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Abstract

Background Though deep learning has consistently demonstrated advantages in the
automatic interpretation of breast ultrasound images, its black-box nature hinders potential
interactions with radiologists, posing obstacles for clinical deployment.
MethodsWe proposed a domain knowledge-based interpretable deep learning system for
improving breast cancer risk prediction via paired multimodal ultrasound images. The deep
learning system was developed on 4320 multimodal breast ultrasound images of 1440
biopsy-confirmed lesions from 1348 prospectively enrolled patients across two hospitals
between August 2019 and December 2022. The lesions were allocated to 70% training
cohort, 10% validation cohort, and 20% test cohort based on case recruitment date.
Results Here, we show that the interpretable deep learning system can predict breast
cancer risk as accurately as experienced radiologists, with an area under the receiver
operating characteristic curve of 0.902 (95%confidence interval = 0.882 – 0.921), sensitivity
of 75.2%, and specificity of 91.8% on the test cohort. With the aid of the deep learning
system, particularly its inherent explainable features, junior radiologists tend to achieve
better clinical outcomes, while senior radiologists experience increased confidence levels.
Multimodal ultrasound images augmented with domain knowledge-based reasoning cues
enable an effective human-machine collaboration at a high level of prediction performance.
Conclusions Such a clinically applicable deep learning system may be incorporated into
future breast cancer screening and support assisted or second-read workflows.

Breast cancer is a leading cause of cancer mortality among women and an
ongoing threat to global health. It is estimated that in 2022, 287,850 new
cases of breast cancer in females would be diagnosed in the United States,
continuing with a slow but steady increase of approximately 0.5% in inci-
dence rates per year1. Early detection of breast cancer can potentially

improvepatient outcomes, promptingwidespreadclinical recommendation
for screening mammography to reduce its morbidity2. However, mam-
mography exhibits low sensitivity in dense breast tissue, and is not uni-
versally accessible across all countries3. Ultrasound (US), a low-cost, non-
invasive, no-ionizing-radiation, and widely-available imaging modality,
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Plain Language Summary

Breast cancer is one of the most common
cancers, and finding it early can greatly
improve patients’ chances of survival and
recovery. We create a tool based on artificial
intelligence (AI)—wherebycomputer software
learns to perform tasks that normally require
human thinking—called MUP-Net. MUP-Net
can analyze medical images to predict a
patient’s risk of having breast cancer. To
make thisAI tool usable in clinical practice,we
enabled doctors to see the reasoning behind
the AI’s predictions by visualizing the key
image features it analyzed. We showed that
our AI tool not only makes doctors more
confident in their diagnosis but also helps
them make better decisions, especially for
less experienced doctors. With further test-
ing,ourAI toolmayhelpclinicians todiagnose
breast cancer more accurately and quickly,
potentially improving patient outcomes.
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serves as a supplementary modality to mammography in screening
settings4,5 and as the primary imaging modality for characterizing breast
masses (i.e., solid or cystic)6,7.While the American College of Radiology has
established the Breast Imaging Reporting and Data System (BI-RADS)
guideline to standardize breast imaging terminology and report manage-
ment, the intra- and inter-variations among observers in breast US image
interpretations still exist8,9. In addition, high false positive rates and false
negative rates in breast US examinations have limited its applicability to a
broader range of screening and diagnostic population.

Artificial intelligence (AI) has been leveraged for many years to alle-
viate these challenges to some extent10,11. With the rapid development of
deep learning12–15, the convolutional neural network has gradually become a
promising approach in the field of breast US image analysis, including
regiondetection16,17, lesion segmentation18,19, tumor classification20 aswell as
multi-stage tasks21,22. Early works primarily focused on the US B-mode
image without recognizing the importance of jointly utilizing comprehen-
sive semantic information from other types of US images. A significantly
better breast cancer risk prediction has been recently demonstrated via
either the combination of US B-mode and colour Doppler23,24, or the fusion
of US B-mode and elastography25. More advance, we demonstrated a
clinically applicable deep learning system26 could prospectively assess clin-
ical relevant multimodal US images (i.e., B-mode, colour Doppler, and
elastography) with non-inferior sensitivity and specificity to experienced
radiologists.

Despite the radiologist-level classification of breast cancer, the
remaining pivotal issue that needs to be addressed before its clinical
deployment is the black-box nature of deep learning27,28. Current deep
learning systems provide clinicians with the malignant probability results,
which the clinicians can either simply trust in plausibility or override. In
other words, the potential inferential logic of the deep learning, particularly
as a clinical decision-supporting system, is not fully understood for radi-
ologists. Post hoc-based interpretable strategies such as saliency maps29,
deconvolution30, and activation maximization31 have been extensively
explored to visualize the inner working mechanism of deep learning.
However, these approaches still cannot explain how a model exploits
these cues.

In this study, we propose a novel interpretable AI system, namely the
Multimodal Ultrasound Prototype Network (MUP-Net), using domain
knowledge-based prototypes to predict themalignancy risk probability.We
demonstrate that MUP-Net has comparable breast cancer prediction per-
formance to the state-of-the-art black-box deep learning models, reaching
the level of experienced radiologists in our prospective reader study. The
most important contribution of our AI system is the emphasis of human-
machine collaboration through its inherent interpretability frompathology-
confirmed images, instead of unseen images with post-hoc explainability. In
ourAI-assisted reader study, we demonstrate the potential of ourMUP-Net
in aiding clinicians, such as increasing the confidence levels of radiologists
and diminishing the discrepancy.

Methods
Ethical approval
This study was approved by the Institutional Review Board of the First
Affiliated Hospital of Anhui Medical University and Xuancheng People’s
Hospital of China. Participants were informed of all aspects of the study,
even if it involved only minimal risk. The consents were informed and
written in advance. The de-identification procedure was performed before
transferring to our study.

