Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Instance theory as a domain-general framework for cognitive psychology

Abstract

The dominant view in cognitive psychology is that memory includes several distinct and separate systems including episodic memory, semantic memory and associative learning, each with a different set of representations, explanatory principles and mechanisms. In opposition to that trend, there is a renewed effort to reconcile those distinctions in favour of a cohesive and integrative account of memory. According to instance theory, humans store individual experiences in episodic memory and general-level and semantic knowledge such as categories, word meanings and associations emerge during retrieval. In this Perspective, we review applications of instance theory from the domains of remembering, language and associative learning. We conclude that instance theory is a productive candidate for a general theory of cognition and we propose avenues for future work that extends instance theory into the domain of cognitive computing, builds hybrid instance models and builds bridges to cognitive neuroscience.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The MINERVA model of memory.
Fig. 2: ‘On the fly’ memory retrieval in MINERVA.
Fig. 3: Storage versus retrieval accounts of semantic memory in language.

Similar content being viewed by others

References

  1. Oberauer, K. & Lewandowsky, S. Addressing the theory crisis in psychology. Psychon. Bull. Rev. 26, 1596–1618 (2019).

    PubMed  Google Scholar 

  2. Newell, A. in Visual Information Processing (ed. Chase, W. G.) 283–308 (Elsevier, 1973).

  3. Squire, L. R. Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem. 82, 171–177 (2004).

    PubMed  Google Scholar 

  4. Roediger, H. L. III Relativity of remembering: why the laws of memory vanished. Annu. Rev. Psychol. 59, 225–254 (2008).

    PubMed  Google Scholar 

  5. Tulving, E. Episodic memory: from mind to brain. Annu. Rev. Psychol. 53, 1–25 (2002).

    PubMed  Google Scholar 

  6. Tulving, E. How many memory systems are there? Am. Psychol. 40, 385 (1985).

    Google Scholar 

  7. Medin, D. L. & Schaffer, M. M. Context theory of classification learning. Psychol. Rev. 85, 207–238 (1978).

    Google Scholar 

  8. Abbot-Smith, K. & Tomasello, M. Exemplar-learning and schematization in a usage-based account of syntactic acquisition. Linguistic Rev. 23, 275–290 (2006).

    Google Scholar 

  9. McAndrews, M. P. & Moscovitch, M. Rule-based and exemplar-based classification in artificial grammar learning. Mem. Cognit. 13, 469–475 (1985).

    PubMed  Google Scholar 

  10. Bouton, M. E. & Moody, E. W. Memory processes in classical conditioning. Neurosci. Biobehav. Rev. 28, 663–674 (2004).

    PubMed  Google Scholar 

  11. Shanks, D. R. Learning: from association to cognition. Annu. Rev. Psychol. 61, 273–301 (2010).

    PubMed  Google Scholar 

  12. Szollosi, A. & Donkin, C. Arrested theory development: the misguided distinction between exploratory and confirmatory research. Perspect. Psychol. Sci. 16, 717–724 (2021).

    PubMed  Google Scholar 

  13. Hintzman, D. L. ‘Schema abstraction’ in a multiple-trace memory model. Psychol. Rev. 93, 411–428 (1986).

    Google Scholar 

  14. Brown, G. D. A., Neath, I. & Chater, N. A temporal ratio model of memory. Psychol. Rev. 114, 539–576 (2007).

    PubMed  Google Scholar 

  15. Nairne, J. S. A feature model of immediate memory. Mem. Cognit. 18, 251–269 (1990).

    PubMed  Google Scholar 

  16. Shiffrin, R. M. & Steyvers, M. A model for recognition memory: REM — retrieving effectively from memory. Psychon. Bull. Rev. 4, 145–166 (1997).

    PubMed  Google Scholar 

  17. Murdock, B. B. A theory for the storage and retrieval of item and associative information. Psychol. Rev. 89, 609–626 (1982).

    Google Scholar 

  18. Murdock, B. B. A distributed memory model for serial-order information. Psychol. Rev. 90, 316–338 (1983).

    Google Scholar 

  19. Murdock, B. B. Context and mediators in a theory of distributed associative memory (TODAM2). Psychol. Rev. 104, 839–862 (1997).

    Google Scholar 

  20. Nosofsky, R. M. Attention, similarity, and the identification–categorization relationship. J. Exp. Psychol. Gen. 115, 39–57 (1986).

