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reveal biological processes associated
with disease-free survival in early
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Abstract

Background Bulk transcriptional profiles of early colorectal cancer (CRC) can fail to detect
biological processes associated with disease-free survival (DFS) if the transcriptional
patterns are subtle and/or obscured by other processes’ patterns. Consensus-independent
component analysis (c-ICA) can dissect such transcriptomes into statistically independent
transcriptional components (TCs), capturing both pronounced and subtle biological
processes.
Methods In this study we (1) integrated transcriptomes (n = 4228) from multiple early CRC
studies, (2) performed c-ICA to define the TC landscape within this integrated data set, 3)
determined the biological processes captured by these TCs, (4) performed Cox regression
to identify DFS-associated TCs, (5) performed random survival forest (RSF) analyses with
activity of DFS-associated TCs as classifiers to identify subgroups of patients, and 6)
performed a sensitivity analysis to determine the robustness of our results
ResultsWe identify 191 TCs, 43 of which are associated with DFS, revealing transcriptional
diversity among DFS-associated biological processes. A prominent example is the
epithelial-mesenchymal transition (EMT), for which we identify an association with nine
independent DFS-associated TCs, each with coordinated upregulation or downregulation
of various sets of genes.
Conclusions This finding indicates that early CRCmay have nine distinct routes to achieve
EMT, each requiring a specific peri-operative treatment strategy. Finally, we stratify patients
into DFS patient subgroups with distinct transcriptional patterns associated with stage 2
and stage 3 CRC.

Although colorectal cancer (CRC) is currently the second-leading cause of
cancer-related death worldwide1, CRC-related mortality has decreased due
to early detection followed by curative surgical resection2. The most recent
advance in peri-operative systemic therapy was in 2004 when oxaliplatin
was added to leucovorin-modulated 5-fluorouracil3. Despite improvements
in the detection and treatment of CRC, however, approximately 30-50% of

all patients treated for early CRC relapse and die due to the disease3. This
alarming statistic underscores the need to gain new insights into the com-
plex biology underlying early CRC and develop more effective treatment
strategies.

Previous studies involving the transcriptional profiling of CRC have
greatly increased our understanding of the biological processes associated
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Plain language summary

While treatments for patients with colorectal
cancerhave improved,manypatients (around
30-50%) have cancers that will eventually
relapse and these patients will die due to their
disease. Researchers have been studying the
genes involved in colorectal cancer to help us
understandwhysomecancersmight relapse.
However, current methods to do this may
miss subtle or hidden patterns in the gene
activity related to cancer relapse. To dealwith
this, we used a special method called
consensus-independent component analysis
(c-ICA) to dig more deeply into the activity of
genes. This helped us to uncover some
potential biological processes underpinning
colorectal cancer relapse, which ultimately
could help researchers to identify better
treatments forpatientswithcolorectal cancer.
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with disease-free survival (DFS) and have revealed expression-based
molecular subtypes4–10. The International CRC Subtyping Consortium has
also identified consensus molecular subtypes (CMSs)11. In these studies,
bulk transcriptional profilingwas performedusingCRCsamples containing
both tumor cells and the tumor microenvironment, thus reflecting the
average transcriptional patterns of the combination of all biological pro-
cesses present in the tumors. Thus, if related transcriptional patterns are
subtle and/or obscured by other process-relatedpatterns, this approachmay
fail to detect the biological processes specifically relevant to DFS12.

To overcome this issue, consensus-independent component analysis
(c-ICA) can capture the transcriptional patterns of both robust and subtle
biological processes by dissecting the tumor bulk transcriptomes into sta-
tistically independent components called transcriptional components
(TCs)13–15. The activity of these TCs can then be determined in a bulk
transcriptional profile.

In the current study, we use c-ICA to identify TCs in early CRCs and
gainnew insights into the complexbiological processes associatedwithDFS.

Methods
Detailed informationregarding themethods isprovided in theSupplementary
Materials. An overview of our data analysis approach is presented in Fig. 1.

Data acquisition
Publicly available raw microarray expression profiles were obtained from
the Gene Expression Omnibus (GEO)16. Data acquisition was restricted to
the Affymetrix HG-U133 Plus 2.0 platform (GEO accession identifier:
GPL570). Profiles were selected if they were generated using tissue samples
of various healthy and colorectal conditions in the large intestine (Fig. 1A).
The CRC samples were all obtained from patients with early CRC. Any
duplicate samples were identified and excluded from our analysis. The raw
data files were pre-processed and normalized using the robust multiarray
average algorithm17. Quality control was performed using principal com-
ponent analysis as previously described12. All available clinicopathological
data were collected and manually curated for the CRC samples (Fig. 1B);
here, we define this data set as the primary data set.

