Abstract
In humans and other gregarious animals, collective decision-making is a robust behavioural feature of groups. Pooling individual information is also fundamental for modern societies, in which digital technologies have exponentially increased the interdependence of individual group members. In this Review, we selectively discuss the recent human and animal literature, focusing on cognitive and behavioural mechanisms that can yield collective intelligence beyond the wisdom of crowds. We distinguish between two group decision-making situations: consensus decision-making, in which a group consensus is required, and combined decision-making, in which a group consensus is not required. We show that in both group decision-making situations, cognitive and behavioural algorithms that capitalize on individual heterogeneity are the key for collective intelligence to emerge. These algorithms include accuracy or expertise-weighted aggregation of individual inputs and implicit or explicit coordination of cognition and behaviour towards division of labour. These mechanisms can be implemented either as ‘cognitive algebra’, executed mainly within the mind of an individual or by some arbitrating system, or as a dynamic behavioural aggregation through social interaction of individual group members. Finally, we discuss implications for collective decision-making in modern societies characterized by a fluid but auto-correlated flow of information and outline some future directions.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Behavioral and neuro-cognitive bases for emergence of norms and socially shared realities via dynamic interaction
Communications Biology Open Access 15 December 2022
-
Insights about the common generative rule underlying an information foraging task can be facilitated via collective search
Scientific Reports Open Access 16 May 2022
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$59.00 per year
only $4.92 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Surowiecki, J. The Wisdom of Crowds: Why the Many are Smarter Than the Few and How Collective Wisdom Shapes Business Economies Societies and Nations (Doubleday, 2004).
Galton, F. Vox populi. Nature 75, 450–451 (1907).
Bonabeau, E., Dorigo, M. & Theraulaz, G. Swarm Intelligence: From Natural to Artificial Systems (Oxford Univ. Press, 1999).
Grofman, B. & Feld, S. L. Rousseau’s general will: a Condorcetian perspective. Am. Polit. Sci. Rev. 82, 567–576 (1988).
Young, H. P. Condorcet’s theory of voting. Am. Polit. Sci. Rev. 82, 1231–1244 (1988).
Simons, A. M. Many wrongs: the advantage of group navigation. Trends Ecol. Evol. 19, 453–455 (2004).
Ward, P. & Zahavi, A. The importance of certain assemblages of birds as information centres for food-finding. Ibis 115, 517–534 (1973).
Conradt, L. & Roper, T. J. Consensus decision making in animals. Trends Ecol. Evol. 20, 449–456 (2005).
Giraldeau, L. A., Valone, T. J. & Templeton, J. J. Potential disadvantages of using socially acquired information. Philos. Trans. R. Soc. B 357, 1559–1566 (2002).
Laland, K. N. & Williams, K. Social transmission of maladaptive information in the guppy. Behav. Ecol. 9, 493–499 (1998).
Kameda, T. & Hastie, R. in Emerging Trends in the Social and Behavioral Sciences 1–14 (Wiley, 2015).
Toyokawa, W., Whalen, A. & Laland, K. N. Social learning strategies regulate the wisdom and madness of interactive crowds. Nat. Hum. Behav. 3, 183–193 (2019).
Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311 (1971).
Doi, K., Takagi, T., Mitsunaga, Y. & Torisawa, S. Hydrodynamical effect of parallelly swimming fish using computational fluid dynamics method. PLoS ONE 16, e0250837 (2021).
Lukas, D. & Clutton-Brock, T. Life histories and the evolution of cooperative breeding in mammals. Proc. R. Soc. B 279, 4065–4070 (2012).
Krause, J. & Ruxton, G. D. Living in Groups (Oxford Univ. Press, 2002).
Safire, W. On language: fat tail. New York Times Magazine (5 February 2009).
Mattern, F. & Floerkemeier, C. in From Active Data Management to Event-Based Systems and More. Lecture Notes in Computer Science (eds Sachs, K., Petrov, I. & Guerrero, P.) 6462 (Springer, 2010).
Hardin, G. The tragedy of the commons. The population problem has no technical solution; it requires a fundamental extension in morality. Science 162, 1243–1248 (1968).
Le Bon, G. & Nye, R. A. The Crowd (Routledge, 1995).