    PubMed  Google Scholar 

  21. Logan, G. D. An instance theory of attention and memory. Psychol. Rev. 109, 376–400 (2002).

    PubMed  Google Scholar 

  22. Logan, G. Toward an instance theory of automatization. Psychol. Rev. 95, 492–527 (1987).

    Google Scholar 

  23. Nosofsky, R. M. & Palmeri, T. J. An exemplar-based random walk model of speeded classification. Psychon. Bull. Rev. 5, 345–369 (1998).

    Google Scholar 

  24. Rosenbaum, D. A., Loukopoulos, L. D., Vaughan, J., Meulenbroek, R. G. J. & Engelbrecht, S. E. Planning reaches by evaluating stored postures. Psychol. Rev. 102, 28–67 (1995).

    PubMed  Google Scholar 

  25. Rosenbaum, D. A., Meulenbroek, R. J., Vaughan, J. & Jansen, C. Posture-based motion planning: applications to grasping. Psychol. Rev. 108, 709–734 (2001).

    PubMed  Google Scholar 

  26. Dougherty, M. R. P., Gettys, C. F. & Ogden, E. E. MINERVA-DM: a memory processes model for judgments of likelihood. Psychol. Rev. 106, 180–209 (1999).

    Google Scholar 

  27. Thomas, R. P., Dougherty, M. R., Sprenger, A. M. & Harbison, J. I. Diagnostic hypothesis generation and human judgment. Psychol. Rev. 115, 155–185 (2008).

    PubMed  Google Scholar 

  28. Landauer, T. K. & Dumais, S. T. A solution to Plato’s problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240 (1997).

    Google Scholar 

  29. Jones, M. N. & Mewhort, D. J. K. Representing word meaning and order information in a composite holographic lexicon. Psychol. Rev. 114, 1–37 (2007).

    PubMed  Google Scholar 

  30. Jamieson, R. K., Avery, J. E., Johns, B. T. & Jones, M. N. An instance theory of semantic memory. Comput. Brain Behav. 1, 119–136 (2018).

    Google Scholar 

  31. Kwantes, P. J. Using context to build semantics. Psychon. Bull. Rev. 12, 703–710 (2005).

    PubMed  Google Scholar 

  32. Goldinger, S. D. Echoes of echoes? An episodic theory of lexical access. Psychol. Rev. 105, 251–279 (1998).

    PubMed  Google Scholar 

  33. Jamieson, R. K., Crump, M. J. C. & Hannah, S. D. An instance theory of associative learning. Learn. Behav. 40, 61–82 (2012).

    PubMed  Google Scholar 

  34. Jamieson, R. K., Hannah, S. D. & Crump, M. J. C. A memory-based account of retrospective revaluation. Can. J. Exp. Psychol. 64, 153–164 (2010).

    PubMed  Google Scholar 

  35. Aust, F., Haaf, J. M. & Stahl, C. A memory-based judgment account of expectancy-liking dissociations in evaluative conditioning. J. Exp. Psychol. Learn. Mem. Cognit. 45, 417–439 (2019).

    Google Scholar 

  36. Stahl, C. & Aust, F. Evaluative conditioning as memory-based judgment. SPB 13, e28589 (2018).

    Google Scholar 

  37. Blough, D. S. Context reinforcement degrades discriminative control: a memory approach. J. Exp. Psychol. Anim. Behav. Process. 24, 185–199 (2010).

    Google Scholar 

  38. Hintzman, D. L. Judgments of frequency and recognition memory in a multiple-trace memory model. Psychol. Rev. 95, 528–551 (1988).

    Google Scholar 

  39. Brooks, L. R. in Cognition and Categorization (eds Rosch, E. & Lloyd, B.) 169–211 (Wiley, 1978).

  40. Vokey, J. R. & Brooks, L. R. Salience of item knowledge in learning artificial grammars. J. Exp. Psychol. Learn. Mem. Cogn. 18, 328 (1992).