Ultrasound dataset
We prospectively collected US images, including B-mode, colour Doppler,
and elastography images, fromwomenwith breast lesions in eitherTheFirst
Affiliated Hospital of Anhui Medical University or Xuancheng People’s
Hospital of China fromAugust 2019 to December 2022. Detailed collection
procedures, inclusion and exclusion criteria for patient recruitment are
depicted in Supplementary Fig. 1. The US examinations were performed by

one of six breast radiologists (i.e, breast radiologists do all ultrasound scans,
instead of breast ultrasound technologists), each withmore than 10 years of
experience in breast US, using the Aixplorer US scanner (SuperSonic
Imagine) with an SL15-4 MHz or SL10-2 MHz linear array transducer
following the standard protocol. For each breast, paired US images at the
largest long-axis cross-section plane of the lesion were saved. As a result,
4,320 paired US images from 1,440 lesions (464 positives for cancer) from
1,348 patients were collected. The manual review of the pathology note
served as the ground-truth labels. Table 1 shows patient demographics and
breast lesion characteristics of our dataset. The dataset was split into an 8:2
ratio based on case recruitment date: development cohort (70% for training
and 10% for validation), and test cohort (20% for testing).

The breast US images were pre-processed26 by a custom annotation
tool to remove irrelevant information, such as text and instrument settings.
In clinical practice, radiologists are required to manually place a sampling
box to select the vascularity (viaUS colourDoppler image), elasticity (viaUS
elastography image)measurements, as well as corresponding box region for
theUSB-mode image during theUS image acquisition.Guidedby these box
regions, experienced radiologists adjusted the segmentationmasks to ensure
the similar lesion-to-mask ratios in each imaging mode, followed by crop-
ping operations.

Owing to the chronological data partition and patient population
distribution in the real world, the training cohort has an imbalanced data
distribution with 335 malignant and 817 benign lesions. To mitigate this
issue, we implemented data augmentation techniques, including horizontal
flipping, random rotation, and Gaussian blurring to increase the size of
malignant samples. We additionally augmented data on-the-fly during the
training by contrast adjustment, horizontal flipping, and random rotation.
For the reader study, we randomly and equally selected 120 out of 288
lesions, resulting in 60 benign and 60 malignant cases.

Interpretable deep learning model
The design of our interpretable AI system and the details of MUP-Net are
depicted in Fig. 1 and Supplementary Fig. 2, respectively. The MUP-Net is
trained using multimodal US images and biopsy-confirmed pathology
labels. Three independent backbone networks, namely ResNet-18 (pre-
trained on ImageNet), are used to distill semantic features fromdifferentUS
modalities, which are consistent with our previouswork26. Each patch of the
generated feature map is compared against learned prototypes to identify
the most similar matches, followed by a quantitative presentation of the
similarity scores. These scores are then fed into the final fully connected
layer with softmax output to predict a malignancy risk probability. To
present explainable features to readers, these similarity scores are converted
into contribution scores by combining the associated weights from the last
fully connected layer.

Clinical domain knowledge is used for supervising MUP-Net in
learning prototypes, which are representative benign and malignant cases
for each modality selected from the training data during a MUP-Net opti-
mization process. To diminish the bias introduced by automatic prototype
selection, we implemented US domain knowledge to constrain the proto-
type selection to a subset BI-RADS group. Specifically, we first excluded BI-
RADS 4b from the candidate prototypes because it represents a moderate
suspicion of malignancy with borderline probability according to the latest
BI-RADS Atlas and physician observations in clinical practice. As a result,
the biopsy-confirmed benign and malignant prototypes for B-mode and
colour Doppler modalities were selected from BI-RADS 3,4a versus 4c,5
cases, respectively. Next, theWorld Federation for Ultrasound in Medicine
& Biology guidelines32 established a stricter operation for US elastography
(i.e., lightly touching the skin and trying not to apply pressure), which
implies that the distorted elastography images with atypical appearance are
inevitable in clinical practice. Therefore, biopsy-confirmed benign and
malignantprototypes forUSelastographywere exclusively selected fromBI-
RADS 3 versus 5.

The implementation of the deep learningmodel is described as follows:
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LetD ¼ X;Y½ � denotes the dataset to train the deep learningmodel.X
is a multimodal US image set fximgD;Mi¼1;m¼1 where i is a data index, ranging
from1 toD.m is amodal index, ranging from1 toM. Themodality countM
equals to 3 in this work. Y is a binary label set fyigDi¼1 indicating the type of
lesions. As illustrated in Supplementary Fig. 2, MUP-Net first applies three
independent CNN f m �ð Þ on input images xmi from different modalities to
extract features:

zmi ¼ f m xmi ;w
m

� � ð1Þ

Let W ¼ wmf gMm¼1 denotes the trainable parameter sets from all f m.
The resulting feature maps zmi 2 RH ×W ×C serve as the input of the proto-
typical part. Prototypical part aims to learn somemeaningful representations
of each class in the latent space. Here, MUP-Net learns a set Pm containing a
pre-determined number of prototypes (i.e., N) for the m-th modality, i.e.,
Pm ¼ fpmj gNj¼1

where pmj is the j-th prototype. To be specific, prototypes pmj
are the trainable variables of shapeHm ×Wm ×C. Thus,MUP-Net generates
a set P containing M � N prototypes in total, i.e., P ¼ Pmf gMm¼1 ¼
fpmj gM;N

m¼1;j¼1
. For each class k 2 K , it is represented by Nm

k prototypes in
them-th modality, which means N ¼PK

k¼1N
m
k . We let Pm;k � Pm denote

the subset of prototypes allocated to class k in modality m.
Since thedownsamplingoperations areperformed inbackbone f m, the

spatial dimension of a convolution output zmi is small. A relatively large
receptive field is presented in each pixel of zmi . Thus, we speculate that a

single pixel prototype could be sufficient to represent a significant feature of
the original image when mapped back to the original pixel space, i.e.,
Hm ¼ Wm ¼ 1. Therefore, with Hm<H;Wm<W and a shared channel
numberC, ourmodel can evaluate the similarity between each prototype pmj
to/with all pixels of the distilled feature map zmi , i.e., pixelsðzmi Þ, in a non-
overlapping sliding window manner. In particular, MUP-Net uses Eucli-
dean distances and top-k average pooling to calculate the similarity score for
each prototype:

smij ¼ avgðtopkðlog
dmij þ 1

dmij þ ε

 !