Müller-Trede, J., Choshen-Hillel, S., Barneron, M. & Yaniv, I. The wisdom of crowds in matters of taste. Manage. Sci. 64, 1779–1803 (2018).
Grofman, B. & Owen, G. Information Pooling and Group Decision Making (JAI Press, 1986).
Kerr, N. L. & Tindale, R. S. Group performance and decision making. Annu. Rev. Psychol. 55, 623–655 (2004).
Stasser, G. & Abele, S. Collective choice, collaboration, and communication. Annu. Rev. Psychol. 71, 589–612 (2020).
Davis, J. H. Group decision and social interaction: a theory of social decision schemes. Psychol. Rev. 80, 97–125 (1973).
Davis, J. H. in Understanding Group Behavior: Consensual Action By Small Groups (eds Witte, E. H. & Davis, J. H.) 35–59 (Erlbaum, 1996).
Tindale, R. S. & Kameda, T. ‘Social sharedness’ as a unifying theme for information processing in groups. Group Process. Intergroup Relat. 3, 123–140 (2000).
Kameda, T., Tindale, R. S. & Davis, J. H. in Emerging Perspectives on Judgment and Decision Research (eds Schneider, S. L. & Shanteau, J.) 215–240 (Cambridge Univ. Press, 2003).
Laughlin, P. R. Group Problem Solving (Princeton Univ. Press, 2011).
Hastie, R. & Kameda, T. The robust beauty of majority rules in group decisions. Psychol. Rev. 112, 494–508 (2005).
Kameda, T., Tsukasaki, T., Hastie, R. & Berg, N. Democracy under uncertainty: the wisdom of crowds and the free-rider problem in group decision making. Psychol. Rev. 118, 76–96 (2011).
Gigerenzer, G., Todd, P. M. & The ABC Research Group. Simple Heuristics that Make us Smart (Oxford Univ. Press, 1999).
Franks, N. R., Mallon, E. B., Bray, H. E., Hamilton, M. J. & Mischler, T. C. Strategies for choosing between alternatives with different attributes: exemplified by house-hunting ants. Anim. Behav. 65, 215–223 (2003).
Pratt, S. C., Sumpter, D. J. T., Mallon, E. B. & Franks, N. R. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Anim. Behav. 70, 1023–1036 (2005).
Seeley, T. D. & Visscher, P. K. Choosing a home: how the scouts in a honey bee swarm perceive the completion of their group decision making. Behav. Ecol. Sociobiol. 54, 511–520 (2003).
Ward, A. J. W., Sumpter, D. J. T., Couzin, I. D., Hart, P. J. B. & Krause, J. Quorum decision-making facilitates information transfer in fish shoals. Proc. Natl Acad. Sci. USA 105, 6948–6953 (2008).
Sueur, C., Deneubourg, J.-L. & Petit, O. Sequence of quorums during collective decision making in macaques. Behav. Ecol. Sociobiol. 64, 1875–1885 (2010).
Kameda, T., Wisdom, T., Toyokawa, W. & Inukai, K. Is consensus-seeking unique to humans? A selective review of animal group decision-making and its implications for (human) social psychology. Group Process. Intergroup Relat. 15, 673–689 (2012).
Wolf, M., Kurvers, R. H. J. M., Ward, A. J. W., Krause, S. & Krause, J. Accurate decisions in an uncertain world: collective cognition increases true positives while decreasing false positives. Proc. R. Soc. B 280, 20122777 (2013).
Marshall, J. A. R., Brown, G. & Radford, A. N. Individual confidence-weighting and group decision-making. Trends Ecol. Evol. 32, 636–645 (2017).
Walker, R. H., King, A. J., McNutt, J. W. & Jordan, N. R. Sneeze to leave: African wild dogs (Lycaon pictus) use variable quorum thresholds facilitated by sneezes in collective decisions. Proc. R. Soc. B 284, 20170347 (2017).
Dawes, R. M. & Corrigan, B. Linear models in decision making. Psychol. Bull. 81, 95–106 (1974).
Einhorn, H. J. & Hogarth, R. M. Unit weighting schemes for decision making. Org. Behav. Hum. Perf. 13, 171–192 (1975).
Clemen, R. T. Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5, 559–583 (1989).