    Google Scholar 

  41. Kahneman, D. & Miller, D. T. Norm theory: comparing reality to its alternatives. Psychol. Rev. 93, 136–153 (1986).

    Google Scholar 

  42. Ratcliff, R. A theory of memory retrieval. Psychol. Rev. 85, 59–108 (1978).

    Google Scholar 

  43. Hintzman, D. L. MINERVA 2: a simulation model of human memory. Behav. Res. Methods Inst. Comput. 16, 96–101 (1984).

    Google Scholar 

  44. Hintzman, D. L. & Ludlam, G. Differential forgetting of prototypes and old instances: simulation by an exemplar-based classification model. Mem. Cognit. 8, 378–382 (1980).

    PubMed  Google Scholar 

  45. Nosofsky, R. M. Exemplar-based accounts of relations between classification, recognition, and typicality. J. Exp. Psychol. Learn. Mem. Cogn. 14, 700–708 (1988).

    Google Scholar 

  46. Nosofsky, R. M. in Formal Approaches in Categorization (eds Pothos, E. M. & Wills, A. J.) 18–39 (Cambridge Univ. Press, 2011).

  47. Collins, R. N., Milliken, B. & Jamieson, R. K. MINERVA-DE: an instance model of the deficient processing theory. J. Mem. Lang. 115, 104151 (2020).

    Google Scholar 

  48. Hintzman, D. L. Human learning and memory: connections and dissociations. Annu. Rev. Psychol. 41, 109–139 (1990).

    PubMed  Google Scholar 

  49. Jamieson, R. K., Holmes, S. & Mewhort, D. J. K. Global similarity predicts dissociation of classification and recognition: evidence questioning the implicit–explicit learning distinction in amnesia. J. Exp. Psychol. Learn. Mem. Cogn. 36, 1529–1535 (2010).

    PubMed  Google Scholar 

  50. Arndt, J. & Hirshman, E. True and false recognition in MINERVA2: explanations from a global matching perspective. J. Mem. Lang. 39, 371–391 (1998).

    Google Scholar 

  51. Goldinger, S. D. & Azuma, T. Episodic memory reflected in printed word naming. Psychon. Bull. Rev. 11, 716–722 (2004).

    PubMed  Google Scholar 

  52. Jamieson, R. K. & Mewhort, D. J. K. Applying an exemplar model to the artificial-grammar task: inferring grammaticality from similarity. Q. J. Exp. Psychol. 62, 550–575 (2009).

    Google Scholar 

  53. Jamieson, R. K. & Mewhort, D. J. K. Applying an exemplar model to the serial reaction-time task: anticipating from experience. Q. J. Exp. Psychol. 62, 1757–1783 (2009).

    Google Scholar 

  54. Johns, B. T., Jamieson, R. K., Crump, M. J. C., Jones, M. N. & Mewhort, D. J. K. Production without rules: using an instance memory model to exploit structure in natural language. J. Mem. Lang. 115, 104165 (2020).

    Google Scholar 

  55. Jamieson, R. K., Mewhort, D. J. K. & Hockley, W. E. A computational account of the production effect: still playing twenty questions with nature. Can. J. Exp. Psychol. 70, 154–164 (2016).

    PubMed  Google Scholar 

  56. Jamieson, R. K. & Mewhort, D. J. K. Applying an exemplar model to the artificial-grammar task: string completion and performance on individual items. Q. J. Exp. Psychol. 63, 1014–1039 (2010).

    Google Scholar 

  57. Curtis, E. T. & Jamieson, R. K. Computational and empirical simulations of selective memory impairments: converging evidence for a single-system account of memory dissociations. Q. J. Exp. Psychol. 72, 798–817 (2019).

    Google Scholar 

  58. Curtis, E. T. Interactive processes in an instance model of memory: a computational analysis of Jacoby’s (1983) dissociation between perception and recognition. Can. J. Exp. Psychol. 73, 288–294 (2019).

    PubMed  Google Scholar 

  59. Kwantes, P. J. & Mewhort, D. J. K. Modeling lexical decision and word naming as a retrieval process. Can. J. Exp. Psychol. 53, 306–315 (1999).

    PubMed  Google Scholar 

  60. Clark, S. E. A familiarity-based account of confidence–accuracy inversions in recognition memory. J. Exp. Psychol. Learn. Mem. Cogn. 23, 232–238 (1997).

    Google Scholar 

  61. Johns, B. T. & Jones, M. N. Generating structure from experience: a retrieval-based model of language processing. Can. J. Exp. Psychol. 69, 233–251 (2015).