The pre-processed and normalized expression profiles were used to
infer the tumor microenvironment composition using the Microenviron-
ment Cell Population (MCP) counter, version 1.1, available as an R package
(Fig. 1B)18. The MCP counter estimates the absolute abundance of eight
immune and two stromal cell populations on bulk gene expression profiles.
We utilized the random forest CMS classifier was used to assign CMS
subtypes to the CRCs (Fig. 1B)11.

Consensus-independent component analysis
c-ICAwas subsequently used to dissect the bulk transcriptional profiles into
statistically independent TCs, as described previously and in the Supple-
mentary Methods (Fig. 1C, D)19. In short, in the dataset containing mRNA
expression profiles of p genes fromn samples, the output of an ICA includes
two matrices: (i) an independent component matrix with dimensions i × p,
where eachweight within the independent components represents both the
direction and magnitude of its effect on the expression levels of each gene,
and (ii) a mixing matrix with dimensions i × n, which contains the coeffi-
cients. These coefficients are indicative of the activity levels of each inde-
pendent component within individual samples. Principal component
analysis was performed on the covariance matrix between samples, after
which the minimum number (representing i above) of top principal com-
ponents that captured at least 85% of the total variance in the dataset was
selected.TheoriginalmRNAexpression level canbe reconstructedby taking
the inner product of the mixing matrix coefficients and the weights of the
independent components for each gene. In ICA, an initial random weight
vector with a variance of one must be chosen to achieve statistically inde-
pendent components. Consequently, varying the initial random weight
vectors can lead to different sets of independent components. To obtain a
consensus set of independent components (referred to as TCs), 25 ICA runs
were conducted, each with a unique random initialization weight vector.

Upon completion of all ICA runs, independent components with an
absolute Pearson correlation coefficient greater than 0.9 were clustered,
ensuring that the number of independent components in each cluster did
not exceed the total number of ICA runs. TCswere derived by averaging the
independent components within each cluster. Next, a credibility index for
eachTCwas calculatedbydividing the number of independent components
in its cluster by the total number of ICA runs (25 in this case). TCs with a
credibility index of 50% or higher were selected for constructing the TC
matrix and the consensus mixing matrix.

By using bulk transcriptional profiles representing several healthy and
disease conditions in the large intestine, we maximized our likelihood of
identifying robust TCs that would capture the transcriptional patterns of as
many distinct types of biological processes as possible thatmight be active in
the large intestine in healthy tissue and cancerous tissue.

Identifying the biological processes captured by the transcrip-
tional components
Weusedmultiplemethods to identify thebiological processes capturedby the
TCs (Fig. 1E). First, we conducted gene set enrichment analysis on all TCs
using 13 gene set collections—including the Hallmark collection—sourced
from the Molecular Signatures Database (MsigDB), version 7.120. We
included all gene sets comprising 10 – 500 genes after filtering out genes not
present in the expression profiles of our integrated dataset. Enrichment for
each gene set was evaluated using the two-sampleWelch’s t-test for unequal
variance between the set of genes under investigation and the set of genes not
under investigation. To compare gene sets of different sizes, we transformed
Welch’s t statistic into a Z-score. Second, we used the recently developed
TranscriptionalAdaptation toCopyNumberAlterations (TACNA)profiling
method19. This method served to identify TCs that capture the downstream
effects of copy number alterations on gene expression levels. Third, we uti-
lized theGenetICA-network (https://www.genetica-network.com)21. In brief,
the GenetICA-network is an integrative method that predicts gene functions
based on a guilt-by-association strategy utilizing more than 135,000 expres-
sion profiles. Using this method, we constructed co-functionality networks
for themost important genes of each TC. Genes were deemed important in a
TC if they had an absolute weight of 3 or greater within the TC. Next, the
enrichment of predicted functionality was calculated for the resulting gene
clusters. For continuous variables, we employed Spearman’s rank correlation
test. All statistical analyses were conducted using R version 3.6.2.

Analysis of disease-free survival
To examine the association between the activity of various TCs andDFS, we
used the subset ofCRCs forwhichpatientDFSdatawas available to perform
univariate and multivariate Cox regression analyses (Fig. 1F). In the mul-
tivariate analysis, we used the following covariates: gender, microsatellite
instability (MSI) status, v-Raf murine sarcoma viral oncogene homolog B
(BRAF) status, Kirsten rat sarcoma virus (KRAS) status, primary tumor
location, tumor stage, and treatment with adjuvant systemic therapy. The
analysis was performed in a multivariate permutation framework with
10,000 permutations to control the false discovery rate at 5% with an 80%
confidence level.