Makridakis, S., Spiliotis, E. & Assimakopoulos, V. The M4 competition: results, findings, conclusion and way forward. Int. J. Forecast. 34, 802–808 (2018).
Steyvers, M. & Miller, B. in Handbook of Collective Intelligence (eds Malone, T. W. & Bernstein, M. S.) 119–138 (MIT Press, 2004).
Aspinall, W. A route to more tractable expert advice. Nature 463, 294–295 (2010).
Budescu, D. V. & Chen, E. Identifying expertise to extract the wisdom of crowds. Manage. Sci. 61, 267–280 (2015).
Cooke, R. M. Experts in Uncertainty: Opinion and Subjective Probability in Science (Oxford Univ. Press, 1991).
Koriat, A. When are two heads better than one and why? Science 336, 360–362 (2012).
Koriat, A. When two heads are better than one and when they can be worse: the amplification hypothesis. J. Exp. Psychol. Gen. 144, 934–950 (2015).
Shanteau, J., Weiss, D. J., Thomas, R. P. & Pounds, J. C. Performance-based assessment of expertise: how to decide if someone is an expert or not? Eur. J. Oper. Res. 136, 253–263 (2002).
Kurvers, R. H. J. M. et al. How to detect high-performing individuals and groups: decision similarity predicts accuracy. Sci. Adv. 5, eaaw9011 (2019).
Genre, V., Kenny, G., Meyler, A. & Timmermann, A. Combining expert forecasts: can anything beat the simple average?. Int. J. Forecast. 29, 108–121 (2013).
Claeskens, G., Magnus, J. R., Vasnev, A. L. & Wang, W. The forecast combination puzzle: a simple theoretical explanation. Int. J. Forecast. 32, 754–762 (2016).
Blanc, S. M. & Setzer, T. Bias-variance trade-off and shrinkage of weights in forecast combination. Manage. Sci. 66, 5720–5737 (2020).
Page, S. E. The Difference: How the Power Of Diversity Creates Better Groups, Firms, Schools, and Societies (Princeton Univ. Press, 2008).
Lamberson, P. J. & Page, S. E. Optimal forecasting groups. Manage. Sci. 58, 805–810 (2012).
Holden, K., Peel, D. A. & Thompson, J. L. in Economic Forecasting: An Introduction (eds Holden, K., Peel, D. A. & Thompson, J. L.) 85–107 (Cambridge Univ. Press, 1990).
Soll, J. B. & Larrick, R. P. Strategies for revising judgment: how (and how well) people use others’ opinions. J. Exp. Psychol. Learn. 35, 780–805 (2009).
Mannes, A. E., Soll, J. B. & Larrick, R. P. The wisdom of select crowds. J. Per. Soc. Psychol. 107, 276–299 (2014).
Rowe, G. & Wright, G. The Delphi technique as a forecasting tool: issues and analysis. Int. J. Forecast. 15, 353–375 (1999).
Lorenz, J., Rauhut, H., Schweitzer, F. & Helbing, D. How social influence can undermine the wisdom of crowd effect. Proc. Natl Acad. Sci. USA 108, 9020–9025 (2011).
Becker, J., Brackbill, D. & Centola, D. Network dynamics of social influence in the wisdom of crowds. Proc. Natl Acad. Sci. USA 114, 5070–5076 (2017).
Mahmoodi, A. et al. Equality bias impairs collective decision-making across cultures. Proc. Natl. Acad. Sci. USA 112, 3835–3840 (2015).
Jayles, B. et al. How social information can improve estimation accuracy in human groups. Proc. Natl Acad. Sci. USA 114, 12620–12625 (2017).
Jayles, B. et al. The impact of incorrect social information on collective wisdom in human groups: the impact of incorrect social information on collective wisdom in human groups. J. R. Soc. Interface 17, 20200496 (2020).
Almaatouq, A., Noriega-campero, A., Alotaibi, A. & Krafft, P. M. Adaptive social networks promote the wisdom of crowds. Proc. Natl Acad. Sci. USA 117, 11379–11386 (2020).
Silver, I., Mellers, B. A. & Tetlock, P. E. Wise teamwork: collective confidence calibration predicts the effectiveness of group discussion. J. Exp. Soc. Psychol. 96, 104157 (2021).