    PubMed  Google Scholar 

  62. Johns, B. T. & Jones, M. N. Perceptual inference through global lexical similarity: topics in cognitive science. Top. Cognit. Sci. 4, 103–120 (2012).

    Google Scholar 

  63. Posner, M. I. & Keele, S. W. On the genesis of abstract ideas. J. Exp. Psychol. 77, 353–363 (1968).

    PubMed  Google Scholar 

  64. Posner, M. I. & Keele, S. W. Retention of abstract ideas. J. Exp. Psychol. 83, 304–308 (1970).

    Google Scholar 

  65. Zaki, S. R., Nosofsky, R. M., Jessup, N. M. & Unverzagt, F. W. Categorization and recognition performance of a memory-impaired group: evidence for single-system models. J. Int. Neuropsychol. Soc. 9, 394–406 (2003).

    PubMed  Google Scholar 

  66. Deese, J. On the prediction of occurrence of particular verbal intrusions in immediate recall. J. Exp. Psychol. 58, 17–22 (1959).

    PubMed  Google Scholar 

  67. Roediger, H. L. & McDermott, K. B. Creating false memories: remembering words not presented in lists. J. Exp. Psychol. Learn. Mem. Cognit. 21, 803–814 (1995).

    Google Scholar 

  68. Brainerd, C. J. & Reyna, V. F. Fuzzy-trace theory and false memory. Curr. Dir. Psychol. Sci. 11, 6 (2002).

    Google Scholar 

  69. Johns, B. T., Jones, M. N. & Mewhort, D. J. K. A continuous source reinstatement model of true and false recollection. Can. J. Exp. Psychol. 75, 1–18 (2021).

    PubMed  Google Scholar 

  70. Johns, B. T., Jones, M. N. & Mewhort, D. J. K. A synchronization account of false recognition. Cognit. Psychol. 65, 486–518 (2012).

    PubMed  Google Scholar 

  71. Singer, M. in Learning and Memory: A Comprehensive Reference (ed. Byrne, J. H.) 357–381 (Elsevier, 2017).

  72. Singer, M. & Spear, J. Validation of strongly presupposed text concepts in reading comprehension: cleft constructions. Can. J. Exp. Psychol. 74, 1–11 (2020).

    PubMed  Google Scholar 

  73. Brewer, W. F. & Treyens, J. C. Role of schemata in memory for places. Cognit. Psychol. 13, 207–230 (1981).

    Google Scholar 

  74. Knowlton, B. & Squire, L. The learning of categories: parallel brain systems for item memory and category knowledge. Science 262, 1747–1749 (1993).

    PubMed  Google Scholar 

  75. Zaki, S. R. Is categorization performance really intact in amnesia? A meta-analysis. Psychonomic Bull. Rev. 11, 1048–1054 (2004).

    Google Scholar 

  76. Gregory, E., McCloskey, M. & Landau, B. Profound loss of general knowledge in retrograde amnesia: evidence from an amnesic artist. Front. Hum. Neurosci. 8, 287 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Gregory, E., McCloskey, M., Ovans, Z. & Landau, B. Declarative memory and skill-related knowledge: evidence from a case study of amnesia and implications for theories of memory. Cognit. Neuropsychol. 33, 220–240 (2016).

    Google Scholar 

  78. Renoult, L., Irish, M., Moscovitch, M. & Rugg, M. D. From knowing to remembering: the semantic–episodic distinction. Trends Cognit. Sci. 23, 1041–1057 (2019).

    Google Scholar 

  79. Benjamin, A. S., Diaz, M., Matzen, L. E. & Johnson, B. Tests of the DRYAD theory of the age-related deficit in memory for context: not about context, and not about aging. Psychol. Aging 27, 418–428 (2012).

    PubMed  Google Scholar 

  80. Benjamin, A. S. Representational explanations of “process” dissociations in recognition: the DRYAD theory of aging and memory judgments. Psychol. Rev. 117, 1055–1079 (2010).

    PubMed  PubMed Central  Google Scholar 

  81. Nosofsky, R. M. & Zaki, S. R. Dissociations between categorization and recognition in amnesic and normal individuals: an exemplar-based interpretation. Psychol. Sci. 9, 247–255 (1998).

    Google Scholar 

  82. Nosofsky, R. M., Little, D. R. & James, T. W. Activation in the neural network responsible for categorization and recognition reflects parameter changes. Proc. Natl Acad. Sci. USA 109, 333–338 (2012).

