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Abstract

Background Participatory surveillance of self-reported symptoms and vaccination status
can be used to supplement traditional public health surveillance and provide insights into
vaccine effectiveness andchanges in the symptomsproducedby an infectious disease. The
University of Maryland COVID Trends and Impact Survey provides an example of
participatory surveillance that leveraged Facebook’s active user base to provide self-
reported symptom and vaccination data in near real-time.
Methods Here, we develop a methodology for identifying changes in vaccine effectiveness
andCOVID-19 symptomatology using theUniversity ofMarylandCOVID Trends and Impact
Survey data from threemiddle-income countries (Guatemala,Mexico, andSouthAfrica).We
implement conditional logistic regression to develop estimates of vaccine effectiveness
conditioned on the prevalence of various definitions of self-reported COVID-like illness in
lieu of confirmed diagnostic test results.
ResultsWehighlight a reduction in vaccine effectivenessduringOmicron-dominatedwaves
of infections when compared to periods dominated by the Delta variant (median change
acrossCOVID-like illnessdefinitions:−0.40, IQR[−0.45,−0.35]. Further, we identify a shift in
COVID-19 symptomatology towards upper respiratory type symptoms (i.e., cough and sore
throat) during Omicron periods of infections. Stratifying COVID-like illness by the National
Institutes of Health’s (NIH) description of mild and severe COVID-19 symptoms reveals a
similar level of vaccine protection across different levels of COVID-19 severity during the
Omicron period.
Conclusions Participatory surveillance data alongside methodologies described in this
study are particularly useful for resource-constrained settings where diagnostic testing
results may be delayed or limited.

Timely identification of alterations in vaccine effectiveness (VE) with the
emergence of novel COVID-19 variants, such as Omicron, is important for
informing the global public health response. The attributable risk propor-
tion of vaccine-preventable diseases is often estimated using relative risk
measures obtained from cohort studies or odds ratios determined through
case-control designs, which typically rely on gold-standard diagnostic
testing1,2. These studies are conducted retrospectively, leading to a lag

between variant emergence andVE estimates. In an effort to provide timely
VE insights, monitoring systems have been developed that leverage digital
health data3,4. However, even these real-timemethodologies are bounded by
some form of diagnostic testing data, whether it be self-reported or through
othermeans of collection.While resource-rich locales across the world have
managed to scale up diagnostic testing to informpandemic response efforts,
many low-and middle-income countries (LMICs) have struggled to
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Plain language summary

Surveys that are sent out to users of social
media can be used to supplement traditional
methods to monitor the spread of infectious
diseases. This has the potential to be
particularly useful in areaswhere other data is
unavailable, such as areas with less
surveillance of infectious disease prevalence
and access to infectious disease diagnostics.
Weuseddata fromasurvey available to users
of the social media platform Facebook to
collect information about any potential
symptoms of COVID-19 infection and vac-
cines received during the COVID-19 pan-
demic. We found a potential reduction in
vaccine effectiveness and change in symp-
tomswhen theOmicron variantwas known to
be circulating compared to the earlier Delta
variant. This method could be adapted to
monitor the spread of COVID-19 and other
infectious diseases in the future, which might
enable the impact of infectious diseases to be
recognized more quickly.
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establish widespread testing5,6, therefore limiting the applicability of current
VEmonitoring systems.Alternatively, digital health surveys of self-reported
symptoms and vaccination status provide a data source that may be used in
place of limited/delayed testing data7–9.

In this study, we use data from the University of Maryland Global
COVIDTrends and Impact Survey (UMD-CTIS) todevelop amethodology
to simultaneously characterize potential changes in VE and COVID-19
symptomatology for Delta and Omicron-dominated periods of infections.
UMD-CTIS is a digital health survey that leveraged Facebook’s active user
base, providing cross-sectional survey data in near real-time from 114
countries, starting in2020 andending in2022.Our analyses utilize aggregate
data from threeMICs that were selected based on the quality ofUMD-CTIS
data and the presence of distinct Delta and Omicron periods of infections.
The selected countries include Guatemala, Mexico, and South Africa. Our
analyses of this data reveal reduced vaccine effectiveness against suspected
COVID-19 infection during theOmicron period compared toDelta, as well
as a shift towards more upper respiratory-type symptoms like cough and
sore throat.