Building the random survival forests
Separate RSFs were built for stage 2 and stage 3 colon cancer using TC
activities as classifiers and DFS as the response variable (Fig. 1G). For each
RSF, 1000 separate survival trees were built, each time selecting five ran-
domly chosen TCs from the entire set of input TCs. The RSFs were built
using a recursive process described in detail in Supplementary Materials.

For anRSF, all 1000 proximitymatrices were summed element-wise to
obtain afinal proximitymatrix.Next, hierarchical clusteringusing theWard
D2methodwasperformedon thisfinal proximitymatrix inorder to identify
patient subgroups of similarly classified patients based on the 1000 survival
trees in the RSF. We then determined the maximum number of patient
subgroups for which the log-rank test revealed a significant difference in the
DFS curves.
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Biological interpretation of the RSFs was critical, as our goal was to
determine how the combined activity of TCs that captured biological pro-
cesses might lead to differences inDFS. Thus, for each RSFwe calculated an
“importance score” for each TC; this score reflects how often that TC is an
important classifier in the 1000 survival trees in the forest.

Spatial transcriptomics and single-cell transcriptome analysis
To pinpoint the areas of significant TC activity in spatial transcriptomic
profiles, we employed a permutation-based approach. We ran 5000 per-
mutations for eachTC-profile combination, yielding ap-value that indicates
the extent to which the TC’s activity in the corresponding profile differs
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from what would be expected by chance (the null distribution). We then
transformed these p-values into logarithmic values and represented them
using a heatmap. This heatmap allowed us to visually explore the regions of
the stained sample image where TC activity was significantly different from
the expected random distribution. We used 3 publicly available spatial
transcriptomic profiles, available at the 10x website (https://www.
10xgenomics.com), in the spatial gene expression dataset.

Single-cell data in h5ad format were obtained from the Gut Cell Atlas
(https://www.gutcellatlas.org/#datasets), encompassing a comprehensive
single-cell RNA-seq dataset of 428,000 intestinal cells from fetal, pediatric,
and adult donors across up to 11 distinct intestinal regions. Our analysis
focused specifically on the mesenchyme lineage. We downloaded the nor-
malized data and associated metadata for this lineage. We then imple-
mented a sub-sampling strategy, randomly selecting 10% of cells from the
mesenchyme lineage dataset, resulting in an analysis cohort of approxi-
mately 16,000 cells. For the projection analysis, we employed 3000 per-
mutations with the Johnson transformation. To facilitate the visualization
and interpretation of the correctedmixingmatrix weights, box and whisker
plots were created for each cell type within every TC panel.

Sensitivity analysis
A sensitivity analysis was performed to determine the robustness of our
results (Fig. 1H). In order to do so, we created a secondary dataset by
excluding all samples from the primary dataset with availableDFS data. The
samples from the primary dataset that had annotated DFS were then added
to a separate dataset, which we refer to as the DFS dataset.

To assess the robustness of the TCs, c-ICA was repeated on the sec-
ondary data set. Therefore, we defined TCs obtained from the primary data
set as “primary TCs” andwe definedTCs obtained from the secondary data
set as “secondary TCs”. To determine robustness, pairwise Pearson corre-
lation coefficients were calculated between the gene weights of the primary
and secondary TCs. Pairs of primary and secondary TCs with an absolute
Pearson correlation coefficient >0.5 were considered robust and were
therefore defined as robust TCs.

Next, we assessed the robustness of the associations between TC
activities and DFS. First, we performed a cross-data set projection to
determine the activity of the robust secondaryTCs in theDFSdata set. There
wasnooverlapbetween the samples used toobtain the robust secondaryTCs
and the samples in the DFS data set; therefore, the DFS data set can be
considered an independent data set in this analysis. Next, univariate and
multivariate Cox regression analyses were performed on the DFS data set as
describedabove inorder todetermine the associationsbetween the activityof
robust secondaryTCs andDFS. TCs associatedwithDFS in the primary and
independent DFS data sets were defined as “robust, DFS-associated TCs”.

Finally, we assessed the robustness of the RSFs by performing the RSF
building process twice, first using the DFS-associated primary TCs as input,
and second using the robust DFS-associated secondary TCs as input.
Robustness was then assessed by calculating the Pearson correlation coef-
ficient between the resulting final proximity matrices.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Identification of 191 robust, independent transcriptional com-
ponents using c-ICA
After identification, pre-processing, removal of duplicates, and quality
control based on samples obtained in 58 studies, a total of 4228 unique
samples remained, including 2860 early CRC samples and 1368 non-
malignant samples (Fig. 1A).We also removed all samples and studies with
annotated DFS to create a secondary data set comprised of 1995 early CRC
samples and all 1368 non-malignant samples for a sensitivity analysis
(Supplementary Data 1).