    PubMed  Google Scholar 

  83. Zaki, S. R. & Nosofsky, R. M. A single-system interpretation of dissociations between recognition and categorization in a task involving object-like stimuli. Cognit. Affect. Behav. Neurosci. 1, 344–359 (2001).

    Google Scholar 

  84. Ashby, F. G. & Rosedahl, L. A neural interpretation of exemplar theory. Psychol. Rev. 124, 472–482 (2017).

    PubMed  PubMed Central  Google Scholar 

  85. Malmberg, K. J., Zeelenberg, R. & Shiffrin, R. M. Turning up the noise or turning down the volume? On the nature of the impairment of episodic recognition memory by midazolam. J. Exp. Psychol. Learn. Mem. Cognit. 30, 540–549 (2004).

    Google Scholar 

  86. Chomsky, N. Rules and representations. Behav. Brain Sci. 3, 1–15 (1980).

    Google Scholar 

  87. Ambridge, B. Against stored abstractions: a radical exemplar model of language acquisition. First Lang. 40, 509–559 (2019).

    Google Scholar 

  88. Truscott, J. Instance theory and universal grammar in second language research. Second. Lang. Res. 14, 257–291 (1998).

    Google Scholar 

  89. Jones, M. N. When does abstraction occur in semantic memory: insights from distributional models. Lang. Cognit. Neurosci. 34, 1338–1346 (2019).

    Google Scholar 

  90. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient estimation of word representations in vector space. Preprint at https://arxiv.org/abs/1301.3781 (2013).

  91. Lund, K. & Burgess, C. Producing high-dimensional semantic spaces from lexical co-occurrence. Behav. Res. Meth. Instrum. Comput. 28, 203–208 (1996).

    Google Scholar 

  92. Pennington, J., Socher, R. & Manning, C. in Proc. 2014 Conf. Empirical Methods in Natural Language Processing (EMNLP) (eds Moschitti, A. et al.) 1532–1543 (Association for Computational Linguistics, 2014).

  93. Taler, V., Johns, B. T., Young, K., Sheppard, C. & Jones, M. N. A computational analysis of semantic structure in bilingual verbal fluency performance. J. Mem. Lang. 69, 607–618 (2013).

    Google Scholar 

  94. Aujla, H. Language experience predicts semantic priming of lexical decision. Can. J. Exp. Psychol. 75, 235–244 (2021).

    PubMed  Google Scholar 

  95. Johns, B. T. & Jamieson, R. K. The influence of place and time on lexical behavior: a distributional analysis. Behav. Res. 51, 2438–2453 (2019).

    Google Scholar 

  96. Montag, J. L., Jones, M. N. & Smith, L. B. The words children hear: picture books and the statistics for language learning. Psychol. Sci. 26, 1489–1496 (2015).

    PubMed  Google Scholar 

  97. Griffiths, T. L., Steyvers, M. & Tenenbaum, J. B. Topics in semantic representation. Psychol. Rev. 114, 211–244 (2007).

    PubMed  Google Scholar 

  98. Beekhuizen, B., Armstrong, B. C. & Stevenson, S. Probing lexical ambiguity: word vectors encode number and relatedness of senses. Cogn. Sci. 45, e12943 (2021).

    PubMed  Google Scholar 

  99. Bürki, A. Variation in the speech signal as a window into the cognitive architecture of language production. Psychon. Bull. Rev. 25, 1973–2004 (2018).

    PubMed  Google Scholar 

  100. Disner, S. F. Evaluation of vowel normalization procedures. J. Acoustical Soc. Am. 67, 253–261 (1980).

    Google Scholar 

  101. Gerstman, L. Classification of self-normalized vowels. IEEE Trans. Audio Electroacoust. 16, 78–80 (1968).

    Google Scholar 

  102. Goldinger, S. D., Pisoni, D. B. & Logan, J. S. On the nature of talker variability effects on recall of spoken word lists. J. Exp. Psychol. Learn. Mem. Cognit. 17, 152–162 (1991).

    Google Scholar 

  103. Ryalls, B. O. & Pisoni, D. B. The effect of talker variability on word recognition in preschool children. Dev. Psychol. 33, 441–452 (1997).

    PubMed  PubMed Central  Google Scholar 

  104. Thiessen, E. D. & Pavlik, P. I. iMinerva: a mathematical model of distributional statistical learning. Cogn. Sci. 37, 310–343 (2013).

    PubMed  Google Scholar 

  105. Miller, R. R. Challenges facing contemporary associative approaches to acquired behavior. CCBR 1, 77–93 (2006).

    Google Scholar 

  106. Stout, S. C. & Miller, R. R. Sometimes-competing retrieval (SOCR): a formalization of the comparator hypothesis. Psychol. Rev. 114, 759–783 (2007).

    PubMed  Google Scholar 

  107. Miller, R. R., Barnet, R. C. & Grahame, N. J. Assessment of the Rescorla–Wagner model. Psychol. Bull. 117, 363–386 (1995).

    PubMed  Google Scholar 

  108. Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl Acad. Sci. USA 105, 14325–14329 (2008).

    PubMed  PubMed Central  Google Scholar 

  109. Fagot, J. & Cook, R. G. Evidence for large long-term memory capacities in baboons and pigeons and its implications for learning and the evolution of cognition. Proc. Natl Acad. Sci. USA 103, 17564–17567 (2006).

    PubMed  PubMed Central  Google Scholar 

  110. Vaughan, W. & Greene, S. L. Pigeon visual memory capacity. J. Exp. Psychol. Anim. Behav. Process. 10, 256–271 (1984).

    Google Scholar 

  111. Voss, J. L. Long-term associative memory capacity in man. Psychon. Bull. Rev. 16, 1076–1081 (2009).

    PubMed  Google Scholar 

  112. Nickerson, R. S. Short-term memory for complex meaningful visual configurations: a demonstration of capacity. Can. J. Psychol. 19, 155–160 (1965).

    PubMed  Google Scholar 

  113. Nickerson, R. S. A note on long-term recognition memory for pictorial material. Psychon. Sci. 11, 58–58 (1968).

    Google Scholar 

  114. Shepard, R. N. Recognition memory for words, sentences, and pictures. J. Verbal Learn. Verbal Behav. 6, 156–163 (1967).

    Google Scholar 

  115. Standing, L. Learning 10 000 pictures. Q. J. Exp. Psychol. 25, 207–222 (1973).

    PubMed  Google Scholar 

  116. Standing, L., Conezio, J. & Haber, R. N. Perception and memory for pictures: single-trial learning of 2500 visual stimuli. Psychon. Sci. 19, 73–74 (1970).

    Google Scholar 

  117. Whittlesea, B. W. A. & Williams, L. D. The source of feelings of familiarity: the discrepancy-attribution hypothesis. J. Exp. Psychol. Learn. Mem. Cognit. 26, 547–565 (2000).

    Google Scholar 

  118. Kamin, L. in Punishment and Aversive Behavior (eds Campbell, B. A. & Church, R. M.) 279–296 (Appleton-Century-Crofts, 1969).

  119. Shanks, D. R. Forward and backward blocking in human contingency judgement. Q. J. Exp. Psychol. Sect. B 37, 1–21 (1985).

    Google Scholar 

  120. De Houwer, J. & Beckers, T. Higher-order retrospective revaluation in human causal learning. Q. J. Exp. Psychol. Sect. B 55, 137–151 (2002).

    Google Scholar 

  121. Matzel, L. D., Schachtman, T. R. & Miller, R. R. Recovery of an overshadowed association achieved by extinction of the overshadowing stimulus. Learn. Motiv. 16, 398–412 (1985).

    Google Scholar 

  122. Miller, R. R. & Witnauer, J. E. Retrospective revaluation: the phenomenon and its theoretical implications. Behav. Process. 123, 15–25 (2016).

    Google Scholar 

  123. Van Hamme, L. J. & Wasserman, E. A. Cue competition in causality judgments: the role of nonpresentation of compound stimulus elements. Learn. Motiv. 25, 127–151 (1994).

    Google Scholar 

  124. De Houwer, J., Thomas, S. & Baeyens, F. Association learning of likes and dislikes: a review of 25 years of research on human evaluative conditioning. Psychol. Bull. 127, 853–869 (2001).

    PubMed  Google Scholar 

  125. Hofmann, W., De Houwer, J., Perugini, M., Baeyens, F. & Crombez, G. Evaluative conditioning in humans: a meta-analysis. Psychol. Bull. 136, 390–421 (2010).

    PubMed  Google Scholar 

  126. Biegler, P. & Vargas, P. Ban the Sunset? Nonpropositional content and regulation of pharmaceutical advertising. Am. J. Bioeth. 13, 3–13 (2013).

    PubMed  Google Scholar 

  127. Brown, G. D. A., Hulme, C. & Preece, T. Oscillator-based memory for serial order. Psychol. Rev. 107, 127–181 (2000).

    PubMed  Google Scholar 

  128. Lipp, O. V., Mallan, K. M., Libera, M. & Tan, M. The effects of verbal instruction on affective and expectancy learning. Behav. Res. Ther. 48, 203–209 (2010).

    PubMed  Google Scholar 

  129. Lipp, O. V., Oughton, N. & LeLievre, J. Evaluative learning in human Pavlovian conditioning: extinct, but still there? Learn. Motiv. 34, 219–239 (2003).

    Google Scholar 

  130. Marr, D. Vision: A Computational Investigation Into The Human Representation and Processing of Visual Information (ed. Freeman, W. H.) (MIT Press, 1982).

  131. Poggio, T. On holographic models of memory. Kybernetik 12, 237–238 (1973).

    PubMed  Google Scholar 

  132. Gabor, D. Associative holographic memories. IBM J. Res. Dev. 13, 156–159 (1969).

    Google Scholar 

  133. Franklin, D. R. J. & Mewhort, D. J. K. Memory as a hologram: an analysis of learning and recall. Can. J. Exp. Psychol. 69, 115–135 (2015).

    PubMed  Google Scholar 

  134. Kelly, M. A., Blostein, D. & Mewhort, D. J. K. Encoding structure in holographic reduced representations. Can. J. Exp. Psychol. 67, 79–93 (2013).

    PubMed  Google Scholar 

  135. Kelly, M. A., Mewhort, D. J. K. & West, R. L. The memory tesseract: mathematical equivalence between composite and separate storage memory models. J. Math. Psychol. 77, 142–155 (2017).

    Google Scholar 

  136. McClelland, J. L. & Rumelhart, D. E. Distributed memory and the representation of general and specific information. J. Exp. Psychol.Gen. 114, 159–188 (1985).

    PubMed  Google Scholar 

  137. Vokey, J. R. & Higham, P. A. Opposition logic and neural network models in artificial grammar learning. Conscious. Cognit. 13, 565–578 (2004).

    Google Scholar 

  138. Vokey, J. R. & Jamieson, R. K. A visual-familiarity account of evidence for orthographic processing in baboons (Papio papio). Psychol. Sci. 25, 991–996 (2014).

    PubMed  Google Scholar 

  139. Nosofsky, R. M. & Palmeri, T. J. A rule-plus-exception model for classifying objects in continuous-dimension spaces. Psychon. Bull. Rev. 5, 345–369 (1998).

    Google Scholar 

  140. Nosofsky, R. M. & Palmeri, T. Rule-plus-exception model of classification learning. Psychol. Rev. 101, 53–79 (1994).

    PubMed  Google Scholar 

  141. Erickson, M. A. & Kruschke, J. K. Rules and exemplars in category learning. J. Exp. Psychol.Gen. 127, 107–140 (1998).

    PubMed  Google Scholar 

  142. Brooks, L. R. & Hannah, S. D. Instantiated features and the use of ‘rules. J. Exp. Psychol. Gen. 135, 133–151 (2006).

    PubMed  Google Scholar 

  143. Logan, G. D. Automaticity and reading: perspectives from the instance theory of automatization. Read. Writ. Q. 13, 123–146 (1997).

    Google Scholar 

  144. Kolers, P. A. Remembering operations. Mem. Cognit. 1, 347–355 (1973).

    PubMed  Google Scholar 

  145. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

    PubMed  Google Scholar 

  146. Simon, H. A. The Sciences of the Artificial (MIT Press, 2008).

  147. Simon, H. A. Rational choice and the structure of the environment. Psychol. Rev. 63, 129–138 (1956).

    PubMed  Google Scholar 

  148. Gigerenzer, G. & Brighton, H. Homo heuristicus: why biased minds make better inferences. Top. Cognit. Sci. 1, 107–143 (2009).