Methods
Syndromic surveillance data
The University of Maryland Global COVID Trends and Impact Survey
(UMD-CTIS), in partnershipwith Facebook, is a cross-sectional survey that
sampled Facebook’s active user base on a daily basis. Facebook users were
presented an invitation at the top of their news feed, inviting them to
participate in the survey. It is important to note that survey invitations did
not include any type of incentive, and participation was driven purely by
individuals’ willingness to contribute to digital health. If an individual
decided to accept the invitation, they were navigated off of the Facebook
platform to thedigital health surveyhosted byQualtrics,withdata collection
being performed by the Joint Program in Survey Methodology at the Uni-
versity ofMaryland. On theQualtrics survey itself, respondents were shown
the consent page explaining the purpose of the research to gain a better
public understanding of where and how the coronavirus pandemic is
spreading, that the survey would take 3–5min, and that their responses
would remain confidential and anonymous. After providing informed
consent and confirmationof being at least 18 years of age, respondents could
proceed with the survey. Survey respondents and non-respondents were
entered back into the sampling pool after a duration of a few weeks or
months, depending on the sample size for a given area. Survey data included
self-reported information such as demographics, recent symptoms, and
COVID-19 vaccination status. While Facebook acts as the survey sampling
frame, the company cannot access individually identified respondent
answers. Further, to work with these data, institutions must have a signed
Data Use Agreement (data access and survey questions available https://
covidmap.umd.edu)7,10, which our institution signed in order to access and
analyze the UMD-CTIS data. Boston Children’s Hospital Institutional
Review Board (P00023700) approved this study using UMD-CTIS data.
Additional details on the survey design,methodology, and validation can be
found in Astley et al. (2021)7.

To select the study locations, we began by focusing on countries that
met three criteria: they are included in the UMD-CTIS sample, have
encountered distinct waves of COVID-19 infections primarily driven by
the Delta and Omicron variants, and are considered a low or middle-
income country as described by the Organization for Economic Co-
operation andDevelopment (OECD). Next, we visualized the time-series
symptom data and ruled out countries where the UMD-CTIS data was
noticeably erratic.

Using peak detection (Python (3.8.2), scipy.signal.argrelextrema
(1.7.1), order parameter = 70) for all CLI time series (April 2021–February
2022), we infer 2-week consensus variant periods prior to each peak, for
Delta and Omicron, respectively, for Guatemala (peak date September 13,
2021 [survey No. 4137] and peak date February 2, 2022 [survey No. 2387]),
South Africa (July 22, 2021 [survey No. 7371] and December 19, 2021
[survey No. 5320]), and Mexico (August 22, 2021 [survey No. 52775] and

January 26, 2022 [survey No. 71990]), that coincided with >80% variant
share per public reports11.