c-ICA was subsequently used to dissect the bulk transcriptional
profiles into statistically independent TCs (Fig. 1C and 1D), as described
in the Methods and the Supplementary Methods. In short, c-ICA is a
computational method to separate gene expression profiles into additive
consensus transcriptional patterns (TCs) so that each TC is statistically as
independent from the other TCs as possible. In every TC, each gene has a
weight that describes how strongly and in which direction its expression
level is influenced by a latent transcriptional regulatory factor. In the
primary data set, we identified 220 independent primary TCs, of which
191 were robust, with a median absolute correlation coefficient of 0.92
(0.70-0.97; Supplementary Table 2) between pairs of primary and sec-
ondary TCs. The composition of these primary TCs and the gene set
enrichment analysis (GSEA) results are publicly available and browsable
by gene and gene set at our online portal available at http://
transcriptional-landscape-colon.opendatainscience.net.

These primary TCs were found to be enriched for at least one gene set
as defined in the 13 collections used. For example, 28% (61/220) of the
primary TCs were enriched for at least one gene set from the Hallmark
collection. The median top enrichment score (i.e., z-transformed p-value)
for the Hallmark gene set collection for all 61 primary TCs was 7.24 (range:
4.07–28.06, IQR: 5.45–12.44). In addition, the transcriptional effects of copy
number alterations (CNAs) were detected in 93 (42%) of the 220
primary TCs.

Disease-free survival of patients with early-stage colorectal
cancer was associated with the activity of 43 robust transcrip-
tional components
Data regarding DFS were retrieved for 806 patients with colon cancer
and 30 patients with rectal cancer. Patient characteristics and clin-
icopathological information are summarized in Table 1. We identified
53 DFS-associated primary TCs, of which 43 were robust. Figure 1E
summarizes the methods used to obtain the biological characterization
of the TCs. Figure 2 provides an overview of the biological processes
enriched in the DFS-associated primary TCs. The TCs are ordered based
on their association with DFS, represented as -log10(p-value). This
figure indicates robust TCs with solid circles, while non-robust TCs are
indicated with open circles. The left-hand side of Fig. 2 displays the
results of GSEA focusing on Hallmark gene sets. What stands out is that
many of the TCs most strongly associated with DFS were related to
epithelial-mesenchymal transition (EMT), in particular, the following
nine TCs demonstrated a strong association: TC208, TC117, TC193,
TC202, TC116, TC153, TC58, TC136 and TC77 The chromosomal
location of given CNAs, for which the TCs capture downstream effects

Fig. 1 | Integrated approach to analyzing the transcriptional landscape of early
colorectal cancer. A An integrated data set of gene expression profiles was created
from large intestine tissue samples was created. From the entire set, 2860 and
1368 samples were malignant and non-malignant tissue, respectively.BDFS, as well
as other patient characteristics and clinicopathological information, were either
collected or inferred. c-ICA was performed (C) in order to dissect the bulk tran-
scriptomes into statistically independent TCs (D). E The various methods used to
determine the biological processes captured by the TCs. F Idealized data showing
how the putative association between TC activity and DFS was determined using
univariate and multivariate Cox regression analyses.G RSF was performed in order
to stratify patients with stage 2 and stage 3 colon cancer into distinct patient

subgroups based on the patterns of TC activities. H A sensitivity analysis was per-
formed in order to determine the robustness of the results. BRAF v-Raf murine
sarcoma viral oncogene homolog B, c-ICA consensus independent component
analysis, Coxph cox proportional regression, can copy number alteration, CMS
consensus molecular subtype, CPs clinicopathological parameters, CRC colorectal
cancer, DFS disease-free survival, GEO gene expression omnibus, GSEA gene set
enrichment analysis, KRAS Kirsten rat sarcoma virus; 3, microenvironment cell
population, MSI microsatellite instability, MsigDB molecular signatures database
Hallmark gene set collection, RSF random survival forest, TACNA transcriptional
adaptation to copy number alterations, TCs transcriptional components.
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on gene expression levels, is also presented in the middle. Transcrip-
tional effects of gene CNAs were identified in 13 of these 43 robust TCs,
four of which were specifically linked to chromosome 17q. Among these
four TCs, TC148, TC149, and TC189 ranked fifth, seventh, and eighth in
terms of their significance in association with DFS. On the right-hand
side of Fig. 2, two heatmaps detail the direction and association between
these DFS-associated TCs and various clinicopathological parameters.
Notably, higher activity in many of the strongest DFS-associated TCs
correlated with increased inferred abundance of specific cell types in the
tumor microenvironment, particularly fibroblasts, endothelial cells,
neutrophils, myeloid dendritic cells, monocytic lineage cells, and den-
dritic cells.