    Google Scholar 

  149. Shiffrin, R. M. Is it reasonable to study decision-making quantitatively? Top. Cogn. Sci. https://doi.org/10.1111/tops.12541 (2021).

    Article  PubMed  Google Scholar 

  150. Chater, N. & Oaksford, M. The rational analysis of mind and behavior. Synthese 122, 93–131 (2000).

    Google Scholar 

  151. Shi, L., Griffiths, T. L., Feldman, N. H. & Sanborn, A. N. Exemplar models as a mechanism for performing Bayesian inference. Psychon. Bull. Rev. 17, 443–464 (2010).

    PubMed  Google Scholar 

  152. Shepard, R. N. The analysis of proximities: multidimensional scaling with an unknown distance function. I. Psychometrika 27, 125–140 (1962).

    Google Scholar 

  153. Shepard, R. Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987).

    PubMed  Google Scholar 

  154. Nosofsky, R. M., Gluck, M. A., Palmeri, T. J., Mckinley, S. C. & Glauthier, P. Comparing modes of rule-based classification learning: a replication and extension of Shepard, Hovland, and Jenkins (1961). Mem. Cogn. 22, 352–369 (1994).

    Google Scholar 

  155. Sheu, C.-F. A note on the multiple-trace memory model without simulation. J. Math. Psychol. 36, 592–597 (1992).

    Google Scholar 

  156. Jamieson, R. K. & Pexman, P. M. Moving beyond 20 questions: we (still) need stronger psychological theory. Can. Psychol. 61, 273–280 (2020).

    Google Scholar 

  157. Hirshman, E., Fisher, J., Henthorn, T., Arndt, J. & Passannante, A. Midazolam amnesia and dual-process models of the word-frequency mirror effect. J. Mem. Lang. 47, 499–516 (2002).

    Google Scholar 

  158. Arndt, J., Passannante, A. & Hirshman, E. The effect of midazolam on implicit and explicit memory in category exemplar production and category cued recall. Memory 12, 158–173 (2004).

    PubMed  Google Scholar 

  159. Fisher, J., Hirshman, E., Henthorn, T., Arndt, J. & Passannante, A. Midazolam amnesia and short-term/working memory processes. Conscious. Cognit. 15, 54–63 (2006).

    Google Scholar 

  160. Hirshman, E., Fisher, J., Henthorn, T., Arndt, J. & Passannante, A. Midazolam amnesia and retrieval from semantic memory: developing methods to test theories of implicit memory. Brain Cognit. 53, 427–432 (2003).

    Google Scholar 

  161. Hirshman, E., Passannante, A. & Henzler, A. The effect of midazolam on implicit memory tests. Brain Cognit. 41, 351–364 (1999).

    Google Scholar 

  162. Joordens, S. & Hockley, W. E. Recollection and familiarity through the looking glass: when old does not mirror new. J. Exp. Psychol. Learn. Mem. Cognit. 26, 1534–1555 (2000).

    Google Scholar 

  163. Pothos, E. M. Theories of artificial grammar learning. Psychol. Bull. 133, 227–244 (2007).

    PubMed  Google Scholar 

  164. Reber, A. S. Implicit learning of artificial grammars. J. Verbal Learn. Verbal Behav. 6, 855–863 (1967).

    Google Scholar 

  165. Jamieson, R. K. & Mewhort, D. J. K. The influence of grammatical, local, and organizational redundancy on implicit learning: an analysis using information theory. J. Exp. Psychol. Learn. Mem. Cognit. 31, 9–23 (2005).

    Google Scholar 

  166. Pothos, E. M. & Bailey, T. M. The role of similarity in artificial grammar learning. J. Exp. Psychol. Learn. Mem. Cognit. 26, 847–862 (2000).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Sciences and Engineering Research Council of Canada Discovery Grants to R.K.J. and B.T.J. We thank M. J. C. Crump for discussion and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

R.K.J. was lead author of this manuscript; all other authors contributed equally.

Corresponding author

Correspondence to Randall K. Jamieson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Charles Brainerd, Gordon Logan and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamieson, R.K., Johns, B.T., Vokey, J.R. et al. Instance theory as a domain-general framework for cognitive psychology. Nat Rev Psychol 1, 174–183 (2022). https://doi.org/10.1038/s44159-022-00025-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00025-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing