. S.) 3–56 (Oxford Univ. Press, 2005).

  7. LeDoux, J. E. & Lau, H. Seeing consciousness through the lens of memory. Curr. Biol. 30, R1018–R1022 (2020).

    Article  PubMed  Google Scholar 

  8. Bruner, J. S. & Leigh Minturn, A. Perceptual identification and perceptual organization. J. Gen. Psychol. 53, 21–28 (1955).

    Article  Google Scholar 

  9. Allport, F. H. Theories of perception and the concept of structure: a review and critical analysis with an introduction to a dynamic-structural theory of behavior. Optom. Vis. Sci. 33, 216 (1955).

    Article  Google Scholar 

  10. Gregory, R. L. Concepts And Mechanisms Of Perception (Charles Scribner’s Sons, 1974).

  11. Graham, D. J., Friedenberg, J. D., Rockmore, D. N. & Field, D. J. Mapping the similarity space of paintings: image statistics and visual perception. Vis. Cogn. 18, 559–573 (2010).

    Article  Google Scholar 

  12. Summerfield, C. & de Lange, F. P. Expectation in perceptual decision making: neural and computational mechanisms. Nat. Rev. Neurosci. 15, 745–756 (2014).

    Article  PubMed  Google Scholar 

  13. Murray, E. A., Wise, S. P. & Graham, K. S. The Evolution of Memory Systems: Ancestors, Anatomy, and Adaptations (Oxford Univ. Press, 2017).

  14. Lamy, D., Carmel, T. & Peremen, Z. Prior conscious experience enhances conscious perception but does not affect response priming. Cognition 160, 62–81 (2017).

    Article  PubMed  Google Scholar 

  15. Marks, L. E. et al. Magnitude-matching: the measurement of taste and smell. Chem. Senses 13, 63–87 (1988).

    Article  Google Scholar 

  16. Olshausen, B. A. & Field, D. J. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004).

    Article  PubMed  Google Scholar 

  17. Rigotti, M. et al. The importance of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bernardi, S. et al. The geometry of abstraction in the hippocampus and prefrontal cortex. Cell 183, 954–967.e21 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rosca, M., Weber, T., Gretton, A. & Mohamed, S. A case for new neural network smoothness constraints. Preprint at arXiv https://arxiv.org/abs/2012.07969 (2020).

  20. Jin, P., Lu, L., Tang, Y. & Karniadakis, G. E. Quantifying the generalization error in deep learning in terms of data distribution and neural network smoothness. Neural Netw. 130, 85–99 (2020).

    Article  PubMed  Google Scholar 

  21. Bauer, A.-K. R., Debener, S. & Nobre, A. C. Synchronisation of neural oscillations and cross-modal influences. Trends Cogn. Sci. 24, 481–495 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thoen, H. H., How, M. J., Chiou, T.-H. & Marshall, J. A different form of color vision in mantis shrimp. Science 343, 411–413 (2014).

    Article  PubMed  Google Scholar 

  23. Brown, R., Lau, H. & LeDoux, J. E. Understanding the higher-order approach to consciousness. Trends Cogn. Sci. 23, 754–768 (2019).

    Article  PubMed  Google Scholar 

  24. Lau, H. & Rosenthal, D. The higher-order view does not require consciously self-directed introspection: response to Malach. Trends Cogn. Sci. 15, 508–509 (2011).

    Article  Google Scholar 

  25. Michel, M. & Lau, H. On the dangers of conflating strong and weak versions of a theory of consciousness. PhiMiSci https://doi.org/10.33735/phimisci.2020.II.54 (2020).

  26. Lamme, V. A. F. Towards a true neural stance on consciousness. Trends Cogn. Sci. 10, 494–501 (2006).

    Article  PubMed  Google Scholar 

  27. Lamme, V. A. F. Why visual attention and awareness are different. Trends Cogn. Sci. 7, 12–18 (2003).

    Article  PubMed  Google Scholar 

  28. Malach, R. Conscious perception and the frontal lobes: comment on Lau and Rosenthal. Trends Cogn. Sci. 15, 507 (2011).