Statistics and reproducibility
We utilize conditional logistic regression to estimate the attributable risk
proportion (ARP) for illness in 2-dose vaccinated individuals (clogit func-
tion with method=’approximate’, R (4.1.1), survival library (3.2-13)). VE is
given by VE =ARP ≈ 1−OR. We consider exposure as the vaccination
status of a respondent (unvaccinated vs. 2-dose vaccinated), and the out-
come as to whether a respondent reported CLI in past 14 days, withmissing
symptoms assumed absent. We also include strata for dichotomized age
(>44 years), gender (male/female), and country of the survey respondent to
limit potential confounding and differences in country-level sampling.
Importantly, UMD-CTIS does not collect data on vaccine formulation.
Consequently,we cannotdefinitivelydeterminewhether a single doseof any
specific vaccine within our dataset consistently provides full protection, as
seen with the Janssen COVID-19 vaccine formulation. Therefore, we have
chosen not to include individuals who have received only one dose in this
study. Age and gender were dichotomized in order to maintain sufficient
sample sizes per stratum. We do not filter the individual vaccine effective-
ness estimates by p-value, as we are interested in the group behavior of the
CLI definitions and not the hypothesis of whether a single definition of CLI
produces a statistically significant vaccine effectiveness estimate. Moreover,
tomaintain the samenumber of data points for eachof our comparisons,we
do not remove outlier data from the analyses in this study.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
To estimate VE, we adapted case-control methods1 for prevalent COVID-
like illness (CLI) as a proxy for confirmed COVID-19 cases. Therefore, our
estimates of VE measure a vaccine’s ability to prevent suspected sympto-
matic infections defined by CLI. To allow for changes in variant-specific
symptomatology, we iterate across all possible CLI defined by 66 pair-wise
combinations of 12 self-reported symptoms (fever, cough, difficulty
breathing, fatigue, stuffy or runny nose, aches or muscle pain, sore throat,
chest pain, nausea, loss of smell or taste, headache, chills). We then cluster
the vaccine effectiveness estimates according to a single symptomof interest
and evaluate the median vaccine effectiveness across all CLI definitions in
the cluster. As an example, using a COVID-19-specific symptom (loss of
smell or taste) as an anchor symptom, we evaluate VE estimates for all CLI
definitions inclusive of this symptom during Delta and Omicron waves of
infections, resulting in VE estimates for 11 pairwise combinations of
symptoms.Consistentwithprevious estimates ofVE thatusedPCR test data
as the outcome2, our analyses reveal a median VEDelta of 0.77, IQR[0.76,
0.80] (Fig. 1a, triangle). In comparison, analyzing the data from the Omi-
cron period reveals a median VEOmicron of 0.47, IQR[0.41, 0.53] (Fig. 1a,
circle). Further expanding the approach to all CLI definitions reveals a
median VEDelta of 0.71, IQR[0.65, 0.75] (Fig. 1b). In contrast, the VEOmicron

estimate is even lower (median 0.29, IQR[0.20, 0.38]). Notably, our findings
align with those from a recent meta-analysis study focused on real-world
vaccine effectiveness for fully vaccinated individuals. This study reported a
VE of 70.9% (95%CI, 68.9–72.7) against Delta infections and aVE of 23.5%
(95% CI, 17.0–29.5) against Omicron variant infections12. To understand
how VE estimates for each CLI definition vary by wave, we take the dif-
ference between the two VE period estimates (VEOmicron−VEDelta) for each
CLI definition. Doing so reveals a median within-CLI definition change of
−0.40, IQR[−0.45,−0.35] (Fig. 2a), suggesting lower VEOmicron regardless
of the CLI definition that is used. Additionally, we find that the pattern of
change in VE across CLI definitions is similar when evaluating individual
country estimates (see Supplementary Fig. 1).

To identify potential alterations in COVID-19 symptomatology, we
evaluate the change inVE estimates for CLI definitions with a single anchor
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symptom, like loss of smell and taste.We reason that if symptomsare similar
across variants, the within-anchor median change in VE will be similar
across anchor symptoms. Our analyses provide evidence for a potential
change in COVID-19 symptomatology from the Delta period to the Omi-
cronperiod, aswenote that some symptomshavemore or less decline inVE
(Fig. 2b). Specifically, we find that CLI definitions that include loss of smell
or tastehave the smallestmedian change inVE (median:−0.31, IQR[−0.34,
−0.28]), while definitions with the largest median change include a cough,
or sore throat (cough median: −0.49, IQR[−0.52, −0.45]; sore throat
median:−0.47, IQR[−0.49,−0.45]). The observed pattern of change in VE
across anchor symptoms is similar when evaluating VE estimates from
individual countries (see Supplementary Fig. 2), however, with increased
uncertainty in estimates as measured by the span of anchor symptom dis-
tributions (see Supplementary Results). Similarly, a survey-based study that
used PCR testing data as the outcome demonstrated a shift away from
symptomatology that includes loss of smell or taste and towards upper-
respiratory type symptoms (i.e., sore throat) during the Omicron period13.
Furthermore, a study conducted in Jalisco, Mexico, analyzed reported
symptoms for confirmed infectionswithwild-type SARS-CoV-2,Delta, and
Omicron variants, revealing thatOmicron infectionswere linked to a higher
incidence of runny nose and sore throat, aligning with the findings of our
country-level analysis forMexico (see Supplementary Fig. 3)14. These results
corroborate our overallfindings,whichalso identified increased reportingof
sore throat during a wave of COVID-19 infections dominated by the
Omicron variant. Collectively, these findings suggest a shift in symptoma-
tology associated with the Omicron variant towards more upper
respiratory-type symptoms.