Mahmoudi, A., Bahrami, B. & Mehring, C. Reciprocity of social influence. Nat. Commun. 9, 2474 (2018).
Navajas, J., Niella, T., Garbulsky, G., Bahrami, B. & Sigman, M. Aggregated knowledge from a small number of debates outperforms the wisdom of large crowds. Nat. Hum. Behav. 2, 126–132 (2018).
Mellers, B. et al. Psychological strategies for winning a geopolitical forecasting tournament. Psychol. Sci. 25, 1106–1115 (2014).
Mellers, B. et al. Identifying and cultivating superforecasters as a method of improving probabilistic predictions. Pers. Psychol. Sci. 10, 267–281 (2015).
Yaniv, I. Receiving other people’s advice: influence and benefit. Org. Behav. Hum. Dec. Process. 93, 1–13 (2004).
Yaniv, I. & Kleinberger, E. Advice taking in decision making: egocentric discounting and reputation Formation. Org. Behav. Hum. Dec. Process. 83, 260–281 (2000).
Bahrami, B. et al. Optimally interacting minds. Science 329, 1081–1085 (2010).
Bahrami, B. et al. What failure in collective decision-making tells us about metacognition. Philos. Trans. R. Soc. B 367, 1350–1365 (2012).
Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005).
Sorkin, R. D., Hays, C. J. & West, R. Signal-detection analysis of group decision making. Psychol. Rev. 108, 183–203 (2001).
Bang, D. et al. Confidence matching in group decision-making. Nat. Hum. Behav. 1, 0117 (2017).
Pescetelli, N., Hauperich, A. K. & Yeung, N. Confidence, advice seeking and changes of mind in decision making. Cognition 215, 104810 (2021).
Tump, A. N., Pleskac, T. J. & Kurvers, R. H. J. M. Wise or mad crowds? The cognitive mechanisms underlying information cascades. Sci. Adv. 6, eabb0266 (2020).
Bennett, S. T., Benjamin, A. S. & Steyvers, M. A Bayesian model of knowledge and metacognitive control. In Proc. 39th Annual Conference of the Cognitive Science Society (eds Gunzelmann, G., Howes, A., Tenbrink, T. & Davelaar, E.) 1623–1628 (Cognitive Science Society, 2017).
Bennett, S. T., Benjamin, A. S., Mistry, P. K. & Steyvers, M. Making a wiser crowd: benefits of individual metacognitive control on crowd performance. Comp. Brain Behav. 1, 90–99 (2018).
Merkle, E. C., Steyvers, M., Mellers, B. & Tetlock, P. E. A neglected dimension of good forecasting judgment: the questions we choose also matter. Int. J. Forecast. 33, 817–832 (2017).
Cattell, R. B. Theory of fluid and crystallized intelligence: a critical experiment. J. Edu. Psychol. 54, 1–22 (1963).
Kuroda, K. & Kameda, T. You watch my back, I’ll watch yours: emergence of collective risk monitoring through tacit coordination in human social foraging. Evol. Hum. Behav. 40, 427–435 (2019).
Cohen, J. D., McClure, S. M. & Yu, A. J. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Philos. Trans. R. Soc. B 362, 933–942 (2007).
Hills, T. T., Todd, P. M., Lazer, D., Redish, A. D. & Couzin, I. D. Exploration versus exploitation in space, mind, and society. Trends Cogn. Sci. 19, 46–54 (2015).
Hoppitt, W. & Laland, K. N. Social Learning: An Introduction to Mechanisms, Methods, and Models (Princeton Univ. Press, 2013).
Heyes, C. M. Social learning in animals: categories and mechanisms. Biol. Rev. Camb. Philos. Soc. 69, 207–231 (1994).
Kendal, R. L. et al. Social learning strategies: bridge-building between fields. Trends. Cogn. Sci. 22, 651–665 (2018).
Laland, K. N. Social learning strategies. Learn. Behav. 32, 4–14 (2004).
Boyd, R. & Richerson, P. J. Culture and the Evolutionary Process (Univ. Chicago Press, 1985).
Aoki, K. & Feldman, M. W. Evolution of learning strategies in temporally and spatially variable environments: a review of theory. Theor. Popul. Biol. 91, 3–19 (2014).