    Article  PubMed  Google Scholar 

  29. Zeki, S. The disunity of consciousness. Trends Cogn. Sci. 7, 214–218 (2003).

    Article  PubMed  Google Scholar 

  30. Zeki, S. Localization and globalization in conscious vision. Annu. Rev. Neurosci. 24, 57–86 (2001).

    Article  PubMed  Google Scholar 

  31. Macknik, S. L. Visual masking approaches to visual awareness. Prog. Brain Res. 155, 177–215 (2006).

    Article  PubMed  Google Scholar 

  32. Macknik, S. L. & Martinez-Conde, S. in The Cognitive Neurosciences (ed. Gazzaniga, M. S.) 1165–1175 (MIT Press, 2009).

  33. Malach, R. Local neuronal relational structures underlying the contents of human conscious experience. Neurosci. Conscious. 2021, niab028 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kouider, S. & Dehaene, S. Levels of processing during non-conscious perception: a critical review of visual masking. Phil. Trans. R. Soc. Lond. B 362, 857–875 (2007).

    Article  Google Scholar 

  35. Mazzi, C., Savazzi, S. & Silvanto, J. On the ‘blindness’ of blindsight: what is the evidence for phenomenal awareness in the absence of primary visual cortex (V1)? Neuropsychologia 128, 103–108 (2019).

    Article  PubMed  Google Scholar 

  36. Silvanto, J., Cowey, A., Lavie, N. & Walsh, V. Making the blindsighted see. Neuropsychologia 45, 3346–3350 (2007).

    Article  PubMed  Google Scholar 

  37. Weil, R. S., Plant, G. T., James-Galton, M. & Rees, G. Neural correlates of hemianopic completion across the vertical meridian. Neuropsychologia 47, 457–464 (2009).

    Article  PubMed  Google Scholar 

  38. Weiskrantz, L. Prime-sight and blindsight. Conscious. Cogn. 11, 568–581 (2002).

    Article  PubMed  Google Scholar 

  39. Dehaene, S., Lau, H. & Kouider, S. What is consciousness, and could machines have it? Science 358, 486–492 (2017).

    Article  PubMed  Google Scholar 

  40. Dehaene, S. Consciousness And The Brain: Deciphering How the Brain Codes Our Thoughts (Penguin, 2014).

  41. Baars, B. J. A Cognitive Theory of Consciousness (Cambridge Univ. Press, 1988).

  42. Mashour, G. A., Roelfsema, P., Changeux, J.-P. & Dehaene, S. Conscious processing and the global neuronal workspace hypothesis. Neuron 105, 776–798 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pounder, Z., Jacob, J., Evans, S., Loveday, C., Eardley, A. F., & Silvanto, J. Only minimal differences between individuals with congenital aphantasia and those with typical imagery on neuropsychological tasks that involve imagery. Cortex 148, 180–192 (2022).

    Article  PubMed  Google Scholar 

  44. Keogh, R. & Pearson, J. The blind mind: no sensory visual imagery in aphantasia. Cortex 105, 53–60 (2018).

    Article  PubMed  Google Scholar 

  45. Kay, L., Keogh, R., Andrillion, T. & Pearson, J. The eyes have it: the pupillary light response as a physiological index of aphantasia, sensory and phenomenological imagery strength. Elife 11, e72484 (2022).

    Article  Google Scholar 

  46. Dehaene, S. & Naccache, L. Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79, 1–37 (2001).

    Article  PubMed  Google Scholar 

  47. Lau, H. Volition and the functions of consciousness. Neurosci. Res. 65, S28 (2009).

    Article  Google Scholar 

  48. Rosenthal, D. Consciousness And Mind (Clarendon, 2005).

  49. Lycan, W. in The Stanford Encyclopedia of Philosophy (Stanford University, 2019).

  50. Johnson, M. K. & Raye, C. L. Reality monitoring. Psychol. Rev. 88, 67–85 (1981).

    Article  Google Scholar 

  51. Johnson, M. K. Reality monitoring: an experimental phenomenological approach. J. Exp. Psychol. Gen. 117, 390–394 (1988).

    Article  Google Scholar 

  52. Simons, J. S., Garrison, J. R. & Johnson, M. K. Brain mechanisms of reality monitoring. Trends Cogn. Sci. 21, 462–473 (2017).