ÞÞ; ð2Þ

where dmij ¼ jpmj � pixelsðzmi Þj22. A small number ε is used to avoid dividing
by zero error. At last, the similarity score set S ¼ fsijmgM;N

m¼1;j¼1 is flattened
and fed into the last fully-connected layer h �ð Þ to produce output logits:

li ¼ h S;wh

� �
; ð3Þ

wherewh 2 RMN ×K denotes a trainableweightmatrix. Indeed, the elements
in wh indicate the connection weight between a similarity score and its
contribution to the output logit of a specific class. These weights are not
randomly initialized. Specifically, given a class k and a modality m, we set

w
m�Nþj;kð Þ
h ¼ 1 for the j-th prototype pmj belonging to Pm;k, and

w
m�Nþj;kð Þ
h ¼ �0:5 otherwise. By following such an initialization approach,

we can guide MUP-Net to assign a fixed number of prototypes for each

predicted class.Whenw
m�Nþj;kð Þ
h is positive and the input image xmi belongs

to class k, the fully-connected layer h will let the class k prototypes make a
positive contribution to the class k output logit. On the contrary, a negative

w
m�Nþj;kð Þ
h will let the non-class k prototypes make an inverse contribution

to the logit of yi.

Three types of loss functions are combined as the learning target of
MUP-Net. The standard cross-entropy is prevalent to supervise classifica-
tion tasks. It is denoted by Lce ¼ CrossEntropy li; yi

� �
in this work. The

clustering loss and separation loss are applied to guide the learning process
of prototypical representation in latent space. For the m-th modality,
clustering loss is used to encourage some pixels of zmi being close to the
prototypes contained in Pm;yi which could be defined as:

Lclu ¼
XM

m¼1

Xn

i¼1

min
pmj 2Pm;yi ;z2patch zmið Þ

z � pmj

���
���
2

n
ð4Þ

On the contrary, separation loss encourages each patch of zmi to stay
away from prototypes belonging to Pm;Knfyig. It is defined as:

Lsep ¼ �
XM

m¼1

Xn

i¼1

min
pmj 2Pm;Knfyig ;z2patch zmið Þ

z � pmj

���
���
2

n
ð5Þ

In addition, L1-norm is applied on wh to generate regularization loss
Lreg . In summary, the overall learning target of MUP-Net is the sum of the
above loss functions:

L ¼ Lce þ αLsep þ βLclu þ γLreg ð6Þ

where α, β; and γ were empirically set to 0.8,−0.08, and 1e-4, respectively.
The optimizing procedure of MUP-Net follows the similar steps

in the previous works33,34. The prototypes in P were randomly initi-
alized using the uniform distribution before training. In the first
stage, three independent feature extractors f m �ð Þ and the prototype
set P were optimized by network back-propagation. In the second

Table 1 | Patient demographics and breast lesion
characteristics

Development cohort Test cohort Clinical
test set

Number of patients 1087 261 120

Age (mean) 44.6 (18–85) 44.7 (20–80) 44.3 (20–78)

Number of lesions 1152 288 120

BI-RADS categorya

3 or lower 80 (6.9%) 24 (8.3%) 9 (7.5%)

4a 648 (56.3%) 132 (45.9%) 48 (40.0%)

4b 236 (20.5%) 56 (19.5%) 27 (22.5%)

4c 109 (9.5%) 39 (13.5%) 19 (15.8%)

5 79 (6.8%) 37 (12.8%) 17 (14.2%)

Lesion size (mm)

<10 351 (30.5%) 65 (22.6%) 27 (22.5%)

10–20 504 (43.7%) 124 (43.1%) 48 (40.0%)

> 20 297 (25.8%) 99 (34.3%) 45 (37.5%)

Location

Upper outer quadrant 549 (47.7%) 139 (48.3%) 53 (44.1%)

Lower outer quadrant 232 (20.1%) 64 (22.2%) 29 (24.2%)

Upper inner quadrant 220 (19.1%) 58 (20.1%) 29 (24.2%)

Lower inner quadrant 94 (8.2%) 18 (6.3%) 6 (5.0%)

Central 57 (4.9%) 9 (3.1%) 3 (2.5%)

Pathology notes

Invasive carcinoma 199 (17.3%) 77 (26.7%) 31 (25.8%)

Carcinoma in situ 38 (3.3%) 16 (5.6%) 9 (7.5%)

Other malignantb 98 (8.5%) 36 (12.5%) 20 (16.7%)

Fibroadenoma 349 (30.3%) 65 (22.6%) 25 (20.8%)

Other benignc 468 (40.6%) 94 (32.6%) 35 (29.2%)
aThe BI-RADS category is determined by breast US images only. Pathology results are available for
the patients classified as BI-RADS 3 or lower following breast US due to either classification as BI-
RADS 4a or higher following mammography or magnetic resonance imaging or requests from
patients themselves. bIncludes specificmalignant results. cIncludes adenosis, hyperplasia,mastitis,
benign phyllodes tumors, and papillomas.
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stage, each Pm;k was projected onto (or replaced by) the nearest latent
training patch from the training set belonging to class k. The pro-
jection not only affects the classification accuracy, but also allows the
visualization of the prototypes as training image patches. In the third
stage, only the matrix wh of the last fully-connected layer h �ð Þ was
trained to adjust the connection weight between an output logit and

the similarity scores S. These three stages were repeated throughout
the whole training process.