Rendell, L. et al. Why copy others? Insights from the social learning strategies tournament. Science 328, 208–213 (2010).
Brand, C. O., Heap, S., Morgan, T. J. H. & Mesoudi, A. The emergence and adaptive use of prestige in an online social learning task. Sci. Rep. 10, 12095 (2020).
Derex, M., Beugin, M.-P., Godelle, B. & Raymond, M. Experimental evidence for the influence of group size on cultural complexity. Nature 503, 389–391 (2013).
Kameda, T. & Nakanishi, D. Does social/cultural learning increase human adaptability? Rogers’s question revisited. Evol. Hum. Behav. 24, 242–260 (2003).
Kameda, T. & Nakanishi, D. Cost–benefit analysis of social/cultural learning in a nonstationary uncertain environment. Evol. Hum. Behav. 23, 373–393 (2002).
Miu, E., Gulley, N., Laland, K. N. & Rendell, L. Innovation and cumulative culture through tweaks and leaps in online programming contests. Nat. Commun. 9, 2321 (2018).
Toyokawa, W., Kim, H.-R. & Kameda, T. Human collective intelligence under dual exploration-exploitation dilemmas. PLoS ONE 9, e95789 (2014).
Wisdom, T. N., Song, X. & Goldstone, R. L. Social learning strategies in networked groups. Cogn. Sci. 37, 1383–1425 (2013).
Camazine, S. et al. Self-Organization in Biological Systems (Princeton Univ. Press, 2001).
Salganik, M. J., Dodds, P. S. & Watts, D. J. Experimental study of inequality and unpredictability in an artificial cultural market. Science 311, 854–856 (2006).
Moussaïd, M., Brighton, H. & Gaissmaier, W. The amplification of risk in experimental diffusion chains. Proc. Natl Acad. Sci. USA 112, 5631–5636 (2015).
Seeley, T., Camazine, S. & Sneyd, J. Collective decision-making in honey bees: how colonies choose among nectar sources. Behav. Ecol. Sociobiol. 28, 277–290 (1991).
Bolton, P. & Harris, C. Strategic experimentation. Econometrica 67, 349–374 (1999).
Giraldeau, L. A. & Caraco, T. Social Foraging Theory (Princeton Univ. Press, 2000).
Grüter, C. & Leadbeater, E. Insights from insects about adaptive social information use. Trends Ecol. Evol. 29, 177–184 (2014).
King, A. J. & Cowlishaw, G. When to use social information: the advantage of large group size in individual decision making. Biol. Lett. 3, 137–139 (2007).
Nakahashi, W. The evolution of conformist transmission in social learning when the environment changes periodically. Theor. Popul. Biol. 72, 52–66 (2007).
Toyokawa, W. & Gaissmaier, W. Conformist social learning leads to self-organised prevention against adverse bias in risky decision making. Preprint at bioRxiv https://doi.org/10.1101/2021.02.22.432286 (2021).
Asch, S. E. Studies of independence and conformity: I. A minority of one against a unanimous majority. Psychol. Monogr. Gen. Appl. 70, 1–70 (1956).
Deutsch, M. & Gerard, H. B. A study of normative and informational social influences upon individual judgment. J. Abnorm. Soc. Psychol. 51, 629–636 (1955).
Bond, R. Group size and conformity. Group Process. Intergroup. Relat. 8, 331–354 (2005).
Raafat, R. M., Chater, N. & Frith, C. Herding in humans. Trends Cogn. Sci. 13, 420–428 (2009).
Thompson, B. & Griffiths, T. L. Human biases limit cumulative innovation. Proc. R. Soc. B 288, 20202752 (2021).
List, C., Elsholtz, C. & Seeley, T. D. Independence and interdependence in collective decision making: an agent-based model of nest-site choice by honeybee swarms. Philos. Trans. R. Soc. B 364, 755–762 (2009).
Banerjee, A. V. A simple model of herd behavior. Q. J. Econ. 107, 797–817 (1992).
Bikhchandani, S., Hirshleifer, D. & Welch, I. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ. 100, 992–1026 (1992).