    Article  PubMed  Google Scholar 

  53. Lau, H. Consciousness, metacognition, & perceptual reality monitoring. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/ckbyf (2019).

  54. McCurdy, L. Y. et al. Anatomical coupling between distinct metacognitive systems for memory and visual perception. J. Neurosci. 33, 1897–1906 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Morales, J., Lau, H. & Fleming, S. M. Domain-general and domain-specific patterns of activity supporting metacognition in human prefrontal cortex. J. Neurosci. 38, 3534–3546 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Garrison, J. R. et al. Testing continuum models of psychosis: no reduction in source monitoring ability in healthy individuals prone to auditory hallucinations. Cortex 91, 197–207 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dijkstra, N., Mazor, M., Kok, P. & Fleming, S. Mistaking imagination for reality: congruent mental imagery leads to more liberal perceptual detection. Cognition 212, 104719 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Voss, U. et al. Induction of self awareness in dreams through frontal low current stimulation of gamma activity. Nat. Neurosci. 17, 810–812 (2014).

    Article  PubMed  Google Scholar 

  59. Fleming, S. M., Ryu, J., Golfinos, J. G. & Blackmon, K. E. Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions. Brain 137, 2811–2822 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ye, Q., Zou, F., Lau, H., Hu, Y. & Kwok, S. C. Causal evidence for mnemonic metacognition in human precuneus. J. Neurosci. 38, 6379–6387 (2018).

    Article  PubMed  Google Scholar 

  61. Miyamoto, K. et al. Causal neural network of metamemory for retrospection in primates. Science 355, 188–193 (2017).

    Article  PubMed  Google Scholar 

  62. Cleeremans, A. et al. Learning to be conscious. Trends Cogn. Sci. 24, 112–123 (2020).

    Article  PubMed  Google Scholar 

  63. Fleming, S. M. Awareness as inference in a higher-order state space. Neurosci. Conscious 2020, niz020 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Whyte, C. J. & Smith, R. The predictive global neuronal workspace: a formal active inference model of visual consciousness. Prog. Neurobiol. 199, 101918 (2021).

    Article  PubMed  Google Scholar 

  65. Koenig-Robert, R. & Pearson, J. Why do imagery and perception look and feel so different? Phil. Trans. R. Soc. Lond. B 376, 20190703 (2021).

    Article  Google Scholar 

  66. Muzur, A., Pace-Schott, E. F. & Hobson, J. A. The prefrontal cortex in sleep. Trends Cogn. Sci. 6, 475–481 (2002).

    Article  PubMed  Google Scholar 

  67. Zmigrod, L., Garrison, J. R., Carr, J. & Simons, J. S. The neural mechanisms of hallucinations: a quantitative meta-analysis of neuroimaging studies. Neurosci. Biobehav. Rev. 69, 113–123 (2016).

    Article  PubMed  Google Scholar 

  68. Narayanan, N. S., Rodnitzky, R. L. & Uc, E. Y. Prefrontal dopamine signaling and cognitive symptoms of Parkinson’s disease. Rev. Neurosci. 24, 267–278 (2013).

    Article  PubMed  Google Scholar 

  69. Fazekas, P. & Nemeth, G. Dream experiences and the neural correlates of perceptual consciousness and cognitive access. Phil. Trans. R. Soc. Lond. B 373, 20170356 (2018).

  70. Mendoza-Halliday, D. & Martinez-Trujillo, J. C. Neuronal population coding of perceived and memorized visual features in the lateral prefrontal cortex. Nat. Commun. 8, 15471 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Gershman, S. J. The generative adversarial brain. Front. Artif. Intell. Appl. 2, 18 (2019).

    Article  Google Scholar 

  72. Barceló, F., Suwazono, S. & Knight, R. T. Prefrontal modulation of visual processing in humans. Nat. Neurosci. 3, 399–403 (2000).

    Article  PubMed  Google Scholar 

  73. Bar, M. et al. Top-down facilitation of visual recognition. Proc. Natl Acad. Sci. USA 103, 449–454 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bar, M. A cortical mechanism for triggering top-down facilitation in visual object recognition. J. Cogn. Neurosci. 15, 600–609 (2003).