Random survival forest analyses reveal patient subgroups with
distinct patterns of biological process activities
Next, to identify potential patterns of TC activities that could be used to
stratify patients with stage 2 and stage 3 colon cancer into distinct patient
subgroups, we performed random survival forest (RSF) analyses (Fig. 1G).
For these analyses only patients with colon cancer were included. RSF is a
specialized statistical approach tailored for survival analysis. It is specifically
advantageous for handling censored survival data while also offering pre-
dictive capabilities for time-to-event outcomes. The reasons for opting for
RSF over alternative survival analysis methods lie in its inherent ability to
manage complex datasets characterized by non-proportional hazards and
nonlinear predictor-survival outcome relationships. We found that TC21
and TC117 had the highest importance scores (with scores of 0.99 and 1,
respectively) for patients with stage 2 colon cancer (n = 446 patients)
(Supplementary Table 2). The importance score reflects how often a TC is
an important classifier in the 1000 survival trees in the forest. Higher TC21
activity was associated with the downregulation of genes enriched for the
Hallmark gene setMYC targets, while higher TC117 activity was associated
with the downregulation of genes enriched for the EMT and extracellular
matrix (ECM) organization, and for the upregulation of genes enriched for
KRAS signaling. Higher activity of TC21 was also associated with a higher
inferred abundance of CD8 T cells. The final proximity matrix was robust
(Pearson’s r = 0.9).

RSF analysis of patients with stage 3 colon cancer (n = 290 patients)
revealed that TC208 and TC77 had two of the highest importance scores,
with scores of 1 and 0.95, respectively (Supplementary Table 2). Higher
TC208 activity was associated with the upregulation of genes enriched for
EMT, ECM, early and late estrogen response, KRAS signaling, and trans-
forming growth factor β (TGF-β) signaling, while higher TC77 activity was
associated with the upregulation of genes enriched for KRAS signaling,
TGF-β signaling, the p53 pathway, apoptosis, and hypoxia and TNFα sig-
naling via NF-κB and the inflammatory response. In addition, higher
activities of both TC208 and TC77 were associated with a higher inferred
abundance of several cell types in the tumor microenvironment. The final
proximity matrix was robust (Pearson’s r = 0.68).

For stage 2 and stage 3 colon cancer, a log-rank test revealed significant
differences in the time course of DFS for up to three patient subgroups
(SupplementaryFigs. 1 and2).However, utilizingpatterns ofTCactivity,we
stratified patients with stage 2 and stage 3 colon cancer into various biolo-
gically distinct subgroups. Although the sample size in this analysis was
insufficient to reveal statistically significant differences in DFS among these
subgroups, their unique patterns of biological processes may still hold
clinical relevance. For instance, Fig. 3 illustrates the DFS curves for 10
patient subgroups identified by clustering the final proximity matrix spe-
cifically for patients with stage 2 colon cancer. These curves highlight the
subgroups with the best and worst DFS outcomes. The corresponding
clustering results canbe found inSupplementaryFig. 3.Thedisparity inDFS
between the best and worst survival subgroups can be largely attributed to
variations in the activity levels of TC202, TC38, TC149, TC55, and TC147.
Specifically, TC202 is characterized by a transcriptional pattern enriched for
coagulation, apical junction, and EMT processes, and its activity is corre-
lated with a higher inferred abundance of monocytic lineage, neutrophils,
endothelial cells, and fibroblasts. TC38 captured the effects on gene
expression levels due to CNAs at 17q and TC149 and TC55 captured the
gene expression level effects of CNAs at 5q. Lastly, TC147 is linked with the
upregulation of genes that areMYC targets and the downregulation of genes
enriched for mitotic spindle and TGF-β signaling pathways.

EMT associated DFS-associated TCs
In total nineDFS-associatedTCswere identified that are associatedwithEMT
(Fig. 2). These TCs were among the strongest associated with DFS and had
high importance scores in the random survival forest analyses. Four of these
nine TCs — TC202, TC116, TC153, and TC58 — had higher activity in
samples classified as CMS4, as can be seen in the same figure. The aggregated
activity profiles of these TCs across various samples are provided in

Table 1 | Patient characteristics

DFS samples (N = 836
patients)

%

Age (years)