Cialdini, R. B. & Goldstein, N. J. Social influence: compliance and conformity. Annu. Rev. Psychol. 55, 591–621 (2004).
Biele, G., Rieskamp, J., Krugel, L. K. & Heekeren, H. R. The neural basis of following advice. PLoS Biol. 9, e1001089 (2011).
Najar, A., Bonnet, E., Bahrami, B. & Palminteri, S. The actions of others act as a pseudo-reward to drive imitation in the context of social reinforcement learning. PLoS Biol. 18, e3001028 (2020).
Heyes, C. M., Ray, E. D., Mitchell, C. J. & Nokes, T. Stimulus enhancement: controls for social facilitation and local enhancement. Learn. Motiv. 31, 83–98 (2000).
Deffner, D., Kleinow, V. & McElreath, R. Dynamic social learning in temporally and spatially variable environments. R. Soc. Open. Sci. 7, 200734 (2020).
McElreath, R. & Strimling, P. When natural selection favors imitation of parents. Curr. Anthropol. 49, 307–316 (2008).
Toyokawa, W., Saito, Y. & Kameda, T. Individual differences in learning behaviours in humans: asocial exploration tendency does not predict reliance on social learning. Evol. Hum. Behav. 38, 325–333 (2017).
Aplin, L. M., Sheldon, B. C. & McElreath, R. Conformity does not perpetuate suboptimal traditions in a wild population of songbirds. Proc. Natl Acad. Sci. USA 114, 7830–7837 (2017).
Barrett, B. J., McElreath, R. L. & Perry, S. E. Payoff-biased social learning underlies the diffusion of novel extractive foraging traditions in a wild primate. Proc. R. Soc. B 284, 20170358 (2017).
Larrick, R. P. & Soll, J. B. Intuitions about combining opinions: misappreciation of the averaging principle. Manage. Sci. 52, 111–127 (2006).
Kerr, N. L. & Tindale, R. S. Group-based forecasting?: A social psychological analysis. Int. J. Forecast. 27, 14–40 (2011).
Brodbeck, F. C., Kerschreiter, R., Mojzisch, A. & Schulz-Hardt, S. Group decision making under conditions of distributed knowledge: the information asymmetries model. Acad. Manage. Rev. 32, 459–479 (2007).
Stasser, G. & Stewart, D. Discovery of hidden profiles by decision-making groups: solving a problem versus making a judgment. J. Pers. Soc. Psychol. 63, 426–434 (1992).
Winquist, J. R. & Larson, J. R. Information pooling: when it impacts group decision making. J. Pers. Soc. Psychol. 74, 371–377 (1998).
Prelec, D., Seung, H. S. & McCoy, J. A solution to the single-question crowd wisdom problem. Nature 541, 532–535 (2017).
Byrne, D. E. The attraction paradigm. Behav. Ther. 3, 337–338 (1972).
Latané, B. & Bourgeois, M. J. in Blackwell Handbook of Social Psychology: Group Processes (eds Hogg, M. A. & Tindale, R. S.) 235–258 (Blackwell, 2001).
Nickerson, R. S. Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175–220 (1998).
Giese, H., Neth, H., Moussaïd, M., Betsch, C. & Gaissmaier, W. The echo in flu-vaccination echo chambers: selective attention trumps social influence. Vaccine 38, 2070–2076 (2020).
Wittenbaum, G. M., Hollingshead, A. B. & Botero, I. C. From cooperative to motivated information sharing in groups: moving beyond the hidden profile paradigm. Commun. Monogr. 71, 286–310 (2004).
Toma, C. & Butera, F. Hidden profiles and concealed information: strategic information sharing and use in group decision making. Pers. Soc. Psychol. Bull. 35, 793–806 (2009).
Mojzisch, A. & Schulz-Hardt, S. Knowing others’ preferences degrades the quality of group decisions. J. Pers. Soc. Psychol. 98, 794–808 (2010).
Wittenbaum, G. M., Hubbell, A. P. & Zuckerman, C. Mutual enhancement: toward an understanding of the collective preference for shared information. J. Pers. Soc. Psychol. 77, 967–978 (1999).
Woolley, A. W., Chabris, C. F., Pentland, A., Hashmi, N. & Malone, T. W. Evidence for a collective intelligence factor in the performance of human groups. Science 330, 686–688 (2010).