    Article  PubMed  Google Scholar 

  75. Tsushima, Y., Sasaki, Y. & Watanabe, T. Greater disruption due to failure of inhibitory control on an ambiguous distractor. Science 314, 1786–1788 (2006).

    Article  PubMed  Google Scholar 

  76. Kriete, T., Noelle, D. C., Cohen, J. D. & O’Reilly, R. C. Indirection and symbol-like processing in the prefrontal cortex and basal ganglia. Proc. Natl Acad. Sci. USA 110, 16390–16395 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Held, R. & Hein, A. Movement-produced stimulation in the development of visually guided behavior. J. Comp. Physiol. Psychol. 56, 872–876 (1963).

    Article  PubMed  Google Scholar 

  78. Hubel, D. H., Wiesel, T. N. & LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. R. Soc. Lond. B 278, 377–409 (1977).

    Article  Google Scholar 

  79. King, A. J., Hutchings, M. E., Moore, D. R. & Blakemore, C. Developmental plasticity in the visual and auditory representations in the mammalian superior colliculus. Nature 332, 73–76 (1988).

    Article  PubMed  Google Scholar 

  80. Weinberger, D. R. From neuropathology to neurodevelopment. Lancet 346, 552–557 (1995).

    Article  PubMed  Google Scholar 

  81. Merzenich, M. M. & Sameshima, K. Cortical plasticity and memory. Curr. Opin. Neurobiol. 3, 187–196 (1993).

    Article  PubMed  Google Scholar 

  82. Fiser, J. & Aslin, R. N. Unsupervised statistical learning of higher-order spatial structures from visual scenes. Psychol. Sci. 12, 499–504 (2001).

    Article  PubMed  Google Scholar 

  83. Recanzone, G. H. Rapidly induced auditory plasticity: the ventriloquism aftereffect. Proc. Natl Acad. Sci. USA 95, 869–875 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Moser, E. I., Kropff, E. & Moser, M.-B. Place cells, grid cells, and the brain’s spatial representation system. Annu. Rev. Neurosci. 31, 69–89 (2008).

    Article  PubMed  Google Scholar 

  85. O’Keefe, J. & Burgess, N. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15, 853–866 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B. & Moser, E. I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).

    Article  PubMed  Google Scholar 

  87. Qasim, S. E., Fried, I. & Jacobs, J. Phase precession in the human hippocampus and entorhinal cortex. Cell 184, 3242–3255.e10 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Doeller, C. F., Barry, C. & Burgess, N. Evidence for grid cells in a human memory network. Nature 463, 657–661 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bellmund, J. L. S., Gärdenfors, P., Moser, E. I. & Doeller, C. F. Navigating cognition: spatial codes for human thinking. Science 362, eaat6766 (2018).

  90. Nau, M., Navarro Schröder, T., Bellmund, J. L. S. & Doeller, C. F. Hexadirectional coding of visual space in human entorhinal cortex. Nat. Neurosci. 21, 188–190 (2018).

    Article  PubMed  Google Scholar 

  91. Bellmund, J. L., Deuker, L., Navarro Schröder, T. & Doeller, C. F. Grid-cell representations in mental simulation. eLife 5, e17089 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Constantinescu, A. O., O’Reilly, J. X. & Behrens, T. E. J. Organizing conceptual knowledge in humans with a gridlike code. Science 352, 1464–1468 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mark, S., Moran, R., Parr, T., Kennerley, S. W. & Behrens, T. E. J. Transferring structural knowledge across cognitive maps in humans and models. Nat. Commun. 11, 4783 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Aronov, D., Nevers, R. & Tank, D. W. Mapping of a non-spatial dimension by the hippocampal–entorhinal circuit. Nature 543, 719–722 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bao, X. et al. Grid-like neural representations support olfactory navigation of a two-dimensional odor space. Neuron 102, 1066–1075.e5 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. LeDoux, J. The Deep History of Ourselves: the Four-Billion-Year Story of How We Got Conscious Brains (Penguin, 2019).