In addition to providing insights into changes in COVID-19 symp-
tomatology, the VE estimates also include information about a vaccine’s
ability to protect against COVID-19 illness presenting at different levels of
severity as defined by pairwise combinations of symptoms. Importantly, we
do not have information about the true severity of each respondent’s
reported illness, and we instead infer severity based on the presence and
absence of key symptoms. For instance, all CLI definitions that include at
least a fever, cough, aches ormuscle pain, sore throat, nausea, loss of smell or
taste, or a headache in the absence of difficulty breathing or chest pain are
considered mild syndromes. However, according to the NIH, CLI

definitions that include difficulty breathing or chest pain are considered
more severe forms of illness15. To understand potential changes in VE
against mild and severe COVID-19 syndromes, we partition our
CLI-informed VE estimates according to the above classifications. As a
result, we end upwith 42mild and 21 severe definitions of CLI.We find that
severe definitions of illness were more protected than mild definitions
during the Delta period (median severe VE: 0.74, IQR[0.70, 0.79], median
mild VE: 0.54, IQR[0.45, 0.64]) (Fig. 3). However, protection against mild
and severe illness was similar during Omicron (median severe VE: 0.30,
IQR[0.25, 0.38], median mild VE: 0.22, IQR[0.16, 0.33]). Importantly, VE
against severe illness may appear higher, as vaccines are producing milder
illness when an individual is infectedwithCOVID-1916,making it seemas if
VE against mild illness is less effective. During the Delta wave of infections,
we observed a total of 13,220 reports of mild illness and 5316 reports of
severe illness. In contrast, during theOmicronwave of infections, therewere
24,408 reports of mild illness and 10,234 reports of severe illness.

Discussion
It is critical to note that our estimates of VE measure the preventable syn-
drome attributed to receiving 2-doses of vaccine and represent only one of
many components that contribute to true vaccine effectiveness. For
instance, we are unable to account for asymptomatic breakthrough infec-
tions, and we do not have information on natural immunity among the
unvaccinated nor on vaccine formulation or timing for the vaccinated.
Therefore, we do not have enough information to distill whether changes in
VE are caused by waning vaccine immunity, or increased penetration of an
emerging variant. To this end, we would suggest that future digital health
surveys include information on vaccine formulation, the general timing of
vaccination, as well as information on booster doses that have been admi-
nistered. While quickly adapting a digital health survey is a monumental
task, it would enhance the capabilities ofmethods such as those described in
this study. Furthermore, our VE estimates are solely derived from self-
reported survey data and are thus vulnerable to a range of biases17.
For instance, self-report bias is likely influenced by the perception around
COVID-19 vaccination at a given time for a given locale. Even so, a U.S.-
based survey that incorporated viral testing demonstrated that self-reported
vaccination is a strong predictor for true vaccination status18, thus providing

Fig. 1 | Vaccine effectiveness against COVID-
like illness: Delta vs. Omicron. a VE estimates
for symptoms paired with the loss of smell or
taste for the Delta (triangle) and Omicron
(circle) periods. 95% confidence intervals are
calculated for each VE estimate, with Delta and
Omicron period estimates derived from 64,283
and 79,697 survey responses, respectively. b Box
and whisker plot of VE estimates across all 66
possible CLI defined by pairwise combinations
of symptoms for Delta and Omicron periods.
The box represents the interquartile range (IQR)
of estimates, with the horizontal line inside the
box indicating the median. The whiskers extend
to the largest/smallest values up to 1.5 times the
IQR. Outlier values are represented as points.
The sample size for each VE estimate is con-
sistent with the sample sizes described in
panel (a).
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support for self-reported measures. Further, our estimates rely on the
assumption that the range of self-reported CLI definitions defined in this
study is a valid proxy for incident COVID-19 infection. Consequently, our
VE estimates may be an underestimation if CLI is capturing non-COVID
illness.We limit this assumption by selecting time periods reflective ofwhen
COVID-19 is circulating within the unvaccinated population of survey
respondents for each country.