Woolley, A. W., Aggarwal, I. & Malone, T. W. Collective intelligence and group performance. Curr. Dir. Psychol. Sci. 24, 420–424 (2015).
MacIejovsky, B. & Budescu, D. V. Collective induction without cooperation? Learning and knowledge transfer in cooperative groups and competitive auctions. J. Pers. Soc. Psychol. 92, 854–870 (2007).
Mesoudi, A. An experimental simulation of the “copy-successful-individuals” cultural learning strategy: adaptive landscapes, producer-scrounger dynamics, and informational access costs. Evol. Hum. Behav. 29, 350–363 (2008).
Miton, H. & Charbonneau, M. Cumulative culture in the laboratory: methodological and theoretical challenges. Proc. R. Soc. B 285, 20180677 (2018).
Tindale, R. S. Group vs individual information processing: the effects of outcome feedback on decision making. Org. Behav. Hum. Dec. Process. 44, 454–473 (1989).
Mercier, H. The argumentative theory: predictions and empirical evidence. Trends. Cogn. Sci. 20, 689–700 (2016).
Winget, J. R., Ottati, V. & Tindale, R. S. Open-minded group cognition. In The Ninety-first Annual Meeting of the Midwestern Psychological Association (2019).
Gürçay, B., Mellers, B. A. & Baron, J. The power of social influence on estimation accuracy. J. Behav. Dec. Mak. 28, 250–261 (2015).
Mellers, B., Tetlock, P. & Arkes, H. R. Forecasting tournaments, epistemic humility and attitude depolarization. Cognition 188, 19–26 (2019).
Ottati, V., Price, E. D., Wilson, C. & Sumaktoyo, N. When self-perceptions of expertise increase closed-minded cognition: the earned dogmatism effect. J. Exp. Soc. Psychol. 61, 131–138 (2015).
Hogg, M. A. & Abrams, D. Social Identifications: A Social Psychology of Intergroup Relations and Group Processes (Routledge, 2006)
Hogg, M. A. in Blackwell Handbook of Social Psychology: Group Processes (eds. Hogg, M. A. & Tindale, R. S.) 56–85 (Blackwell, 2001).
Hogg, M. A. A social identity theory of leadership. Pers. Soc. Psych. Rev. 5, 184–200 (2001).
Bail, C. Breaking the Social Media Prism: How to Make Our Platforms Less Polarizing (Princeton Univ. Press, 2021).
Tindale, R. S., Talbot, M. & Martinez, R. in Group Processes (ed. Levine, J. M.) 165–192 (Psychology Press, 2013).
Tindale, R. S. & Kameda, T. Group decision-making from an evolutionary/adaptationist perspective. Group Process. Intergroup. Relat. 20, 669–680 (2017).
Crano, W. D. & Chen, X. The leniency contract and persistence of majority and minority influence. J. Pers. Soc. Psychol. 74, 1437–1450 (1998).
Morgan, P. M. & Tindale, R. S. Group vs individual performance in mixed-motive situations: exploring an inconsistency. Org. Behav. Hum. Dec. Process. 87, 44–65 (2002).
de Dreu, C. K. W., Nijstad, B. A. & van Knippenberg, D. Motivated information processing in group judgment and decision making. Pers. Soc. Psychol. Rev. 12, 22–49 (2008).
Minson, J. A. & Mueller, J. S. The cost of collaboration: why joint decision making exacerbates rejection of outside information. Psychol. Sci. 23, 219–224 (2012).
Larson, J. R., Tindale, R. S. & Yoon, Y. J. Advice taking by groups: the effects of consensus seeking and member opinion differences. Group Process. Intergroup. Relat. 23, 921–942 (2020).
Conradt, L. & Roper, T. J. Conflicts of interest and the evolution of decision sharing. Philos. Trans. R. Soc. B 364, 807–819 (2009).
Conradt, L., List, C. & Roper, T. J. Swarm intelligence: when uncertainty meets conflict. Am. Naturalist 182, 592–610 (2013).
Krause, J., Ruxton, G. D. & Krause, S. Swarm intelligence in animals and humans. Trends Ecol. Evol. 25, 28–34 (2010).