Model development and evaluation
Transfer learning was first applied to the feature extraction part via a
ResNet-18 network pre-trained on ImageNet. Adam optimizer was chosen

Questionnaire
For each case

Q1. Whether the overall prediction provided by AI is helpful in making a better decision?

Q2. Whether the similarity comparison between prototypes and test cases is appropriate?

Q3. Whether the contribution scores reveal the importance of each US modality, and meet 

the expectation in BI-RADS Atlas?

Overall evaluation
Q4:  Are prototypes and contribution scores useful even if the overall prediction contradicts 

with your own thought? 

Reader study (Solo and +AI)

Contribution scores
Benign Malignant

US B-mode 19 % 30%

US colour Doppler 12 % 21%

US elastography 7 % 11%

Benign

Malignant

34%

66%

Overall prediction

Patients = 1087
Age = 44.6 (18-85)

Lesions = 1152

Patient enrollment 
& lesion selection

Cancer risk prediction model development

MUP-Net

Prototype candidates

Benign Malignant

BI-RADS 4a+
BI-RADS 4b+

BI-RADS 4c+

BI-RADS Atlas2 3 4a 4b 4c 5

BI-RADS Decision mode

Subjective preference 

B/M Decision mode

Benign Malignant

Binary

MalignantBenign

Domain-knowledge 
filtering

Domain-knowledge 
filtering

US B-mode 4a

3

4b

4c 5
4a

3

4a

4a

5

4c

4b

4a4b
4a

3

4a
4c

3

4c 5

4a

3

4a

5

4c

4a

3
4c

US colour Doppler
4a

4a

5

4c 5
3

3

3

3

4c

4b

4c

4b4b
4a

4a

4a

4c

4a

5

4c

53

3

3

4c

4a
4c

US elastography
4a

3

4c

4c 5
3

3

4a

3

5

4b

4b

4a4a

4a

3

4a
5

3 5

3

3
5

5

MalignantBenign

MalignantBenign

Fig. 1 |Overall study design of the interpretable AI system. Prospectively collected
multimodal ultrasound (US) images, including B-mode, colour Doppler, and elas-
tography were used to develop ourMUP-Netmodel, by utilizing domain knowledge
to supervise the selection of prototype candidates. The overall malignancy risk
probability and six individual contribution scores generated by the AI system were

provided to radiologists as clinical decision-supporting parameters. Two decision
modes (i.e., BI-RADS rating and B/M (Benign/Malignant) preference) and a ques-
tionnaire were proposed to assess the advantageous use of explainable features by
radiologists in making clinical decisions.
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to optimize MUP-Net. We initially set the number of training epochs to 80
and the learning rate to 0.001. The learning rate decreased by 90% every 5
epochs. The batch size was 40. ReLU was chosen as the activation function.
The weight decay of factor 0.001 was applied to the parameters of batch
normalization layers. Our model was trained on NVIDIA GTX A100 GPU
using Python and PyTorch toolbox. During training, data augmentation
techniques were applied to speed up convergence and avoid overfitting. In
particular, the input images were flipped horizontally with a 50% prob-
ability. Brightness and contrast were randomly varied by a factor between
[0.9, 1.1]. A randomportion of an image between 0.9 and1was cropped and
resized to its original size. All images were randomly rotated by a degree
between −10° and 10°.

Some off-the-shelf deep learning models35–37 (i.e., VGG, ResNet, and
DenseNet) were trained to compare the performance between black-box
models and our interpretable MUP-Net. Their overall architectures were
similar, with independent backbone networks used to extract features from
differentUSmodalities, and fully connected layerswith softmaxoutput used
to predict malignancy risk probability. To ensure a fair comparison, the
same pre-trained weights from ImageNet, identical data augmentation
techniques, and an initial learning rate of 0.001 were applied.

Reader study and AI-assisted reader study
Nine radiologists (R1-R9) participated in our reader study.We formed two
subgroups to investigate the benefits of the AI interpretability in aiding
human experts: a senior radiologist group of readers (R1, R5, andR7with an
average of 14 years of clinical experience) and a junior radiologist group of
readers (R2, R8, and R9 with a maximum of 2 years of clinical experience).

A two-phase study was conducted to compare the performance
between the AI and clinicians. In phase I (reader study), readers were
blinded to the original radiologist’s interpretation (i.e., the radiologist who
collected and stored the US images) and MUP-Net prediction. Readers
independently reviewed test samples and determined BI-RADS ratings
along with a Benign/Malignant (B/M) preference. In phase II (AI-assisted
reader study), additional explainable features (i.e., matched prototypes and
contribution scores) andmalignancy risk probability generated by the deep
learning model were provided to the readers. Each reader has the oppor-
tunity to alter their original BI-RADS ratings or B/Mpreference fromPhase
I. In addition to these decision-making tasks, readers were requested to
complete a questionnaire expressing their subjective attitudes towards AI
assistance.

The questionnaire includes three individual questions (Q1, Q2, and
Q3) and anoverall evaluation (Q4) for each test case as shown inFig. 1.Q1 is
related to the overall breast cancer risk prediction provided by the final
output of the deep learning system. The likelihood of malignancy provides
anobviousAIdecisionwithout requiring further analysis by radiologists.Q2
andQ3are attributed to the explainability of our prototypes. Specifically,Q2
checks whether there is a correlation between biopsy-confirmed prototypes
and test samples for each modality. Such a similarity comparison is in line
with the daily workflow of radiologists (i.e., interpretation based on
experience from previously seen US images). Q3 is an extension of Q2 by
requesting if the contribution scores reveal the importance of eachmodality.
For instance, as described in BI-RADS Atlas, US B-mode is the dominant
modality, while US colour Doppler and US elastography partially provide
assorted feature information. In other words, we expect the contribution
score of the prototypes to be consistent with this prior. Q4 is an overall
assessment to conclude the effectiveness of the AI in increasing clinician
confidence levels or making a better clinical decision, or both.

Statistical analysis
The area under the curve (AUC) of the receiver operating characteristic
curve (ROC) value was used to express the performance of the model. The
95% confidence intervals (CI) were calculated based on a non-parametric
procedure with 1,000 bootstraps. Delong’s test was used to compare the
performance among different AI models. McNamar’s test was used to
compare readers’ decisions with and without AI support. P < 0.05 was

considered tohave a statistically significant difference.All statistical analyses
were performed using Python (version 3.9) and the statsmodels library
(version 0.14.0).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Our interpretable AI system was developed from a prospectively enrolled
breast US dataset consisting of 4320 US images (paired B-mode, colour
Doppler, and elastography) of 1,440 lesions (464 biopsy-confirmed cancer
positive) from 1348 patients. All lesions were allocated to 70% training
cohort, 10% validation cohort, and 20% test cohort based on case recruit-
ment date. Our proposed AI system not only generates an overall malig-
nancy probability for automated breast cancer risk prediction but also
creates inherent explainable features such as representative prototypes and
contribution scores, all of which enable a human-understandable interac-
tion as a clinical decision-supporting system.

Selectionsofprototypesandperformanceof theMUP-Netmodel
The domain knowledge of breast US is incorporated into MUP-Net to
refine the selection criteria of prototype candidates. To be specific,
regarding the US B-mode and colour Doppler images, benign and
malignant prototypes were picked out from biopsy-confirmed cases with
BI-RADS rating of 3 & 4a versus 4c & 5, respectively. The borderline BI-
RADS 4b cases were excluded due to its uncertainty. In terms of US
elastography, a stricter preference was applied to the selection process of
prototype candidates (i.e., BI-RADS 3 for benign, and BI-RADS 5 for
malignant) for the purpose of avoiding potential imaging artifacts caused
by human operators32. Under this setting, MUP-Net was trained to learn
more discriminative cases as benign and malignant prototypes, thus
generating reasonable explainable features matched to domain knowl-
edge used by radiologists in clinical settings.

We evaluated the effectiveness of theMUP-Net in threeways. First, we
assessed themodel’s performancewith various prototype numbers, ranging
from6 to14.As a consequence, ourmodel achieved thebest performanceon
the validation cohort when 10 prototypes were learned for each modality
(Supplementary Table 1). Second, we compared MUP-Net with three
prevalent black-box models (i.e., VGG-16, ResNet-18 and ResNet-152,
DenseNet-121 and DenseNet-201) as shown in Supplementary Fig. 3.
Although a few metrics of ResNet and DenseNet families were slightly
higher, therewas no significant difference betweenMUP-Net and black box
models (P < 0.05) on the validation cohort. Third, our MUP-Net achieved
theAUCof 0.902 (95%CI = 0.882–0.921), sensitivity of 75.2%, specificity of
91.8%, and F1 score of 0.812 on the test cohort, which was comparable to
that of validation cohort (Supplementary Tables 1-3).

In terms of the trained MUP-Net (10 prototypes per modality), we
additionally evaluated the effectiveness of three US modalities on the vali-
dation cohort by randomly altering one of the US inputs by certain ratios.
The changes of performance in Supplementary Table 4 and Supplementary
Fig. 4 indicate that the B-mode is essential to improve the sensitivity while
elastography mainly improves the specificity of MUP-Net. In other words,
B-mode is helpful to identify malignant lesions while the elastography
inhibits the occurrence of false positives. The role of colour Doppler is
intermediate between B-mode and elastography.

Reader study
To further investigate the performance of our AI system, we conducted a
reader studywithnine radiologistswhohadvarying years of experience (1 to
18 years, average of 6 years). In particular, radiologists with more than 10
years of experience are formed toa senior group,while junior group includes
radiologistswithnomore than2years of experience. For each test case in the
reader study, the readers were asked to independently provide a routine BI-
RADS rating and a forced B/M preference using the paired multimodal
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breast US images. To convert the BI-RADS rating to readers’ sensitivity and
specificity, we generated three BI-RADS scores: BI-RADS 4a+ , 4b+ , and
4c+ , which were implemented to match the conditions of BI-RADS 3
versus 4a+ , BI-RADS 3,4a versus 4b+ , and BI-RADS 3,4a,4b versus 4c+ ,
respectively.

We compared the performance of MUP-Net with that of the nine
radiologists in two ways. First, we compared the deep learning model with
the sensitivity and specificity of individual readers in fourmodes (i.e., one B/
M score and three BI-RADS scores). As shown in Fig. 2, most of the readers
were below the ROC curve of the model, indicating a non-inferior perfor-
manceof our proposedAI system. Second,we compared theperformanceof
MUP-Net with average performance of junior and senior radiologists. The
senior radiologists showed their strengths overAI only in the BI-RADS 4a+
and4b+ scores. By contrast,AIhada superiorperformanceover the average
performance of junior radiologists in all four modes, which was in line with
our expectation. The greatest advantage of AI over average performance of
junior radiologistswas in theBI-RADS4b+mode.Ahigheroperating point
selection resulted in a lower false positive rate on the premise of sacrificing
sensitivity as indicated in Fig. 2 (b-d).

AI-assisted reader study
AnAI-assisted reader study was conducted to evaluate the advantage of the
domain knowledge-based interpretable AI system in guiding clinical
decision-making.Toachieve this, in addition to the samepairedmultimodal
US images and the correspondingmalignancy risk probability, thematched
representative prototypes as well as AI-generated individual contribution
scores fromeach prototype candidatewere reviewedby the readers. Figure 2
showed that 26 out of 36 persons (9 persons in each decision mode) were
above the ROC curves of the AI, which was an obvious improvement over
previous reader studies without any AI assistance. Such a phenomenonwas
particularly apparent between junior radiologists and senior radiologists.
Specifically, senior radiologists obtained an improvement of 7.6% sensitivity
in B/Mscore and 6.9% specificity inBI-RADS4a+ score. By contrast, junior
radiologists gained more benefits, including an 11.3% improvement of
sensitivity in BI-RADS 4b+ score, and a 6.3% improvement of specificity in
BI-RADS 4a+ score.

Table 2 summarizes the changes in BI-RADS rating and biopsy rate
made by the readers in completing the AI-assisted reader study. For benign
lesions, most readers (7 out of 9) preferred to avoid at least 3.4% to a
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MUP-Net: AUC=0.862 (95% CI = 0.840-0.884)
Individual reader (Solo)
Individual reader (+AI)
Average senior radiologists (Solo)
Average senior radiologists (+AI)
Average junior radiologists (Solo)
Average junior radiologists (+AI)

MUP-Net: AUC=0.862 (95% CI = 0.840-0.884)
Individual reader (Solo)
Individual reader (+AI)
Average senior radiologists (Solo)
Average senior radiologists (+AI)
Average junior radiologists (Solo)
Average junior radiologists (+AI)

MUP-Net: AUC=0.862 (95% CI = 0.840-0.884)
Individual reader (Solo)
Individual reader (+AI)
Average senior radiologists (Solo)
Average senior radiologists (+AI)
Average junior radiologists (Solo)
Average junior radiologists (+AI)

MUP-Net: AUC=0.862 (95% CI = 0.840-0.884)
Individual reader (Solo)
Individual reader (+AI)
Average senior radiologists (Solo)
Average senior radiologists (+AI)
Average junior radiologists (Solo)
Average junior radiologists (+AI)

Fig. 2 | Performance comparison between MUP-Net and readers in predicting
breast cancer risk on the clinical test set. The performance of our AI system was
compared with each of the nine readers and the average performance of the readers
at two modes. a B/M (Benign/Malignant) preference mode, b–d BI-RADS rating
mode. Three BI-RADS ratings were determined by BI-RADS 3 versus 4a+ , BI-

RADS 3,4a versus 4b+ , and BI-RADS 3,4a,4b versus 4c+ , respectively. Readers
were labelled as senior radiologists if with more than 10 years of clinical experience,
while marked as junior radiologists if with no more than 2 years of clinical
experience.
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maximum of 16.7% unnecessary biopsies along with a better BI-RADS
rating (5 out of 9 downgraded more BI-RADS categories). In terms of
malignant lesions, all readers (9 out of 9) decided to upgrademoreBI-RADS
categories aswell asmost readers (8 out of 9) suggestedmore biopsies. These
results demonstrated great potential of our AI to assist radiologists in
making better clinical assessment, especially for junior radiologists.

Table 3 summarizes the effectiveness of the interpretable AI in aiding
radiologists in the matter of accuracy increment. It was observed that none
of the readers suffered from a descending accuracy in BI-RADS ratings and
B/Mpreference.As a clinical decision-supporting system,ourAI systemwas
more beneficial for junior radiologists rather than senior radiologists (i.e.,

5.3% and 7.5% versus 2.0% and 2.5% in BI-RADS rating and B/M pre-
ference, respectively).

We demonstrated the advantageous use of domain knowledge-based
explainable features rather than malignancy risk probability, from two
aspects. First, a questionnairewas surveyed to summarize readers’ subjective
attitudes towards AI assistance. Second, we performed an additional test by
presenting only the AI-predicted probability of malignancy with no
explainable features. Supplementary Table 5 compares two types of AI
assistance on the clinical test set. The better clinical assessment made by the
readers indicates the advantage of providing explainable features over just
providing the malignancy probability predicted by the AI.

Table 2 | Summary of changes in clinical outcomes made by readers R1-R9 in completing the AI-assisted reader study

Benign lesions (N = 60) Malignant lesions (N = 60)

Adjustments Biopsy rate Adjustments Biopsy rate

Maintain Upgradea Downgradeb Solo +AI Maintain Upgradea Downgradeb Solo +AI

R1** (13 yrs) 54 4 2 53.3% 56.7% 49 6 5 100% 100%

R2* (2 yrs) 32 8 20 70.0% 53.3% 36 17 7 98.3% 98.3%

R3 (5 yrs) 53 4 3 41.7% 36.7% 31 27 2 90.0% 93.3%

R4 (3 yrs) 35 8 17 88.3% 83.3% 24 26 10 100% 100%

R5** (18 yrs) 52 3 5 36.7% 33.3% 55 4 1 96.7% 95.0%

R6 (3 yrs) 47 1 12 56.7% 43.3% 47 11 2 95.0% 95.0%

R7** (10 yrs) 56 2 2 71.7% 71.7% 41 17 2 100% 100%

R8* (1 yrs) 42 7 11 36.7% 31.7% 25 29 6 71.7% 78.3%

R9* (1 yrs) 54 5 1 40.0% 43.3% 37 20 3 73.3% 86.7%
aShows the number of lesions that the radiologists altered for either an increasedBI-RADSor a preference change from “benign tomalignancy” under the sameBI-RADS. bShows the number of lesions that
the radiologists altered due to either a decreased BI-RADS or a preference change from “malignancy to benign” under the same BI-RADS. Considering BI-RADS 4a+ as a test positive for malignancy, the
readers suggest ‘biopsy’ without (Solo) and with (+AI) computer assistance. **and* indicate the reader belongs to a senior radiologist or a junior radiologist, respectively.

Table 3 | Summary of the effectiveness of interpretable AI in aiding readers R1-R9

Changes of accuracy in different decision modes Questionnaire of AI assistance

Modea Solo + AI Increment Q1 Q2 Q3 Q4

R1** (13 yrs) BI-RADS 73.3%, 80.0%, 72.5% 71.7%, 83.3%, 71.0% + 0.1% 98.3% 88.3% 80.0% Y

B/M 84.2% 84.2% + 0.0%

R2* (2 yrs) BI-RADS 64.1%, 77.5%, 73.3% 71.7%, 82.5%, 78.3% + 5.9% 70.8% 93.3% 62.5% Y

B/M 70.8% 77.5% + 6.7%

R3 (5 yrs) BI-RADS 74.1%, 71.6%, 55.0% 78.3%, 85.8%, 63.3% + 8.9% 77.5% 96.7% 74.2% Y

B/M 75.0% 80.8% + 5.8%

R4 (3 yrs) BI-RADS 55.8%, 77.5%, 70.0% 58.3%, 82.5%, 80.0% + 5.8% 92.5% 85.0% 70.0% Y

B/M 79.1% 82.5% + 3.4%

R5** (18 yrs) BI-RADS 80.0%, 81.6%, 64.1% 80.8%, 85.0%, 65.0% + 1.7% 10.8% 87.5% 80.8% Y

B/M 85.0% 85.0% + 0.0%

R6 (3 yrs) BI-RADS 70.0%, 79.1%, 74.1% 75.8%, 84.2%, 80.0% + 5.6% 71.7% 93.3% 63.3% Y

B/M 70.0% 75.8% + 5.8%

R7** (10 yrs) BI-RADS 64.1%, 73.3%, 64.1% 64.2%, 80.0%, 70.0% + 4.2% 81.6% 85.8% 75.0% Y

B/M 73.3% 80.8% + 7.5%

R8* (1 yrs) BI-RADS 67.5%, 57.5%, 52.5% 73.3%, 69.2%, 54.2% + 6.4% 79.2% 81.7% 59.2% Y

B/M 63.3% 75.8% + 12.5%

R9* (1 yrs) BI-RADS 66.6%, 64.1%, 56.6% 71.6%, 69.2%, 57.5% + 3.7% 84.2% 76.7% 81.7% Y

B/M 62.5% 65.8% + 3.3%
aBI-RADSmode includes 3 versus 4a+ , 3,4a versus 4b+ and 3,4a,4b versus 4c+while B/Mmode only contains benign versusmalignancy. Considering 4a+ , 4b+ , 4c+ in BI-RADSmode and ‘M’ in B/M
mode as test positive for malignancy, the performance of radiologists in the AI-assisted ready study is calculated without (Solo) and with (+AI) computer assistance, respectively. The increment here
represents theaverageaccuracy improvement inbothBI-RADSandB/Mmodes. ThedetaileddescriptionsofQ1-Q4are listed in Fig.1.**and * indicate the readerbelonging toa senior radiologist or a junior
radiologist, respectively.
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The importance of explainable features in clinic
Compared topreviousblack-boxdeep learningmodels (e.g., heatmaps listed
in Supplementary Fig. 5), our proposed MUP-Net learned representative
cases (i.e., prototypes listed in Supplementary Fig. 6) from eachmodality to
perform a similarity comparison during inference, resulting in a better way
of human-machine interaction. We have listed three examples in Fig. 3 to
demonstrate how domain knowledge-based explainable features could
benefit radiologists in clinical practice.

Figure 3 (a) is amalignant lesionwith a high predictedmalignancy risk
probability (i.e., the contribution scores of the malignant prototypes were
much higher than those of the benign prototypes). Except for R8 and R9, all
other radiologists either increased their BI-RADS ratings or altered their B/
M preference from benign to malignant, indicating the ability of the AI to
optimize radiologists’ preferences. When a lower overall cancer risk prob-
ability was presented to a benign lesion as shown in Fig. 3 (b), most radi-
ologists tended to improve their original decisions. Figure 3 (c) is a
malignant lesionwith an ambiguous risk score− 55%,whichwas difficult to
convince radiologist in clinical practice. However, explainable features (i.e.,
thehighest contribution score 33%belonging to amalignant prototype from
USB-mode) still helped3outof 9 readersmakepositive adjustment towards
a higher risk of malignancy.

The detailed adjustments made in the AI-assisted reader study was
listed in Supplementary Tables 6-14. It should be noted that the inaccurate
malignancy risk probabilitywas inevitable in theAI system.Todiminish the
impact of erroneous prediction, domain knowledge-based prototypes and
similarity scores have the potential to provide a second-level validation. In
particular, if theAIhadanopposite preference to the ground truth result, the
majority of the readers would give a negative answer to Q1 and Q3 of our
questionnaire. In other words, radiologists preferred to agree with the
learned prototypes, instead of recognizing the overall prediction of the AI.
Another interesting finding of our study was that the distribution of con-
tribution scores conformed with the clinical experience in utilizing multi-
modalUS images. To be specific, USB-mode took a dominant role in image
interpretation, while the US colour Doppler was an important supplement.
As a newly proposed modality in BI-RADS guidelines, the contribution

score ofUS elastographywas relativelyweaker than the other twomodalities
under the same category of prototypes. These observations implied the
potential clinical applicability of ourAI system, following the same radiomic
analysis routine.

Discussion
Accurate determination of breast cancer risk from multimodal US images
could considerably improve patients’ outcomes and avoid unnecessary
biopsies26. To accelerate a broader adoption of deep learning technology by
human experts in clinical practice, we propose a domain knowledge-based
interpretable AI system that not only provides an overall cancer risk pre-
diction, but also offers an efficient human-machine interaction. We
demonstrate that our AI system has the potential to assist clinicians, espe-
cially for junior radiologists, in making better and confident decisions.