Median (range) 69 (22–97) NA

Unknown (N = 20) NA NA

Sex

Male 440 53

Female 396 47

Stage

<2 78 9

2 463 55

3 295 35

Location

Proximal 300 36

Distal 429 (30 rectal) 51

Unknown 107 13

Adjuvant/neoadjuvant chemotherapy

Yes 209 (5 CRT) 25

No 393 47

Unknown 234 28

Microsatellite status

MSI-H 73 9

MSI-L or MSS 356 43

Unknown 407 49

BRAFv600E status

Mutated 37 4

Wildtype 360 43

Unknown 439 53

KRAS c12/13 status

Mutated 161 19

Wildtype 265 32

Unknown 410 49

CMS classification

CMS1 98 12

CMS2 136 16

CMS3 110 13

CMS4 249 30

Unknown 243 29

BRAF v-Raf murine sarcoma viral oncogene homolog B, c, codon, CMS consensus molecular
subtype,CRT chemoradiotherapy,DFSdisease-free survival,KRASKirsten rat sarcomavirus,MSI-
Hmicrosatellite instability high,MSI-Lmicrosatellite instability low,;MSSmicrosatellite stable, NA
not applicable.
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SupplementaryFig. 4.Thisheatmapprominently showcases theheterogeneity
in the activity of DFS-associated TCs related to EMT within the context of
CRC samples, thereby highlighting the presence of distinct EMT-related
biological processes operative in different instances of colorectal cancer.

Additionally, we analyzed spatial transcriptomic profiles from three
colorectal cancer cases to scrutinize regions with significant activity of the
EMT-related DFS-associated TCs. This analysis is visualized in Fig. 4 and
Supplementary Fig. 5. Our data indicate a spatially variable distribution of
these nine TCs’ activities across different regions within each colorectal
cancer tumor, particularly in the stromal compartments. This nuanced
distribution underscores the inherent transcriptional heterogeneity of DFS-
associated EMT-related processes, within individual tumor samples and
across different tumor specimens.

To gain insight into the role of specific mesenchymal cells on the
biology captured by the EMT-related, DFS-associated TCs, we utilized
single-cell transcriptome data obtained from the Gut Cell Atlas (https://
www.gutcellatlas.org/#datasets). This dataset is a comprehensive collection
of single-cell RNA-seq profiles of 428,000 intestinal cells from fetal, pedia-
tric, and adult donors, across up to 11 distinct intestinal regions. Supple-
mentaryFig. 6 features boxandwhiskerplots that illustrate the activity of the
EMT-relatedDFS-associated TCs in variousmesenchymal cell types. These
plots provide valuable insights into the specific mesenchymal cell popula-
tions that might influence the biological processes associated with DFS. For
example, mesothelium cells show pronounced higher activity of TC208,
while pericytes show higher activity of TC117. Additionally, our analysis
showed higher activity of TCs 202 and 136 in the stromal 4 cell type — a
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Fig. 2 | Summary of the biological processes captured by transcriptional com-
ponents associatedwith disease-free survival.The 53DFS-associatedTCs based on
the univariate or multivariate survival analysis are shown. The 43 robust TCs are
annotated with solid circles, and the non-robust TCs are indicated with open circles.
TheTCs are shown in order of their associationwithDFS. TheGSEA results of the 36
enriched Hallmark gene sets are shown on the left. Gene sets were included if the
enrichment for at least one TC passed the Bonferroni threshold for multiple testing
corrections. Gene sets were clustered using Spearman correlation andWard D2. To
facilitate the interpretation, heatmap colors are based on transformed z-scores and
were truncated at an absolute value of 6. Red indicates enrichment of a biological
process in the top-ranked genes in the TC (i.e., genes that are upregulated with a
higher activity of the TC, and green indicates enrichment of a biological process in
the bottom-ranked genes in the TC (i.e., genes that are downregulated with a higher
activity of the TC). Thus, red and green indicate enriched biological processes
comprising genes for which higher and lower expression, respectively, is associated
with worse DFS. The chromosomal location of a given copy number alteration for
which the TC captures the downstream effects on gene expression levels is shown in
the middle. The activity scores per TC refer to the mean mixing matrix weights per

subgroup. The two heatmaps at the right show the association between TCs and CPs
(CPs were included if the correlation for at least one TC passed the Bonferroni
threshold for multiple testing correction). AKTAk strain transforming, BRAF v-Raf
murine sarcoma viral oncogene homolog B, CD8 cluster of differentiation, CNA,-
copy number alteration, CMS consensusmolecular subtypes, CP clinicopathological
parameter, DFS disease-free survival, DNA deoxyribonucleic acid, E2F E2 factor,
G2Mgap2mitosis, GSEAgene set enrichment analysis, IFN-α interferon-alfa, IFN-γ
interferon-gamma, IL2 interleukin 2, IL6 interleukin 6, JAK Janus kinase, KRAS
Kirsten rat sarcoma virus, MCP microenvironment cell population, MSI micro-
satellite instability, MSI-H microsatellite instability high, MSI-L microsatellite
instability low,MSSmicrosatellite stable,MtORC 1mammalian target of rapamycin
complex 1, MYC myelocytomatosis, NF-κB nuclear factor kappa B, NK natural
killer, p53 protein 53, PI3K phosphatidylinositol 3-kinase, STAT3 signal transducer
and activator of transcription 3, STAT5 signal transducer and activator of tran-
scription 5, TCs transcriptional components, TGF-β transforming growth factor
beta, TNF-α tumor necrosis factor alpha, TNM tumor node metastasis, UV
ultraviolet.
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newly identified stromal population enriched for pro-inflammatory and
fibroblastic reticular cell genes22.