Seeley, T. D. The Wisdom of the Hive (Harvard Univ. Press, 1995).
Wu, C. M., Schulz, E., Speekenbrink, M., Nelson, J. D. & Meder, B. Generalization guides human exploration in vast decision spaces. Nat. Hum. Behav. 2, 915–924 (2018).
Naito, A., Katahira, K. & Kameda, T. Insights about the common generative rule underlying an information foraging task can be facilitated via collective search. Sci. Rep. (in the press).
Crandall, J. W. et al. Cooperating with machines. Nat. Commun. 9, 233 (2018).
Shirado, H. & Christakis, N. A. Locally noisy autonomous agents improve global human coordination in network experiments. Nature 545, 370–374 (2017).
Awad, E. et al. The moral machine experiment. Nature 563, 59–64 (2018).
el Zein, M., Bahrami, B. & Hertwig, R. Shared responsibility in collective decisions. Nat. Hum. Behav. 3, 554–559 (2019).
Miyoshi, T. & Matsubara, S. Dynamically forming a group of human forecasters and machine forecaster for forecasting economic indicators. In Proc. Twenty-Seventh International Joint Conference on Artificial Intelligence 461–467 https://doi.org/10.24963/ijcai.2018/64 (2018).
Leibo, J. Z. et al. Psychlab: a psychology laboratory for deep reinforcement learning agents. Preprint at arXiv https://doi.org/10.48550/arXiv.1801.08116 (2018).
Rahwan, I. et al. Machine behaviour. Nature 568, 477–486 (2019).
Conradt, L. & List, C. Group decisions in humans and animals: a survey. Philos. Trans. R. Soc. B 364, 719–742 (2009).
Delbecq, A. L. & van de Ven, A. H. A group process model for problem identification and program planning. J. Appl. Behav. Sci. 7, 466–492 (1971).
Rohrbaugh, J. Improving the quality of group judgment: social judgment analysis and the Delphi technique. Org. Behav. Hum. Perf. 24, 73–92 (1979).
Wolfers, J. & Zitzewitz, E. Prediction markets. J. Econ. Pers. 18, 107–126 (2004).
Ernst, M. O. Decisions made better. Science 329, 1022–1023 (2010).
Rogers, A. R. Does biology constrain culture. Am. Anthropol. 90, 819–831 (1988).
Miu, E., Miu, E., Gulley, N., Laland, K. N. & Rendell, L. Flexible learning, rather than inveterate innovation or copying, drives cumulative knowledge gain. Sci. Adv. 6, eaaz0286 (2020).
Hertwig, R. & Erev, I. The description-experience gap in risky choice. Trends. Cogn. Sci. 13, 517–523 (2009).
Acknowledgements
This work was supported by Japan Society for the Promotion of Science (JP16H06324) and Japan Science and Technology Agency CREST (JPMJCR17A4 (17941861)) to T.K.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Psychology thanks Barbara Mellers, Bahador Bahrami and the other, anonymous, reviewer for their contribution to the peer review of this work.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Herding
-
The alignment of the thoughts or behaviours of individuals in a group (herd) through local interaction and without centralized coordination.
- Unanimity rule
-
A voting rule that requires unanimous approval by all members for a group to decide on an alternative.
- Tandem-running
-
A recruiting behaviour that guides another nest mate to new food sources or nest sites, whereby a knowledgeable scout individual adjusts her behaviour to ensure that the follower learns the route.
- Quorum threshold
-
A critical threshold number of individuals in a group performing a behaviour, upon which the entire group shifts from an exploration phase to a commitment or action phase.
- Forecasting tournament
-
A series of tournaments sponsored by the Intelligence Advanced Research Projects Activity in the United States between 2011 and 2014, in which five university-based research groups competed to develop new methods of assigning probabilistic estimates to high-impact events around the globe.
- Information scrounging
-
A behavioural strategy that avoids the costs of information search, relying instead on information produced by others.
Rights and permissions
About this article
Cite this article
Kameda, T., Toyokawa, W. & Tindale, R.S. Information aggregation and collective intelligence beyond the wisdom of crowds. Nat Rev Psychol 1, 345–357 (2022). https://doi.org/10.1038/s44159-022-00054-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s44159-022-00054-y