Deep learning frameworks have previously demonstrated its super-
iority over hand-crafted features in medical imaging fields as a clinical
decision-supporting system38. However, the black-box nature of deep
learning has hindered the establishment of the trust from human experts,
even though its performancehas reachedor surpassedhumanexperts39,40. In
other words, clinicians could either simply trust the output of AI for its
plausibility or overrule it, making the clinical value of AI controversial. To
address the lack of interpretability in deep learning, post-hoc explainability
approaches have recently been adopted by outputting intermediate results
such as saliency maps41,42 and heatmaps29. However, these methods cannot
clearly explain the inner working mechanism of the model while utilizing
these cues.

Herein, we propose a domain knowledge-based interpretable AI sys-
tem on multimodal US images namely MUP-Net, which exploits its
inherent explainability by making comparison among representative cases
(i.e., prototypes) during inference, and incorporates with clinical domain
knowledge of breast US images for prototype selection. The focus of our AI
system is to explore an understandable AI decision-making strategy for
radiologists as a novel approach of human-machine collaboration. The
proposed MUP-Net balances the interpretability of conventional machine
learning with the superior performance of deep learning.

Fig. 3 | Three test cases to illustrate the adjustment of nine readers with the
assistance of AI. For each case, six representative prototypes and corresponding
normalized contribution scores were presented to readers. For either benign or
malignant set, representative prototypes were selected from prototype candidates

(see Supplementary Fig. 6) with the highest contribution scores. a and c are
pathology-confirmed malignant lesions, while b is a pathology-confirmed benign
lesion. R1-R9 represents the nine readers, respectively.
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The performance of our AI system has been demonstrated in three
aspects. First, the interpretable MUP-Net achieved comparable perfor-
mance with prevalent black-box models. For instance, no significant
difference was observed between MUP-Net and those off-the-shelf
methods, such as VGG, ResNet, and DenseNet families on the validation
cohort. Second, in the reader study, the majority of the readers were
below the ROC curve of AI system in terms of sensitivity and specificity.
Our MUP-Net showed a superior performance over junior radiologists,
while maintaining a competitive performance with senior radiologists.
Third, such an interpretable AI system could help avoid unnecessary
biopsies for BI-RADS 4 rating patients, which is the major challenge in
clinical practice43,44. It is important to note that BI-RADS 4 lesions
occupied over 85% of our dataset, making it more challenging and
representative to clinical need.

In addition to the overall improvement in performance, the AI-
assisted reader study revealed the enhancement of clinical applicability
brought by the explainable features. On one hand, if the AI system
outputted a correct prediction the same as the radiologist’s assessment, it
would increase the confidence level of the radiologist. One important
evidence is that all readers gave positive feedbacks in Q4, indicating their
agreements with the reasoning process of AI. On the other hand, when
MUP-Net outputted an inaccurate malignant probability, which did exist
in clinical practice, our questionnaire demonstrated that the inherent
explainable features have potential to alleviate such a discrepancy. Spe-
cifically, a positive answer to Q2 as well as negative answers to Q1 andQ3
revealed the potential of the explainable features to help readers adhere to
their original decisions. Another finding of our study is that the advance
of AI-assisted improvement in sensitivity and specificity occurred on
junior radiologists rather than senior radiologists, suggesting the
potential educational applicability of this interpretable AI system in
training or assisting junior clinicians.

Moreover, the domain knowledge is applied to supervise the learning
process of AI system, which ensures the quality of output explainable fea-
tures. The key point is to supervise the MUP-Net to select discriminative
benign and malignant cases as prototypes for generating credible explain-
able features presented to readers. The domain knowledge for supervision is
based on the standardBI-RADSAtlas and physician observations in clinical
practice, which restricts the range of prototype candidates to a subset of BI-
RADS. It is interesting to note that the learned contribution scores followed
the radiomic analysis routine in clinical practice with a relatively weaker
weight of US elastography than the other two modalities under the same
category of prototypes.

There are a few limitations in our study. Our dataset is exclusively
acquired using Aixplorer US scanners and does not include the varia-
bility generated from various scanner manufacturers. Therefore, the
proposed AI system may not achieve the same high performance in the
external cohorts. In addition, more data are needed for further optimi-
zation and testing across diverse clinical settings to demonstrate the
usefulness and generalizability of our system. Moreover, our MUP-Net is
an image-only deep learning system. To further improve our system, we
should include patients’medical histories and demographics as metadata
input. This information should be relevant and beneficial for compre-
hensive cancer risk prediction.

Data availability
The main data supporting the results of this study are available within the
paper and its Supplementary Information. Source data underlying Fig. 2,
Tables 2–3 can be found in Supplementary Data 1 and 2. Because of the
patient privacy, raw ultrasound datasets from The First Affiliated Hospital
of Anhui Medical University and Xuancheng People’s Hospital of China
cannot be available for public release. However, data in the reader study can
be available for academic study from the lead corresponding author (Xuejun
Qian) on reasonable request, subject to permission from the institutional
review boards of the hospitals.

Code availability
The codes used in this study are available at https://github.com/Qian-
IMMULab, and are provided in Zenodo with the identifier: https://doi.org/
10.5281/zenodo.11046790. The following packageswere used: python 3.9.0,
PyTorch 1.13.0, Torchvision 0.14.0, Numpy 1.23.4, Scikit-learn 1.1.3,
Statsmodels 0.14.0, and Matplotlib 3.6.1. Code for preprocessing the data
from rawultrasound images is available for research purpose upon a request
to the lead corresponding author (Xuejun Qian).
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