Discussion
In this study, we identified a total of 191 robust transcriptional components
that capture the transcriptional patterns of specific biological processes in
early colorectal cancer. The activities of 43 of these robust TCs were asso-
ciated with disease-free survival, enabling us to define patient subgroups
based on distinct tumor-specific biological patterns.

Using our c-ICA‒based approachof analyzing bulk transcriptomes, we
identified extensive underlying transcriptional diversity among previously
identified DFS-associated biological processes. A notable example is the
epithelial-mesenchymal transition, for which we identified an association
with nine independent, DFS-associated TCs, all with the coordinated
upregulation and/or downregulation of various sets of genes and with
heterogeneous activitywithin individual tumor samples and across different
tumor specimens. Interestingly, EMT was previously identified as a key
biological process associated with DFS in patients with early CMS4 CRC11.
Strikingly, however, the activity of five of the nine EMT-related TCswas not
associated with CMS4 CRC, indicating that EMT also plays a role in other
tumor subtypes.

Previous studies have also attempted to refine theCMS classification in
order to overcome the relative weakness of bulk analyzing expression
profiles, which is strongly affected by the tumor stromal compartment and
thus limits the detection of transcriptional patterns ofmore subtle biological
processes23,24. These previous approaches focused on the tumor cells

themselves. In the first approach, CRC-intrinsic subtypes were identified by
capturing colon cancer cell-specific gene expression patterns, although their
prognostic value with respect to DFS was higher when they incorporated
stromal compartment expression patterns in their analysis23. In the second
approach, single-cell transcriptome analysis of colon cancer cells in 63
patients revealed the underlying tumor cell diversity and its associationwith
DFS and identified a subset in which genes involved in EMT were
upregulated24.Despite the value of these previous studies, we consider our c-
ICA-based approach to bulk transcriptomes to be more informative, as it
incorporates the transcriptomes of non-tumor cells but can still identify
new, subtle DFS-associated transcriptional patterns.

In each TC, each gene has a “weight” that reflects how strongly and in
which direction its expression level is affected by an underlying latent bio-
logical process. This enabled us to prioritize which genesmay play key roles
in theDFS-associated biological process thatwe identified. This is illustrated
by TC208 and TC117. TC208 activity had both the strongest association
with DFS and the highest importance score in the random survival forest
analysis for stage 3 colon cancer. Higher activity was associated with the
upregulation of genes involved in a transcriptional network activated by the
CDH1 gene, which encodes E-cadherin25. Upregulation of N-cadherin fol-
lowed by downregulation of E-cadherin is a hallmark of EMT26. Higher
TC208 activity was also strongly associated with increased expression of
KLK6 and KLK10, which encode kallikrein-related peptidase 6 and 10,
respectively. Kallikreins can cleave E-cadherin proteins. Moreover, knock-
ing down KLK10 in CRC cells has been shown to inhibit cell proliferation
and induce apoptosis27. Kallikreins are potentially druggable28–30.
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Fig. 3 | Random survival forest analysis of stage 2 early colon cancer patients.
Shown are RSF analyses of 446 patients with stage 2 colon cancer based on the
activity of 43 DFS-associated TCs as classifiers. RSF was performed as described in
the Methods and Supplementary Materials. The RSF building process was per-
formed twice, first with the DFS-associated primary TCs as the input (A), and then
with the robust DFS-associated secondary TCs as the input (B). To simplify

interpretation, the paired primary TCs are shown in B (indicated with an asterisk),
rather than the secondary TCs; for information regarding the pairing of TCs, see
Supplementary Table 2. For each RSF, an importance score was calculated for each
TC, reflecting how often that TC is an important classifier in the survival trees in the
forest. DFS disease-free survival, RFS random survival forest, TCs transcriptional
components.
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TC117 activity had the second-highest associationwithDFS inpatientswith
CRCand the highest importance score for stage 2 colon cancer.HighTC117
activity was associated with the downregulation of genes with strong
enrichment for the SNAI2 gene-based EMT signature31. Interestingly, the
RNA gene LINC00924 (Long Intergenic Non-Protein Coding RNA 924)
was the most strongly upregulated gene, and higher LINC00924 expression
was associated with poor DFS in early CRC. Although little is known about
its function, LINC00924 expression has been previously shown to be asso-
ciated with cell migration, cellular component movement, cell locomotion,
and cell adhesion32. The activity of many DFS-associated robust TCs was,
aside from EMT, also associated with ECM remodeling. For example, the
high activity of TC202 and TC116 was associated with the upregulation of
several matrix metalloproteinases and integrins, respectively. Numerous
therapeutic agents, encompassing antibodies and small molecules targeting
ECM components, are presently under development. Notably, approxi-
mately 90 integrin-based therapeutic drugs or imaging agents are in clinical
trials, along with ongoing trials assessing matrix metalloproteinase
inhibitors33,34. However, it is worth noting that conclusive evidence of
therapeutic efficacy remains elusive. For instance, Andecaliximab, an
inhibitor of matrix metalloproteinase 9, exhibited safety and demonstrated
antitumor activity in a phase 1 trial. Nevertheless, its inclusion with FOL-
FOX in a phase 3 trial for patientswith advanced gastric or gastroesophageal
junction adenocarcinoma did not yield improved overall survival
outcomes35.

In addition, 13DFS-associated robust TCs captured the effect of CNAs
on their respective mRNA levels. Aneuploidy and loss of heterozygosity are

ubiquitous inmicrosatellite stable (MSS) CRCs, and CRCs become invasive
and metastatic only when driver mutations co-occur with chromosomal
instability36,37.Moreover, karyotyping to identifyCNAs for risk stratification
is routinelyused inhematologicalmalignancies38. Thus, ourfindings suggest
that karyotyping may also help predict DFS more effectively in early CRC.

Our analysis is primarily hypotheses-generating. Moreover, due to the
retrospective nature of our study, we were limited with respect to the
availability of clinicopathological data. Thus, we could only robustly assess
the prognostic value of TC activity, but could not assess its predictive value.
The next logical step toward determining the clinical applicability of our
findings would therefore be to perform the same analysis on prospectively
collected data obtained during a randomized controlled clinical trial in an
adjuvant therapy setting. Such a study could therefore address a research
questionbasedonone of the hypotheses generatedhere, such aswhetherTC
activity can predict which patients are most likely to benefit from adjuvant
therapy.

The composition of all primary TCs and our gene set enrichment
analysis results are publicly available and browsable by gene and/or gene set
at our online portal (http://transcriptional-landscape-colon.
opendatainscience.net). Although we highlighted several biological pro-
cesses and individual genes of interest here, more are present in our data.
Indeed, we identifiedmany biologically distinct patient subgroups in stage 2
and stage 3 colon cancer, suggesting that the current CMS classification of
CRC could be adapted to be less restrictive by including the underlying
transcriptional diversity of bothpronouncedand subtle biological processes.
Although we did not find significant differences in DFS for all patient

Fig. 4 | Spatial transcriptomic profiles in colorectal cancer samples. To pinpoint
the areas of significant TC activity in spatial transcriptomic profiles, we employed a
permutation-based approach. We ran 5000 permutations for each TC-profile
combination, yielding a p-value that indicates the extent to which the TC’s activity in
the corresponding profile differs from what would be expected by chance (the null

distribution). We then transformed these p-values into logarithmic values and
represented them using a heatmap. In Fig. 4 the heatmap of one CRC sample is
shown, in Supplementary Fig. 5, twomore heatmap of CRC samples are shown. CRC
colorectal cancer; TCs transcriptional components.
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subgroups, their diverse underlying biology suggests that each patient
subgroup may need a specific systemic treatment strategy. We therefore
invite researchers and clinicians to explore our data, thereby helping guide
innovations in systemic treatment strategies.

Data availability
Microarray expression data was collected from the public data repository:
Gene Expression Omnibus with accession number GPL570 (generated
with Affymetrix HG-U133 Plus 2.0). Single-cell data in h5ad format were
obtained from the Gut Cell Atlas (https://www.gutcellatlas.org/#datasets).
Three publicly available colorectal cancer spatial transcriptomic profiles
were used obtained from the 10x website (https://www.10xgenomics.com).
Specifically, https://www.10xgenomics.com/datasets/human-colorectal-
cancer-11-mm-capture-area-ffpe-2-standard, https://www.10xgenomics.
com/datasets/human-intestine-cancer-1-standard, and https://www.
10xgenomics.com/datasets/human-colorectal-cancer-whole-
transcriptome-analysis-1-standard-1-2-0. The composition of the primary
transcriptional components and the gene set enrichment analysis results
are publicly available and browsable by gene and gene set at our online
portal available at http://transcriptional-landscape-colon.
opendatainscience.net. Source data for the figures are available as Sup-
plementary Data 2. For any other data inquiries, please contact the cor-
responding author.

Code availability
The complete set of codes utilized in this study is available at a github
repository39.
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