  97. LeDoux, J. E. Thoughtful feelings. Curr. Biol. 30, R619–R623 (2020).

    Article  PubMed  Google Scholar 

  98. Johnson-Laird, P. N. Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness (Harvard Univ. Press, 1983).

  99. LeDoux, J. E. What emotions might be like in other animals. Curr. Biol. 31, R824–R829 (2021).

    Article  PubMed  Google Scholar 

  100. Passingham, R. E., Bengtsson, S. L. & Lau, H. C. Medial frontal cortex: from self-generated action to reflection on one’s own performance. Trends Cogn. Sci. 14, 16–21 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wagner, D. D., Haxby, J. V. & Heatherton, T. F. The representation of self and person knowledge in the medial prefrontal cortex. Wiley Interdiscip. Rev. Cogn. Sci. 3, 451–470 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sutherland, K. & Bryant, R. A. Autobiographical memory and the self-memory system in posttraumatic stress disorder. J. Anxiety Disord. 22, 555–560 (2008).

    Article  PubMed  Google Scholar 

  103. Olsson, A., Knapska, E. & Lindström, B. The neural and computational systems of social learning. Nat. Rev. Neurosci. 21, 197–212 (2020).

    Article  PubMed  Google Scholar 

  104. Isoda, M. The role of the medial prefrontal cortex in moderating neural representations of self and other in primates. Annu. Rev. Neurosci. 44, 295–313 (2021).

    Article  PubMed  Google Scholar 

  105. Ritchey, M., Libby, L. A. & Ranganath, C. Cortico-hippocampal systems involved in memory and cognition: the PMAT framework. Prog. Brain Res. 219, 45–64 (2015).

    Article  PubMed  Google Scholar 

  106. Gilboa, A. & Marlatte, H. Neurobiology of schemas and schema-mediated memory. Trends Cogn. Sci. 21, 618–631 (2017).

    Article  PubMed  Google Scholar 

  107. Damasio, A. & Carvalho, G. B. The nature of feelings: evolutionary and neurobiological origins. Nat. Rev. Neurosci. 14, 143–152 (2013).

    Article  PubMed  Google Scholar 

  108. Yeterian, E. H., Pandya, D. N., Tomaiuolo, F. & Petrides, M. The cortical connectivity of the prefrontal cortex in the monkey brain. Cortex 48, 58–81 (2012).

    Article  PubMed  Google Scholar 

  109. Curtis, C. E. Prefrontal and parietal contributions to spatial working memory. Neuroscience 139, 173–180 (2006).

    Article  PubMed  Google Scholar 

  110. Vilberg, K. L. & Rugg, M. D. Memory retrieval and the parietal cortex: a review of evidence from a dual-process perspective. Neuropsychologia 46, 1787–1799 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Cabeza, R., Ciaramelli, E., Olson, I. R. & Moscovitch, M. The parietal cortex and episodic memory: an attentional account. Nat. Rev. Neurosci. 9, 613–625 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Fischer, M., Moscovitch, M. & Alain, C. A systematic review and meta-analysis of memory-guided attention: frontal and parietal activation suggests involvement of fronto-parietal networks. Wiley Interdiscip. Rev. Cogn. Sci. 12, e1546 (2021).

    Article  PubMed  Google Scholar 

  113. Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. Parietal lobe contributions to episodic memory retrieval. Trends Cogn. Sci. 9, 445–453 (2005).

    Article  PubMed  Google Scholar 

  114. Berryhill, M. E., Picasso, L., Arnold, R., Drowos, D. & Olson, I. R. Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia 48, 1385–1393 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Katsuki, F. & Constantinidis, C. Unique and shared roles of the posterior parietal and dorsolateral prefrontal cortex in cognitive functions. Front. Integr. Neurosci. 6, 17 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R. & Olson, I. R. Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. J. Neurosci. 27, 14415–14423 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Tanaka, K. Z. & McHugh, T. J. The hippocampal engram as a memory index. J. Exp. Neurosci. 12, 1179069518815942 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Teyler, T. J. & Rudy, J. W. The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17, 1158–1169 (2007).

    Article  PubMed  Google Scholar 

  119. Wittkuhn, L., Chien, S., Hall-McMaster, S. & Schuck, N. W. Replay in minds and machines. Neurosci. Biobehav. Rev. https://doi.org/10.1016/j.neubiorev.2021.08.002 (2021).

  120. Endo, K., Tsuchimoto, Y. & Kazama, H. Synthesis of conserved odor object representations in a random, divergent-convergent network. Neuron 108, 367–381.e5 (2020).

    Article  PubMed  Google Scholar 

  121. Pashkovski, S. L. et al. Structure and flexibility in cortical representations of odour space. Nature 583, 253–258 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Dasgupta, S., Stevens, C. F. & Navlakha, S. A neural algorithm for a fundamental computing problem. Science 358, 793–796 (2017).

    Article  PubMed  Google Scholar 

  123. Dasgupta, S., Sheehan, T. C., Stevens, C. F. & Navlakha, S. A neural data structure for novelty detection. Proc. Natl Acad. Sci. USA 115, 13093–13098 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Dunsmoor, J. E. & Murphy, G. L. Categories, concepts, and conditioning: how humans generalize fear. Trends Cogn. Sci. 19, 73–77 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Tolman, E. C. Cognitive maps in rats and men. Psychol. Rev. 55, 189–208 (1948).

    Article  PubMed  Google Scholar 

  126. Gershman, S. J., Markman, A. B. & Otto, A. R. Retrospective revaluation in sequential decision making: a tale of two systems. J. Exp. Psychol. Gen. 143, 182–194 (2014).

    Article  PubMed  Google Scholar 

  127. Momennejad, I., Otto, A. R., Daw, N. D. & Norman, K. A. Offline replay supports planning in human reinforcement learning. eLife 7, e32548 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Schacter, D. L. & Addis, D. R. On the constructive episodic simulation of past and future events. Behav. Brain Sci. 30, 331–332 (2007).

    Article  Google Scholar 

  129. Schacter, D. L. Constructive memory: past and future. Dialogues Clin. Neurosci. 14, 7–18 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Addicott, M. A., Pearson, J. M., Sweitzer, M. M., Barack, D. L. & Platt, M. L. A primer on foraging and the explore/exploit trade-off for psychiatry research. Neuropsychopharmacology 42, 1931–1939 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mazor, M., Friston, K. J. & Fleming, S. M. Distinct neural contributions to metacognition for detecting, but not discriminating visual stimuli. eLife 9, e53900 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Miyamoto, K., Setsuie, R., Osada, T. & Miyashita, Y. Reversible silencing of the frontopolar cortex selectively impairs metacognitive judgment on non-experience in primates. Neuron 97, 980–989.e6 (2018).

    Article  PubMed  Google Scholar 

  133. Martino, B. D., De Martino, B., Fleming, S. M., Garrett, N. & Dolan, R. J. Confidence in value-based choice. Nat. Neurosci. 16, 105–110 (2013).

    Article  PubMed  Google Scholar 

  134. Donoso, M., Collins, A. G. E. & Koechlin, E. Foundations of human reasoning in the prefrontal cortex. Science 344, 1481–1486 (2014).

    Article  PubMed  Google Scholar 

  135. Morales, J. & Lau, H. in Qualitative Consciousness: Themes from the Philosophy of David Rosenthal (ed. Weisberg, J.) (Cambridge Univ. Press, 2021).

  136. Gherman, S. & Philiastides, M. G. Human VMPFC encodes early signatures of confidence in perceptual decisions. eLife 7, e38293 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Bang, D. & Fleming, S. M. Distinct encoding of decision confidence in human medial prefrontal cortex. Proc. Natl Acad. Sci. USA 115, 6082–6087 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Wittmann, M. K. et al. Self-other mergence in the frontal cortex during cooperation and competition. Neuron 91, 482–493 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.M.F. is funded by a Wellcome/Royal Society Sir Henry Dale Fellowship (206648/Z/17/Z) and a Philip Leverhulme Prize from the Leverhulme Trust. The Wellcome Centre for Human Neuroimaging is supported by core funding from the Wellcome Trust (203147/Z/16/Z). The Max Planck UCL Centre is a joint initiative supported by UCL and the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

H.L. led the writing and all other authors contributed equally to the remaining aspects of the article.

Corresponding author

Correspondence to Hakwan Lau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Peter Fazekas, Rafael Malach and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, H., Michel, M., LeDoux, J.E. et al. The mnemonic basis of subjective experience. Nat Rev Psychol 1, 479–488 (2022). https://doi.org/10.1038/s44159-022-00068-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00068-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing