Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Universal and specific reading mechanisms across different writing systems

Abstract

Reading of alphabetic writing systems, such as English, has been extensively studied and most theories and models of reading are based on findings from these studies. This practice raises a practical question regarding whether findings from alphabetic writing systems can be extended to other writing systems, such as Korean or Chinese, and a more fundamental question about the universality of reading mechanisms. In this Review, we discuss how findings from different writing systems contribute to an understanding of the universal mechanisms of reading. We first describe the unique properties of different writing systems. Then we review evidence that points to universal mechanisms common to all writing systems, followed by evidence suggesting that readers of different writing systems develop specific perceptual and cognitive mechanisms for efficient reading. These findings suggest that computational models developed for alphabetic reading cannot always account for reading in other scripts. We conclude that studies in non-alphabetic writing systems are valuable in understanding the universal and script-specific mechanisms of reading.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Unique properties of writing systems.
Fig. 2: Main processes of reading.
Fig. 3: Routes from visual forms to semantics for different scripts.
Fig. 4: Script physical properties influence attention and eye movements.

Similar content being viewed by others

References

  1. Chomsky, N. Aspects of the Theory of Syntax (MIT Press, 1965).

  2. Frost, R. Towards a universal model of reading. Behav. Brain Sci. 35, 263–279 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Perfetti, C. in Dyslexia Across Languages: Orthography and the Brain-Gene-Behavior Link (eds McCardle, P., Lee, J. R., Tzeng, O. J. L. & Miller, B.) 18–32 (Brookes, 2011).

  4. Reichle, E. D. Computational Models of Reading (Oxford Univ. Press, 2021).

  5. Share, D. L. On the Anglocentricities of current reading research and practice: the perils of overreliance on an “outlier” orthography. Psychol. Bull. 134, 584–615 (2008).

    Article  PubMed  Google Scholar 

  6. McClelland, J. L. & Rumelhart, D. E. An interactive activation model of context effects in letter perception. 1. An account of basic findings. Psychol. Rev. 88, 375–407 (1981).

    Article  Google Scholar 

  7. Seidenberg, M. S. & McClelland, J. L. A distributed, developmental model of word recognition and naming. Psychol. Rev. 96, 523–568 (1989).

    Article  PubMed  Google Scholar 

  8. Coltheart, M., Rastle, K., Perry, C., Langdon, R. & Ziegler, J. DRC: a dual route cascaded model of visual word recognition and reading aloud. Psychol. Rev. 108, 204–256 (2001).

    Article  PubMed  Google Scholar 

  9. Frazier, L. & Rayner, K. Making and correcting errors during sentence comprehension: eye movements in the analysis of structurally ambiguous sentences. Cogn. Psychol. 14, 178–210 (1982).

    Article  Google Scholar 

  10. McRae, K., Spivey-Knowlton, M. J. & Tanenhaus, M. K. Modeling the influence of thematic fit (and other constraints) in on-line sentence comprehension. J. Mem. Lan. 38, 283–312 (1998).

    Article  Google Scholar 

  11. Reichle, E. D., Pollatsek, A., Fisher, D. L. & Rayner, K. Toward a model of eye movement control in reading. Psychol. Rev. 105, 125–157 (1998).

    Article  PubMed  Google Scholar 

  12. Engbert, R., Nuthmann, A., Richter, E. M. & Kliegl, R. SWIFT: a dynamical model of saccade generation during reading. Psychol. Rev. 112, 777–813 (2005).

    Article  PubMed  Google Scholar 

  13. Snell, J., van Leipsig, S., Grainger, J. & Meeter, M. OB1-reader: a model of word recognition and eye movements in text reading. Psychol. Rev. 125, 969–984 (2018).

    Article  PubMed  Google Scholar 

  14. Rayner, K., Li, X. & Pollatsek, A. Extending the E-Z reader model of eye movement control to Chinese readers. Cogn. Sci. 31, 1021–1033 (2007).

    Article  PubMed  Google Scholar 

  15. Li, X. & Pollatsek, A. An integrated model of word processing and eye-movement control during Chinese reading. Psychol. Rev. 127, 1139–1162 (2020).

    Article  PubMed  Google Scholar 

  16. Perfetti, C. A., Liu, Y. & Tan, L. The lexical constituency model: some implications of research on Chinese for general theories of reading. Psychol. Rev. 112, 43–59 (2005).

    Article  PubMed  Google Scholar 

  17. Kessler, B. & Treiman, R. in The Oxford Handbook of Reading (eds Pollatsek, A. & Treiman, R.) 10–25 (Oxford Univ. Press, 2015).

  18. Rayner, K., Pollatsek, A., Ashby, J. & Clifton, J. C. Psychology of Reading (Psychology Press, 2012).

  19. Yang, J., McCandliss, B. D., Shu, H. & Zevin, J. D. Simulating language-specific and language-general effects in a statistical learning model of Chinese reading. J. Mem. Lan. 61, 238–257 (2009).

    Article  Google Scholar 

  20. Chang, L. Y., Plaut, D. C. & Perfetti, C. A. Visual complexity in orthographic learning: modeling learning across writing system variations. Sci. Stud. Read. 20, 64–85 (2016).

    Article  Google Scholar 

  21. Standardization Administration of China. GB 2312-1980: Information Technology — Chinese Ideogram Coded Character Set for Information Interchange (Basic Set) (SAC, 1980).

  22. Kinoshita, S., Schubert, T. & Verdonschot, R. G. Allograph priming Is based on abstract letter identities: evidence from Japanese kana. J. Exp. Psychol. Learn. Mem. Cogn. 45, 183–190 (2019).

    Article  PubMed  Google Scholar 

  23. Hu, R., Cao, B. & Du, J. Research on phonetic symbols of phonograms in Chinese Mandarin. J. Chin. Inf. Process. 27, 41–47 (2013).

    Google Scholar 

  24. Carreiras, M., Perea, M. & Abu Mallouh, R. Priming of abstract letter representations may be universal: the case of Arabic. Psychon. Bull. Rev. 19, 685–690 (2012).

    Article  PubMed  Google Scholar 

  25. Schubert, T., Gawthrop, R. & Kinoshita, S. Evidence for cross-script abstract identities in learners of Japanese kana. Mem. Cogn. 46, 1010–1021 (2018).

    Article  Google Scholar 

  26. McBride-Chang, C. & Liu, P. D. in Dyslexia Across Languages: Orthography and the Brain–Gene–Behavior Link (eds McCardle, P., Miller, B., Lee, J. R. & Tzeng, J. L. O.) 33–43 (Brookes, 2011).

  27. Deutsch, A., Velan, H., Merzbach, Y. & Michaly, T. The dependence of root extraction in a non-concatenated morphology on the word-specific orthographic context. J. Mem. Lan. 116, 104182 (2021).

    Article  Google Scholar 

  28. Winskel, H. Insights into reading processes through investigating diversity. Australian J. Psychol. 69, 151–161 (2020).

    Article  Google Scholar 

  29. Perfetti, C. A. The universal grammar of reading. Sci. Stud. Read. 7, 3–24 (2003).

    Article  Google Scholar 

  30. Rayner, K. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124, 372–422 (1998).

    Article  PubMed  Google Scholar 

  31. Reicher, G. M. Perceptual recognition as a function of meaningfulness of stimulus material. J. Exp. Psychol. 81, 275–280 (1969).

    Article  PubMed  Google Scholar 

  32. Li, X., Zang, C., Liversedge, S. P. & Pollatsek, A. in The Oxford Handbook of Reading (eds Pollatsek, A. & Rebecca, T.) 232–244 (Oxford Univ. Press, 2015).

  33. Li, X., Gu, J., Liu, P. & Rayner, K. The advantage of word-based processing in Chinese reading: evidence from eye movements. J. Exp. Psychol. Learn. Mem. Cogn. 39, 879–889 (2013).

    Article  PubMed  Google Scholar 

  34. Li, X., Zhao, W. & Pollatsek, A. Dividing lines at the word boundary position helps reading in Chinese. Psychon. Bull. Rev. 19, 929–934 (2012).

    Article  PubMed  Google Scholar 

  35. Just, M. A. & Carpenter, P. A. A theory of reading: from eye fixations to comprehension. Psychol. Rev. 87, 329–354 (1980).

    Article  PubMed  Google Scholar 

  36. Rayner, K. & Duffy, S. A. Lexical complexity and fixation times in reading: effects of word frequency, verb complexity, and lexical ambiguity. Mem. Cogn. 14, 191–201 (1986).

    Article  Google Scholar 

  37. Li, X., Bicknell, K., Liu, P., Wei, W. & Rayner, K. Reading is fundamentally similar across disparate writing systems: a systematic characterization of how words and characters influence eye movements in Chinese reading. J. Exp. Psychol. Gen. 143, 895–913 (2014).

    Article  PubMed  Google Scholar 

  38. Balota, D. A., Pollatsek, A. & Rayner, K. The interaction of contextual constraints and parafoveal visual information in reading. Cogn. Psychol. 17, 364–390 (1985).

    Article  PubMed  Google Scholar 

  39. Rayner, K. & Well, A. D. Effects of contextual constraint on eye movements in reading: a further examination. Psychon. Bull. Rev. 3, 504–509 (1996).

    Article  PubMed  Google Scholar 

  40. Balota, D. A. & Chumbley, J. I. Are lexical decisions a good measure of lexical access? The role of word frequency in the neglected decision stage. J. Exp. Psychol. Hum. Percept. Perform. 10, 340–357 (1984).

    Article  PubMed  Google Scholar 

  41. Rayner, K. Eye movements and attention in reading, scene perception, and visual search. Q. J. Exp. Psychol. 62, 1457–1506 (2009).

    Article  Google Scholar 

  42. Li, X. & Pollatsek, A. Word knowledge influences character perception. Psychon. Bull. Rev. 18, 833–839 (2011).

    Article  PubMed  Google Scholar 

  43. Blais, C. et al. Reading between eye saccades. PLoS ONE 4, e6448 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rayner, K. & Kaiser, J. S. Reading mutilated text. J. Educ. Psychol. 67, 301–306 (1975).

    Article  Google Scholar 

  45. Wang, H.-C. et al. Using singular value decomposition to investigate degraded Chinese character recognition: evidence from eye movements during reading. J. Res. Read. 36, S35–S50 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zhai, M. & Fischer-Baum, S. Exploring the effects of knowledge of writing on reading Chinese characters in skilled readers. J. Exp. Psychol. Learn. Mem. Cogn. 45, 724–731 (2019).

    Article  PubMed  Google Scholar 

  47. Perea, M. Revisiting Huey: on the importance of the upper part of words during reading. Psychon. Bull. Rev. 19, 1148–1153 (2012).

    Article  PubMed  Google Scholar 

  48. Pae, H. K., Bae, S. & Yi, K. Horizontal orthography versus vertical orthography: the effects of writing direction and syllabic format on visual word recognition in Korean hangul. Q. J. Exp. Psychol. 74, 443–458 (2021).

    Article  Google Scholar 

  49. Kinoshita, S. & Kaplan, L. Priming of abstract letter identities in the letter match task. Q. J. Exp. Psychol. 61, 1873–1885 (2008).

    Article  Google Scholar 

  50. Norris, D. & Kinoshita, S. Perception as evidence accumulation and Bayesian inference: insights from masked priming. J. Exp. Psychol. Gen. 137, 434–455 (2008).

    Article  PubMed  Google Scholar 

  51. Li, X. P. D., Law, S. P., Lau, K. D. & Rapp, B. Functional orthographic units in Chinese character reading: are there abstract radical identities? Psychon. Bull. Rev. 28, 610–623 (2021).

    Article  PubMed  Google Scholar 

  52. Kinoshita, S., Whiting, D. & Norris, D. What masked priming effects with abbreviations can tell us about abstract letter identities. J. Mem. Lan. 117, 104209 (2021).

    Article  Google Scholar 

  53. Kintsch, W. The role of knowledge in discourse comprehension: a construction integration model. Psychol. Rev. 95, 163–182 (1988).

    Article  PubMed  Google Scholar 

  54. Pickering, M. J. & Garrod, S. An integrated theory of language production and comprehension. Behav. Brain Sci. 36, 329–347 (2013).

    Article  PubMed  Google Scholar 

  55. MacDonald, M. C., Pearlmutter, N. J. & Seidenberg, M. S. Lexical nature of syntactic ambiguity resolution. Psychol. Rev. 101, 676–703 (1994).

    Article  PubMed  Google Scholar 

  56. Ehrlich, S. E. & Rayner, K. Contextual effects on word perception and eye movements during reading. J. Verbal Learn. Verbal Behav. 20, 641–655 (1981).

    Article  Google Scholar 

  57. Lin, C. & Bever, T. G. in Processing and Producing Head-Final Structures (eds Yamashita, H., Hirose, Y. & Packard, J. L.) 277–297 (Springer, 2010).

  58. Plaut, D. C., McClelland, J. L., Seidenberg, M. S. & Patterson, K. Understanding normal and impaired word reading: computational principles in quasi-regular domains. Psychol. Rev. 103, 56–115 (1996).

    Article  PubMed  Google Scholar 

  59. Harm, M. W. & Seidenberg, M. S. Computing the meanings of words in reading: cooperative division of labor between visual and phonological processes. Psychol. Rev. 111, 662–720 (2004).

    Article  PubMed  Google Scholar 

  60. Yan, M., Wang, A., Song, H. & Kliegl, R. Parafoveal processing of phonology and semantics during the reading of Korean sentences. Cognition 193, 104009 (2019).

    Article  PubMed  Google Scholar 

  61. Cho, J. R. & Chen, H. Orthographic and phonological activation in the semantic processing of Korean hanja and hangul. Lang. Cognit. Process. 14, 481–502 (1999).

    Article  Google Scholar 

  62. Frost, R. Becoming literate in Hebrew: the grain size hypothesis and Semitic orthographic systems. Dev. Sci. 9, 439–440 (2006).

    Article  PubMed  Google Scholar 

  63. Frost, R. in How Children Learn to Read: Current Issues and New Directions in the Integration of Cognition, Neurobiology and Genetics of Reading and Dyslexia Research and Practice (eds Pugh, K. & McCardle, P.) 235–254 (Taylor & Francis, 2011).

  64. Frost, R. Toward a strong phonological theory of visual word recognition: true issues and false trails. Psychol. Bull. 123, 71–99 (1998).

    Article  PubMed  Google Scholar 

  65. Frost, R. Prelexical and postlexical strategies in reading: evidence from a deep and a shallow orthography. J. Exp. Psychol. Learn. Mem. Cogn. 20, 116–129 (1994).

    Article  PubMed  Google Scholar 

  66. Frost, R. Phonological computation and missing vowels: mapping lexical involvement in reading. J. Exp. Psychol. Learn. Mem. Cogn. 21, 398–408 (1995).

    Article  PubMed  Google Scholar 

  67. Zhou, X., Marslen-Wilson, W., Taft, M. & Shu, H. Morphology, orthography, and phonology in reading Chinese compound words. Lang. Cognit. Process. 14, 525–565 (1999).

    Article  Google Scholar 

  68. Tan, L. & Perfetti, C. A. Visual Chinese character recognition: does phonological information mediate access to meaning? J. Mem. Lan. 37, 41–57 (1997).

    Article  Google Scholar 

  69. Zhou, X. & Marslen-Wilson, W. The relative time course of semantic and phonological activation in reading Chinese. J. Exp. Psychol. Learn. Mem. Cogn. 26, 1245–1265 (2000).

    Article  PubMed  Google Scholar 

  70. Chua, F. K. Phonological recoding in Chinese logograph recognition. J. Exp. Psychol. Learn. Mem. Cogn. 25, 876–891 (1999).

    Article  Google Scholar 

  71. Xu, Y., Pollatsek, A. & Potter, M. C. The activation of phonology during silent Chinese word reading. J. Exp. Psychol. Learn. Mem. Cogn. 25, 838–857 (1999).

    Article  PubMed  Google Scholar 

  72. Zhang, S. L., Perfetti, C. A. & Yang, H. Whole word, frequency-general phonology in semantic processing of Chinese characters. J. Exp. Psychol. Learn. Mem. Cogn. 25, 858–875 (1999).

    Article  Google Scholar 

  73. Liu, Y., Perfetti, C. A. & Hart, L. ERP evidence for the time course of graphic, phonological, and semantic information in Chinese meaning and pronunciation decisions. J. Exp. Psychol. Learn. Mem. Cogn. 29, 1231–1247 (2003).

    Article  PubMed  Google Scholar 

  74. Perfetti, C. A. & Tan, L. The time course of graphic, phonological, and semantic activation in Chinese character identification. J. Exp. Psychol. Learn. Mem. Cogn. 24, 101–118 (1998).

    Article  Google Scholar 

  75. Perfetti, C. A. & Zhang, S. Very early phonological activation in Chinese reading. J. Exp. Psychol. Learn. Mem. Cogn. 21, 24–33 (1995).

    Article  Google Scholar 

  76. Zhou, X. & Marslen-Wilson, W. Direct Visual Access is the Only Way to Access the Chinese Mental Lexicon (Elsevier, 1996).

  77. Wong, A. W. K., Wu, Y. & Chew, H. C. Limited role of phonology in reading Chinese two-character compounds: evidence from an ERP study. Neuroscience 256, 342–351 (2014).

    Article  PubMed  Google Scholar 

  78. Zhang, H. et al. The time course of orthographic and semantic activation in Chinese character recognition: evidence from an ERP study. Lang. Cogn. Neurosci. 35, 292–309 (2020).

    Article  Google Scholar 

  79. Dylman, A. S. & Kikutani, M. The role of semantic processing in reading Japanese orthographies: an investigation using a script-switch paradigm. Read. Writ. 31, 503–531 (2018).

    Article  PubMed  Google Scholar 

  80. Moscicka, A. K., Jost, L. B., Raith, M. & Maurer, U. Neurocognitive mechanisms of learning to read: print tuning in beginning readers related to word-reading fluency and semantics but not phonology. J. Cogn. Neurosci. 18, 106–118 (2013).

    Google Scholar 

  81. Coltheart, M., Curtis, B., Atkins, P. & Haller, M. Models of reading aloud — dual-route and parallel-distributed-processing approaches. Psychol. Rev. 100, 589–608 (1993).

    Article  Google Scholar 

  82. Rayner, K. The perceptual span and peripheral cues in reading. Cogn. Psychol. 7, 65–81 (1975).

    Article  Google Scholar 

  83. McConkie, G. W. & Rayner, K. Asymmetry of the perceptual span in reading. Bull. Psychon. Soc. 8, 365–368 (1976).

    Article  Google Scholar 

  84. Inhoff, A. W. & Liu, W. M. The perceptual span and oculomotor activity during the reading of Chinese sentences. J. Exp. Psychol. Hum. Percept. Perform. 24, 20–34 (1998).

    Article  PubMed  Google Scholar 

  85. Pollatsek, A., Bolozky, S., Well, A. D. & Rayner, K. Asymmetries in the perceptual span for Israeli readers. Brain Lang. 14, 174–180 (1981).

    Article  PubMed  Google Scholar 

  86. Zhou, W., Wang, A. & Yan, M. Eye movements and the perceptual span among skilled Uighur readers. Vis. Res. 182, 20–26 (2021).

    Article  PubMed  Google Scholar 

  87. Paterson, K. B. et al. Reading direction and the central perceptual span in Urdu and English. PLoS ONE 9, e88358 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Su, J. et al. Flexibility in the perceptual span during reading: evidence from Mongolian. Atten. Percept. Psychophys. 82, 1566–1572 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Osaka, N. in Perception and Cognition: Advances in Eye Movement Research (eds d’Ydewalle, G. & Van Rensbergen, J.) 275–283 (North Holland, 1993).

  90. Liu, W., Inhoff, A. W. & Li, X. Attention shifting during the reading of Chinese sentences. J. Exp. Psychol. Hum. Percept. Perform. 46, 979–990 (2020).

    Article  PubMed  Google Scholar 

  91. Wang, A. P., Yan, M., Wang, B., Jia, G. D. & Inhoff, A. W. The perceptual span in Tibetan reading. Psychol. Res. 85, 1307–1316 (2021).

    Article  PubMed  Google Scholar 

  92. Schad, D. J. & Engbert, R. The zoom lens of attention: simulating shuffled versus normal text reading using the SWIFT model. Vis. Cogn. 20, 391–421 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Rayner, K., Fischer, M. H. & Pollatsek, A. Unspaced text interferes with both word identification and eye movement control. Vis. Res. 38, 1129–1144 (1998).

    Article  PubMed  Google Scholar 

  94. Perea, M. & Acha, J. Space information is important for reading. Vis. Res. 49, 1994–2000 (2009).

    Article  PubMed  Google Scholar 

  95. Winskel, H. in Attention and Vision in Language Processing (eds Mishra, R., Srinivasan, N. & Huettig, F.) 111–125 (Springer, 2015).

  96. Sainio, M., Hyona, J., Bingushi, K. & Bertram, R. The role of interword spacing in reading Japanese: an eye movement study. Vis. Res. 47, 2575–2584 (2007).

    Article  PubMed  Google Scholar 

  97. Reilly, R. & Radach, R. The dynamics of reading in non-Roman writing systems: a reading and writing special issue. Read. Writ. 25, 935–950 (2012).

    Article  Google Scholar 

  98. Huang, L. & Li, X. Early, but not overwhelming: the effect of prior context on segmenting overlapping ambiguous strings when reading Chinese. Q. J. Exp. Psychol. 73, 1382–1395 (2020).

    Article  Google Scholar 

  99. Ma, G., Li, X. & Rayner, K. Word segmentation of overlapping ambiguous strings during Chinese reading. J. Exp. Psychol. Hum. Percept. Perform. 40, 1046–1059 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Huang, L., Staub, A. & Li, X. Prior context influences lexical competition when segmenting Chinese overlapping ambiguous strings. J. Mem. Lan. 118, 104218 (2021).

    Article  Google Scholar 

  101. Li, X., Rayner, K. & Cave, K. R. On the segmentation of Chinese words during reading. Cogn. Psychol. 58, 525–552 (2009).

    Article  PubMed  Google Scholar 

  102. O’Regan, J. K. & Jacobs, A. M. Optimal viewing position effect in word recognition: a challenge to current theory. J. Exp. Psychol. Hum. Percept. Perform. 18, 185–197 (1992).

    Article  Google Scholar 

  103. Rayner, K. Eye guidance in reading: fixation locations within words. Perception 8, 21–30 (1979).

    Article  PubMed  Google Scholar 

  104. Vitu, F., McConkie, G. W., Kerr, P. & O’Regan, J. K. Fixation location effects on fixation durations during reading: an inverted optimal viewing position effect. Vis. Res. 41, 3513–3533 (2001).