Although the assumptionsmentioned above limit the interpretation of
ourVE estimates, themethodology still demonstrates notable strengths that
should not be discounted. For example, simple surveys that collect self-
reported symptoms and vaccination status can be collected rapidly and at a
fraction of the cost of traditional surveillance measures19. Moreover, while
we performed the retrospective analysis with knowledge of specific

COVID-19 variants, CLI-informed VE estimates can be derived during
suspected variant spread, with careful contextualization of a country’s epi-
demiological situation (i.e., absence of co-circulating pathogens and suffi-
cient geographic coverage of surveys). In the case ofUMD-CTIS, therewas a
two-week delay between survey completion and its availability for our
modeling, allowing us to use it as a valuable near-real-time dataset for VE
analyses. It is critical to note thatUMD-CTIS collected a substantial number
of survey samples from numerous countries, enabling meaningful insights
into COVID-19. However, some countries within the UMD-CTIS sample
exhibited noisy data, characterized by high variability in the number of
reported CLI instances between time steps, which limited the utility of these
specific datasets. While UMD-CTIS has yielded valuable data from a wide
range of countries, it’s important to acknowledge that the determination of
survey sampling intensity, size, and other attributes of sampling can impact
the reliability and applicability of findings. To truly understand the mini-
mum number of samples required for robust statistical analyses, further
research, and investigation into these sampling parameters are essential.
Such efforts will not only enhance the effectiveness of syndromic surveil-
lance but also contribute tomore accurate and comprehensive insights into
COVID-19 dynamics.

Historically, understanding the impact of infectious diseases, including
the effectiveness of vaccination, has relied on detailed clinical data, often
gathered through sentinel surveillance networks20. For example, the CDC’s
U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet) pro-
vides information about symptom prevalence for suspected flu cases across
the United States over time.While an invaluable resource, ILINet is limited
to individuals seeking medical care due to its reliance on sentinel providers
for data collection. Therefore, individuals who lack access to such sentinel
providers or thosewhodonot seek carewill not be represented in these data.
Consequently, epidemiological parameters derived from these datamay not
be entirely representative of the population of interest. Participatory digital
surveillance systems like Flu Near You, the ZOE App, and UMD-CTIS
enable broader symptom tracking by collecting data directly from the
public3,21. These community-based data sources can provide com-
plementary signals to those derived through clinical data-dependent sys-
tems like ILINet22. Our analysis of self-reported symptoms from UMD-
CTIS demonstrates how digital health data can also be rapidly utilized to
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infer symptomatic shifts across populations, with the advantage of time-
liness and scope beyond only those seeking care.While this application does
not provide the same level of clinical confirmation as traditional studies,
combining evidence frombothclinical anddigital participatory data sources
allows for earlier response guidance while gold-standard data are collected.
For instance, applying our methodology of detecting potential changes in
symptomatology could help direct early public health mitigation strategies.

The COVID-19 pandemic exposed vulnerabilities in health infra-
structure, particularly for LMICs that struggled to establish testing facilities8,
needed to support real-time epidemiological parameter estimation that
depends on diagnostic testing results. Leveraging the power of global par-
ticipatory epidemiology in the form of digital health surveys23 has the
potential to supplement these critical testing gaps. Thus, our methods of
using self-reported symptom data to understand VE and changes in
symptomatology is a powerful rapid response tool, that can provide the
medical community with timely insights into emerging variants. Due to our
agnostic approach in defining a syndrome (i.e., all pairwise symptoms), the
utility of our methods goes beyond COVID-19 and can be applied to other
upper-respiratory illnesses and/or locations to support response to emer-
ging threats.

Data availability
To access the raw data used in thismanuscript, a requestmust be submitted
to the Facebook Data for Good website: https://dataforgood.facebook.com/
dfg/docs/covid-19-trends-and-impact-survey-request-for-data-access. The
Global UMD-CTIS Open Data API, Microdata Repository, and con-
tingency tables are available from The University of Maryland Social Data
Science Center Global COVID-19 Trends and Impact Survey website
(https://covidmap.umd.edu). The results of the conditional logistic regres-
sion can be found in Supplemental Data 1 and Supplemental Data 2.

Code availability
TheRandPythoncodeused toperform the analyses in this study is available
at https://doi.org/10.5281/zenodo.1077570124.
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