    Article  PubMed  Google Scholar 

  105. Nuthmann, A., Engbert, R. & Kliegl, R. Mislocated fixations during reading and the inverted optimal viewing position effect. Vis. Res. 45, 2201–2217 (2005).

    Article  PubMed  Google Scholar 

  106. Li, X., Liu, P. & Rayner, K. Eye movement guidance in Chinese reading: is there a preferred viewing location? Vis. Res. 51, 1146–1156 (2011).

    Article  PubMed  Google Scholar 

  107. Yan, M., Kliegl, R., Richter, E. M., Nuthmann, A. & Shu, H. Flexible saccade-target selection in Chinese reading. Q. J. Exp. Psychol. 63, 705–725 (2010).

    Article  Google Scholar 

  108. Yan, M. & Kliegl, R. CarPrice versus CarpRice: word boundary ambiguity influences saccade target selection during the reading of Chinese sentences. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1832–1838 (2016).

    Article  PubMed  Google Scholar 

  109. Ma, G., Li, X. & Pollatsek, A. There is no relationship between the preferred viewing location and word segmentation in Chinese reading. Vis. Cogn. 23, 399–414 (2015).

    Article  Google Scholar 

  110. Li, X., Liu, P. & Rayner, K. Saccade target selection in Chinese reading. Psychon. Bull. Rev. 22, 524–530 (2015).

    Article  PubMed  Google Scholar 

  111. Wei, W., Li, X. & Pollatsek, A. Word properties of a fixated region affect outgoing saccade length in Chinese reading. Vis. Res. 80, 1–6 (2013).

    Article  PubMed  Google Scholar 

  112. Liu, Y., Reichle, E. D. & Li, X. The effect of word frequency and parafoveal preview on saccade length during the reading of Chinese. J. Exp. Psychol. Hum. Percept. Perform. 42, 1008–1025 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Liu, Y., Reichle, E. D. & Li, X. Parafoveal processing affects outgoing saccade length during the reading of Chinese. J. Exp. Psychol. Learn. Mem. Cogn. 41, 1229–1236 (2015).

    Article  PubMed  Google Scholar 

  114. McConkie, G. W., Kerr, P. W., Reddix, M. D. & Zola, D. Eye movement control during reading: I. The location of initial eye fixations on words. Vis. Res. 28, 1107–1118 (1988).

    Article  PubMed  Google Scholar 

  115. Henderson, J. M. & Ferreira, F. Effects of foveal processing difficulty on the perceptual span in reading: implications for attention and eye movement control. J. Exp. Psychol. Learn. Mem. Cogn. 16, 417–429 (1990).

    Article  PubMed  Google Scholar 

  116. Drieghe, D. Foveal processing and word skipping during reading. Psychon. Bull. Rev. 15, 856–860 (2008).

    Article  PubMed  Google Scholar 

  117. Risse, S. & Kliegl, R. Evidence for delayed parafoveal-on-foveal effects from word n+2 in reading. J. Exp. Psychol. Hum. Percept. Perform. 38, 1026–1042 (2012).

    Article  PubMed  Google Scholar 

  118. Slattery, T. J. & Yates, M. Word skipping: effects of word length, predictability, spelling and reading skill. Q. J. Exp. Psychol. 71, 250–259 (2018).

    Article  Google Scholar 

  119. White, S. J. & Liversedge, S. P. Foveal processing difficulty does not modulate non-foveal orthographic influences on fixation positions. Vis. Res. 46, 426–437 (2006).

    Article  PubMed  Google Scholar 

  120. Reilly, R. G., Aranyanak, I., Yu, L., Yan, G. & Tang, S. Eye movement control in reading Thai and Chinese. Stud. Psychol. Behav. 9, 35–44 (2011).

    Google Scholar 

  121. Winskel, H., Radach, R. & Luksaneeyanawin, S. Eye movements when reading spaced and unspaced Thai and English: a comparison of Thai-English bilinguals and English monolinguals. J. Mem. Lang. 61, 339–351 (2009).

    Article  Google Scholar 

  122. White, S. J., Hirotani, M. & Liversedge, S. P. Eye movement behaviour during reading of Japanese sentences: effects of word length and visual complexity. Read. Writ. 25, 981–1006 (2012).

    Article  Google Scholar 

  123. Liu, Y. et al. The effects of parafoveal word frequency and segmentation on saccade targeting during Chinese reading. Psychon. Bull. Rev. 26, 1367–1376 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Taft, M. & Forster, K. I. Lexical storage and retrieval of prefixed words. J. Verbal Learn. Verbal Behav. 14, 638–647 (1975).

    Article  Google Scholar 

  125. Hyönä, J. in The Oxford Handbook Of Reading (eds Pollatsek, A. & Treiman, R.) 114–128 (Oxford Univ. Press, 2015).

  126. Bertram, R. & Hyönä, J. The length of a complex word modifies the role of morphological structure: evidence from eye movements when reading short and long Finnish compounds. J. Mem. Lang. 48, 615–634 (2003).

    Article  Google Scholar 

  127. Bertram, R. & Hyona, J. The role of hyphens at the constituent boundary in compound word identification facilitative for long, detrimental for short compound words. Exp. Psychol. 60, 157–163 (2013).

    Article  PubMed  Google Scholar 

  128. Hyönä, J., Pollatsek, A., Koski, M. & Olkoniemi, H. An eye-tracking study of reading long and short novel and lexicalized compound words. J. Eye Mov. Res. 13, 3 (2020).

    Google Scholar 

  129. Peng, D. L., Liu, Y. & Wang, C. in Reading Chinese Script: A Cognitive Analysis (eds Wang, J., Inhoff, A. W., & Chen, H.-C.) 65–89 (Erlbaum, 1999).

  130. Tse, C.-S. & Yap, M. J. The role of lexical variables in the visual recognition of two-character Chinese compound words: a megastudy analysis. Q. J. Exp. Psychol. 71, 2022–2038 (2018).

    Article  Google Scholar 

  131. Yan, G., Tian, H., Bai, X. & Rayner, K. The effect of word and character frequency on the eye movements of Chinese readers. Br. J. Psychol. 97, 259–268 (2006).

    Article  PubMed  Google Scholar 

  132. Chen, H. C., Song, H., Lau, W. Y., Wong, K. F. E. & Tang, S. L. in Reading Development in Chinese Children (eds McBride-Chang, C. & Chen, H. C.) 157–169 (Praeger, 2003).

  133. Cui, L. et al. Processing of compound-word characters in reading Chinese: an eye-movement-contingent display change study. Q. J. Exp. Psychol. 66, 527–547 (2013).

    Article  Google Scholar 

  134. Ma, G., Li, X. & Rayner, K. Readers extract character frequency information from nonfixated-target word at long pretarget fixations during Chinese reading. J. Exp. Psychol. Hum. Percept. Perform. 41, 1409–1419 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Cui, L. et al. Compound word frequency modifies the effect of character frequency in reading Chinese. Q. J. Exp. Psychol. 74, 610–633 (2021).

    Article  Google Scholar 

  136. Yu, L., Liu, Y. & Reichle, E. D. A corpus-based versus experimental examination of word- and character-frequency effects in Chinese reading: theoretical implications for models of reading. J. Exp. Psychol. Gen. 150, 1612–1641 (2020).

    Article  PubMed  Google Scholar 

  137. Yang, J., Staub, A., Li, N., Wang, S. & Rayner, K. Plausibility effects when reading one- and two-character words in Chinese: evidence from eye movements. J. Exp. Psychol. Learn. Mem. Cogn. 38, 1801–1809 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Shen, W., Li, X. & Pollatsek, A. The processing of Chinese compound words with ambiguous morphemes in sentence context. Q. J. Exp. Psychol. 71, 1–10 (2017).

    Google Scholar 

  139. Zhou, J. & Li, X. On the segmentation of Chinese incremental words. J. Exp. Psychol. Learn. Mem. Cogn. 47, 1353–1368 (2021).

    Article  PubMed  Google Scholar 

  140. Liversedge, S. P., Hyona, J. & Rayner, K. Eye movements during Chinese reading. J. Res. Read. 36, S1–S3 (2013).

    Article  Google Scholar 

  141. Seidenberg, M. S. in The Extraordinary Brain Series. Dyslexia Across Languages: Orthography and the Brain–Gene–Behavior Link (eds McCardle, P., Miller, B., Lee, J. R., & Tzeng, O. J. L.) 146–168 (Paul H Brookes Publishing, 2011).

  142. Cop, U., Dirix, N., Drieghe, D. & Duyck, W. Presenting GECO: an eyetracking corpus of monolingual and bilingual sentence reading. Behav. Res. Methods 49, 602–615 (2017).

    Article  PubMed  Google Scholar 

  143. Liversedge, S. P. et al. Universality in eye movements and reading: a trilingual investigation. Cognition 147, 1–20 (2016).

    Article  PubMed  Google Scholar 

  144. Reilly, R. G. & Radach, R. Some empirical tests of an interactive activation model of eye movement control in reading. Cogn. Syst. Res. 7, 34–55 (2006).

    Article  Google Scholar 

  145. Gu, J., Li, X. & Liversedge, S. P. Character order processing in Chinese reading. J. Exp. Psychol. Hum. Percept. Perform. 41, 127–137 (2015).

    Article  PubMed  Google Scholar 

  146. Rayner, K., Li, X., Juhasz, B. J. & Yan, G. The effect of word predictability on the eye movements of Chinese readers. Psychon. Bull. Rev. 12, 1089–1093 (2005).

    Article  PubMed  Google Scholar 

  147. Pollatsek, A., Reichle, E. D. & Rayner, K. Serial processing is consistent with the time course of linguistic information extraction from consecutive words during eye fixations in reading: a response to Inhoff, Eiter, and Radach (2005). J. Exp. Psychol. Hum. Percept. Perform. 32, 1485–1489 (2006).

    Article  PubMed  Google Scholar 

  148. Pollatsek, A., Reichle, E. D. & Rayner, K. Attention to one word at a time in reading is still a viable hypothesis: rejoinder to Inhoff, Radach, and Eiter (2006). J. Exp. Psychol. Hum. Percept. Perform. 32, 1496–1500 (2006).

    Article  PubMed  Google Scholar 

  149. Inhoff, A. W., Eiter, B. M. & Radach, R. Time course of linguistic information extraction from consecutive words during eye fixations in reading. J. Exp. Psychol. Hum. Percept. Perform. 31, 979–995 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Schotter, E. R. & Jia, A. N. Semantic and plausibility preview benefit effects in English: evidence from eye movements. J. Exp. Psychol. Learn. Mem. Cogn. 42, 1839–1866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Inhoff, A. W., Radach, R. & Heller, D. Complex compounds in German: interword spaces facilitate segmentation but hinder assignment of meaning. J. Mem. Lan. 42, 23–50 (2000).

    Article  Google Scholar 

  152. Juhasz, B. J., Inhoff, A. W. & Rayner, K. The role of interword spaces in the processing of English compound words. Lang. Cognit. Process. 20, 291–316 (2005).

    Article  Google Scholar 

  153. Bai, X., Yan, G., Liversedge, S. P., Zang, C. & Rayner, K. Reading spaced and unspaced Chinese text: evidence from eye movements. J. Exp. Psychol. Hum. Percept. Perform. 34, 1277–1287 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Haikio, T., Bertram, R. & Hyona, J. The development of whole-word representations in compound word processing: evidence from eye fixation patterns of elementary school children. Appl. Psycholinguist. 32, 533–551 (2011).

    Article  Google Scholar 

  155. Bertram, R., Kuperman, V., Baayen, R. H. & Hyona, J. The hyphen as a segmentation cue in triconstituent compound processing: it’s getting better all the time. Scand. J. Psychol. 52, 530–544 (2011).

    Article  PubMed  Google Scholar 

  156. Kuperman, V. & Deutsch, A. Morphological and visual cues in compound word reading: eye-tracking evidence from Hebrew. Q. J. Exp. Psychol. 73, 2177–2187 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Natural Science Foundation of China (31970992). This work was also jointly funded by the National Natural Science Foundation of China (NSFC) and the German Research Foundation (DFG) in Project Crossmodal Learning (NSFC 62061136001/DFG TRR-169). J.H. was supported by an Academy of Finland grant (no. 315963). The authors thank Q. Zhang and Q. Qu for comments on a previous version of the manuscript and Y. Bao for discussions regarding Mongolian and for providing examples of Mongolian.

Author information

Authors and Affiliations

Authors

Contributions

X.L. was the lead author and conceptualized the manuscript. All authors contributed substantially to discussion of the content. All authors wrote the article: X.L. was lead author for the sections Introduction, Unique properties of writing systems, Universal reading mechanisms, Lessons from non-alphabetic scripts and Summary and future directions; L.H. was lead author for the sections Routes from visual form to semantics and Reading without inter-word spaces; P.Y. was lead author for the section Perceptual span and covert attention; and J.H. was lead author for the section Reading compound words. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Xingshan Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Ralf Engbert, who co-reviewed with Stefan Seelig; Lili Yu; and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Graphemes

The smallest written units that represent sound (such as letters or letter strings that represent phonemes in alphabetic writing systems and characters in syllabic and logographic writing systems).

Phoneme

The smallest sound unit in a language that makes a word differ from other words.

Morphemes

The smallest meaning-bearing linguistic units (for example, ‘baseball’ contains the morphemes ‘base’ and ‘ball’ and ‘cats’ contains the morphemes ‘cat’ and ‘s’).

Connectionist model

Neural-inspired computational network that propagates activation among simple units, also known as parallel distributed processing models.

Visual complexity

The level of detail or intricacy contained within an image, reflecting the amount of psychological effort required to process the image.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, L., Yao, P. et al. Universal and specific reading mechanisms across different writing systems. Nat Rev Psychol 1, 133–144 (2022). https://doi.org/10.1038/s44159-022-00022-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44159-022-00022-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing