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Abstract

Background Artificial Intelligence(AI)-based solutions for Gleason grading hold promise for
pathologists, while image quality inconsistency, continuous data integration needs, and
limited generalizability hinder their adoption and scalability.
Methods We present a comprehensive digital pathology workflow for AI-assisted Gleason
grading. It incorporates A!MagQC (image quality control), A!HistoClouds (cloud-based
annotation), Pathologist-AI Interaction (PAI) for continuousmodel improvement, Trained on
Akoya-scanned images only, the model utilizes color augmentation and image appearance
migration to address scanner variations. We evaluate it on Whole Slide Images (WSI) from
another five scanners and conduct validations with pathologists to assess AI efficacy
and PAI.
ResultsOurmodel achieves an average F1 score of 0.80 on annotations and 0.71Quadratic
Weighted Kappa on WSIs for Akoya-scanned images. Applying our generalization solution
increases the average F1 score for Gleason pattern detection from 0.73 to 0.88 on images
fromother scanners. Themodel acceleratesGleason scoring timeby 43%whilemaintaining
accuracy. Additionally, PAI improve annotation efficiency by 2.5 times and led to further
improvements in model performance.
Conclusions This pipeline represents a notable advancement in AI-assisted Gleason
grading for improved consistency, accuracy, and efficiency. Unlike previous methods
limited by scanner specificity, our model achieves outstanding performance across diverse
scanners. This improvement paves the way for its seamless integration into clinical
workflows.

Prostate cancer (PCa) is a prevalent cancer among males, accounting for
15.1% of all male cancers diagnosed in 20201. The Gleason Grade (GG) is a
critical factor in assessing its aggressiveness and guiding treatment deci-
sions. Pathologists evaluate tissue samples obtained from prostatectomy
and recurrent/routine core biopsy to detect malignancies and stratify
patients based on microscopic and histological characteristics. This

diagnostic process is generally time-consuming and sometimes subjective,
leading to potential misdiagnosis and over-diagnosis. To address these
challenges, a technological solution is necessary to improve efficiency,
accuracy, and consistency.

Recent advances in histology scanning technology and Artificial
Intelligence (AI) offer great opportunities to improve the accuracyofGG.As
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Plain language summary

Gleason grading is a well-accepted diag-
nostic standard to assess the severity of
prostate cancer in patients’ tissue samples,
based on how abnormal the cells in their
prostate tumor look under amicroscope. This
process can be complex and time-
consuming. We explore how artificial intelli-
gence (AI) can help pathologists perform
Gleason grading more efficiently and con-
sistently. We build an AI-based systemwhich
automatically checks image quality, standar-
dizes theappearanceof images fromdifferent
equipment, learns from pathologists’ feed-
back, and constantly improves model per-
formance. Testing shows that our approach
achieves consistent results across different
equipment and improves efficiency of the
grading process. With further testing and
implementation in the clinic, our approach
could potentially improve prostate cancer
diagnosis and management.
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shown in Fig. 1a, the advent of glass-slide scanners has enabled the rise of
Digital Pathology (DP) and the tantalizing promise of computational
assessment. Whole Slide Image (WSI) has considerably expanded the
volume of DP data by enabling digitalization of physical slides at high
resolution. Meanwhile, our development of AI diagnostic models as shown
in Fig. 1b, hold the potential to improve the efficiency and accuracy of

pathological assessment by reducing turnaround time and enhancing
detection consistency2–5.

Both traditional Machine Learning(ML) and Deep Learning (DL)
approaches have been widely explored for the detection, segmentation,
classification of prostate tissues for the clinical assessment of Gleason
scores3–25. Paige Prostate Alpha, an AI-based software system for PCa

Fig. 1 | Experimental design and pipeline overview. The existing Digital Pathology
assessment pipeline is illustrated in (a). In this study, we developed an integrated and
comprehensive Digital Pathology image analysis pipeline, which is powered by A!
MagQC (image quality assessment software), A!HistoClouds (Digital Pathology
image viewer, annotation platform, and database), and an Artificial Intelligence
model that can detect and grade prostate cancer for images scanned by multiple
scanners, as shown in (b). The workflow of the pathologist-AI interaction (PAI) is
presented in (c). After a base AI model is trained, it is applied to new data and
generate pseudo annotations on Whole Slide Images. Pathologists review and
modify the pseudo annotations using A!HistoClouds, and the corrected annotations
are fed back to the model for further training. This process is repeated until the
model achieves high accuracy. After meeting criteria, the model can generate

accurate outcomes and assist pathologists in clinical diagnosis. In AI digital
pathology, AI model performance is significantly influenced by image appearance
variations. d Biological processes cause tissue structure differences, while sample
preparation and scanning introduce notable appearance variations. Preserving
pathological tissue structural differences is crucial for capturing biological features in
AI learning for the purpose of diagnosis, but it’s important to minimize appearance
variations that don’t relate to biological traits. Image appearance migration
addresses this by migrating images from different scanners into a standard space.
e Initially, mean RGB value distributions from various scanners may cluster dis-
tinctly due to appearance differences. f After applying image appearance migration,
the data points converge into a compact, unified appearance, demonstrating the
method’s effectiveness in standardizing digital pathology images for AI analysis.
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assessment has been classified as aClass II device by theU.S. Food andDrug
Administration (FDA), being thefirst FDA-approvedAIproduct in thefield
of DP, but limited to the approved scanner. Independent studies have
demonstrated that the utilization of suchAI-assistance inPCadetection and
grading has led to increased sensitivity and reduced diagnostic time20–25.

Despite the recent achievements and developments of AI-based
diagnostic solutions, the overall adoption of the AI models in pathology
domain remains poor. Lack of comprehensive and systematically designed
research and development pipeline on AI digital pathological diagnosis
models is probably one of the main reasons. Many published studies suffer
from several limitations. First of all, the dataset does not contain sufficient
variations. For instance, many studies utilized only 1-2 scanners without
incorporating a generalization solution into the pipeline11–25. The variation
and quality of images acquired fromdifferent scanners, compounded by the
variations of sample preparation and staining, might profoundly affect AI
models26, often leading to poor generalization during onsite testing and
deployment. Second, the annotation schemes in many studies are often not
well designed and inefficient to directly address the diagnostic needs. Large
quantities of high-quality annotated data are essential for training DL
models5, but acquiring such annotations is expensive and time-consuming,
requiring experienced pathologists to manually perform detailed annota-
tions. Finally, the feasibility of evolving the existing AI-based models with
more data has not been adequately considered during the pipeline design.
The ability ofmodels to continually learn and improve their performance by
incorporating additional training data flow, without the need for complete
retraining, should be systematically investigated27,28. This approach can
enhance the cost-effectiveness of AI models and reduce validation time, as
demonstrated in Fig. 1c.

One of the greatest challenges in the field of AI digital pathology is
achieving generalization.Addressing this issuenecessitates a comprehensive
understanding of the biological differences and potential variations
underlying these challenges. Thedevelopment andprogressionof cancer is a
process that unfolds in four dimensions (4D), as illustrated in Fig. 1d. This
implies that cancer develops within three-dimensional (3D) space In Vivo
over time. The process of In VitroDiagnostics (IVD), i.e., biopsy or surgery,
involves extracting a piece of 3D tissue sample from this four-dimensional
continuum at a specific time to evaluate the patient’s condition. Subse-
quently, the tissue undergoes various preparation steps, including fixation,
sectioning, and staining. In the conventional pathology workflow, these
prepared samples are examined and interpreted by highly trained profes-
sionals, i.e., pathologists. It is a well-established and validated process that
pathologists possess the expertise to discern the biological and pathological
difference in tissues, enabling themtoprovide precise diagnoses for patients.

In the realm of AI digital pathology, the performance of artificial
intelligence (AI) models is considerably influenced by the variability
inherent in the stages of sample preparation described earlier, as well as by
variation during the data acquisition or whole slide imaging phase, as
depicted in Fig. 1d. The substantial real-world variations dependent on the
sites and the machines lead to a decline in model performance when faced
with previously unseen data. It poses a critical challenge in the field, as it
hinders models from adapting to and maintaining consistent performance
across diverse datasets, clinical centers, and different scanners. It is a prin-
cipal reason behind the limited adoption and scalability of AI-based diag-
nostic models in pathology.

Addressing these limitations and designing comprehensive AI diag-
nostic model development framework that encompass diverse datasets29,
efficient annotation schemes, and consideration of model updateability are
crucial steps towards advancing AI-assisted pathology diagnostic models
and accelerating their adoption in the healthcare systems. Being motivated
by increasing the scalability of AI-assisted diagnosis solutions in clinical
practice and boosting the efficiency and reduce pathologists’workloads, we
designed a comprehensive pipeline for development of AI pathology diag-
nostic model, as shown in in Fig. 1a-c. Overcoming the challenge of
obtaining high-quality annotated data is essential for advancing AI diag-
nostic models. The establishment of a high-quality, structurally annotated

database is vital for AI pathology model training, necessitating rigorous,
automated quality control (QC) to guarantee data integrity for model
development and validation. We developed A!MagQC software quantita-
tively assesses digital pathology image quality, optimizing the annotation
process and enhancing AI diagnostic accuracy, as shown in Fig. 1b. Our
solution, A!HistoClouds, is a cloud-based annotation platform that
streamlines pathologist annotations and AI predictions, bolstered by a
Pathologist-AI Interaction (PAI)30,31 for semi-automatic annotation and
continuous model improvement, as depicted in Fig. 1c. Besides, to address
the generalization challenge, we introduced a concept called image
appearancemigration tohandle images fromdifferent scanners, as shown in
Fig. 1e-f.

We used our study of AI-assisted Gleason Grading on PCa patholo-
gical images as an example to demonstrate our AI model development
framework. Notably, optimization and generalization are two crucial con-
siderations during the AI diagnostic model development. Our prostate AI
diagnostic and gradingmodel was first developed and validated on a dataset
scanned by Akoya Sciences and subsequently extended to images scanned
by multiple scanners through a set of generalization techniques. Additional
clinical validation was conducted with pathologists from Singapore and
China to evaluate the proposed method in a real-world application.

Methods
Sample preparation
This study obtained prostatectomy and biopsy formalin-fixed paraffin-
embedded (FFPE) tissue specimens from the Department of Pathology at
the National University Hospital in Singapore, with approval from the
National Healthcare Group Domain Specific Review Board (DSRB ID:
2018/01186). The Institutional Review Board waived the requirement for
verbal or written informed consent as all specimens used in the study were
de-identified. The specimens were processed in accordance with the stan-
dard operating procedures of a CAP-accredited histopathology laboratory.
H&E-stained sections of 4μm were prepared from tissue blocks of radical
prostatectomy and biopsy specimens. The study included a total of 187
prostatectomy specimens (total tissue area 112,400 mm2) and 156 biopsy
specimens (total tissue area 7723mm2) from 214 patients. The patient
profiles are listed in Supplementary Table 1.

WSI scanning and image quality control using A!MagQC
Images were initially acquired using Vectra ® Polaris™ from Akoya Bios-
ciences with bright-field imaging at 0.5μm × 0.5μm per pixel resolution.
Since annotation quality and subsequentmodel development are ultimately
dependent on the quality of scannedWSIs, it is critical to have a robust QC
system and standard to quantify the variation of sample preparation and
tissue types. Variations in color, brightness, and contrast can also occur
among different scanners and brands used by different pathology labora-
tories. To address these issues, we developed an image QC software named
A!MagQC to quantitatively assess common image quality issues. A!MagQC
is an automated histology image quality assessment tool to identify five
common categories of WSI quality issues: out of focus, low contrast,
saturation, artifacts, and texture uniformity32–37. A image patch is classified
as “low quality” if A!MagQC identified two or more quality issues in it.
Details of A!MagQC are described in Supplementary Methods and Sup-
plementary Fig. 1.

To study the characteristics of images scanned by different scanners
and their impact on AI model performance, 38 prostatectomy specimens
were selected and scanned using 5 other scanners (Olympus, KFBio, Zeiss
Leica, Philips) at same resolution. Our database, including the WSI from
different scanners, was consolidated as Automated Gleason Grading
Challenge (AGGC) competition hosted byMICCA2022 and it was also part
of the benchmark in a recent paper29.

Structured image data annotation using A!HistoClouds
With A!MagQC, we ensured WSIs for annotation are of high quality. A
user-friendly, easily accessible, and efficient annotation solution is desired
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for detailed structure annotations. We thus developed a cloud-based
annotation platform, known as A!HistoClouds. It provides an image
management system (IMS) with different annotation styles, including
flexible region of interest (ROI) creation within the image viewer. Details of
A!HistoClouds can be found in Supplementary Methods and Supplemen-
tary Fig. 2.

Three pathologists from NUH manually annotated the WSIs (each
WSI was annotated by one pathologist) using A!HistoClouds to yield
total annotation areas of 22,148 mm2 (12,630 instances) on 187 prosta-
tectomy specimens and 2223 mm2 (2852 instances) on 156 biopsy spe-
cimens, as illustrated in Fig. 2a-b. The annotations of different classes
were extracted from A!HistoClouds and organized by labels, as illu-
strated in Fig. 2c. Annotation labels include Gleason pattern 3 (GP3),
Gleason pattern 4 (GP4), Gleason pattern 5 (GP5), benign, and stroma
tissue. For binary classification, we grouped the GP3, GP4, and GP5
tissue as “Malignant,” whereas benign and stroma tissue comprise the
“Non-malignant” group.

We used prostatectomy specimens, which provide more abundant
information due to their larger size, for training and testing our AI
models. Prostatectomy WSIs were split into training and testing sets.
Annotated biopsy images were used for testing. After train-test splitting
of prostatectomy specimens (described in Supplementary Note 1), an
additional evaluation was conducted involving 9 pathologists (5 junior
and 4 junior) from 5 hospitals in China. Specifically, 5 junior pathologists
individually adjusted the NUH’s annotations of eachWSI, and the senior
pathologists from the same centers further reviewed andmade individual
adjustments to the annotations made by the junior pathologists. This
rigorous process was implemented to ensure the high quality of the
testing data, taking into consideration the presence of inter-observer
variations in Gleason grading. Finally, the annotations agreed upon by
the senior pathologists were used as the “gold standard” to evaluate the
model performance.

AI model development and optimization
Pathologists make diagnoses by examining specimens under a microscope
at different magnifications, suggesting that the AI model might also benefit
from an optimal magnification for patch classification. To optimize patch
scale factors, we trained AI models using patches of different resolution.
Each annotated region was cropped into different sizes of overlapping
patches using a sliding window approach, as illustrated in Fig. 2d. The
patches were then resized to 224 × 224 pixels to fit the input layer, resulting
in a resolu tion of 0.56 (extra high resolution), 1.12 (high resolution), 2.24
(medium resolution), and 4.47 (low resolution) µm/pixel for patches whose
original side lengths were 251, 501, 1001, and 2001 pixels, respectively. The
number of patches (501*501 pixels) in the training and testing datasets for
each class is given in Fig. 2e. The image patches for the training were then
organized by type, and representative patches of different classes are shown
in Fig. 3a. Data augmentation such as rotation and flipping were applied to
each image patch as shown in Fig. 3b. The classification layer in the network
was replaced with a Weighted Classification Layer as a class rebalancing
strategy, shown in Fig. 3c, where the weights are inversely proportional to
the number of image patches to mitigate imbalance in the dataset. To
optimize our model’s performance, we selected three of the most widely
used network architectures in the field for model selection, namely
ResNet50, VGG16, and NasNet Mobile. The details of hardware and soft-
ware used in this work are provided in Supplementary Methods.

During testing, the trained models were applied to every sliding win-
dow on test images within the tissue region. The testing process produced a
list of scores indicating the predicted probabilities of class labels for each
patch, as shown in Fig. 3d, e. We developed a voting policy that considers
neighboring patches to determine the predicted label of the overlapping
region. The final decision is made based on either the class with the highest
votes or the highest average scores. Details of the voting policy can be found
in Supplementary Note 2. The final output was compared to the ground
truth annotation for performance evaluation, as illustrated in Fig. 3f, g.

Fig. 2 | Details of annotated data for training and testing in this study. The
amount of manual annotation performed on prostatectomy and biopsy samples by
pathologists is summarized in (a) and (b), respectively. c The annotations of dif-
ferent classes were extracted from A!HistoClouds. d To study and optimize patch
scale factors, image patches were cropped into different sizes of overlapping patches
using a sliding window approach, with a side length of x pixels and a stride of (x-1)/2
pixels, where x = 251 (~125 µm), 501 (~250 µm), 1001 (~500 µm), and 2001

(~1000 µm). The overlap ratio between adjacent image patches is (x+ 1)/2x. To
ensure validity, image patches were extracted only when more than 70% of the area
was annotated. e Prostatectomy specimens were split into training and testing sets,
while biopsy specimens were used for testing only. The same configuration of train-
test splitting was applied to datasets of different scales. A bar plot shows the number
of image patches of size 501 × 501 pixels in the training and testing set of prosta-
tectomy specimens. Rearranged the lettering so that they precede each description.
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Image appearance migration and model generalization across
different scanners
To improve the generalization of AI models and ensure their adoption and
scalability inmedical applications, it is essential to understand, quantify and
compensate the procedural variations that impact image appearances from
sample preparation to data acquisition, while preserving the inherent bio-
logical andpathological distinctions.With this understanding, we introduce
an approach to tackle these challenges. To validate this concept, we used
various scanners to capture images fromthe same set of glass slides, resulting
in images that exhibit significant differences in appearance as in
Figs. 1d and 6a. This variation is illustrated by distinct clusters in the RGB
color space, as shown inFig. 1e. By applying techniques such as histogramor
ProbabilityDensityFunction (PDF)matching,wewere able to “migrate” the
images from different scanners into a unified reference space as shown by
the arrows in Fig. 1f. The aim of this approach is to minimize and com-
pensate the variations attributable to scanning and potentially other factors,
thereby demonstrating the effectiveness of our method in standardizing
image appearances and enhancing model performance across diverse
datasets.

Scanner-induced image variations is one of the key variations
causing the poor generalizability of AImodels. We address this challenge
through image appearance migration. The concept is to reduce image
inconsistencies and migrate images appearance from different color/
feature space to a standard reference space. This transferred space is very
similar to the characteristics of the Akoya scanner (baseline), whose
images were used for model training. Specifically, we estimated the
reference probability density function (PDF) for each RGB channel using
30 WSIs from the Akoya dataset. Images scanned by other scanners are
then transformed to match this reference distribution. We further
enhanced the generalizability of the models by enlarging the original
training dataset using color augmentation during training, as shown in
Fig. 3c. The resulting patches from color augmentation were used to
simulate the appearance variations of different scanners. We applied

three image augmentation configurations, which is designed for the three
scanners of clear appearance difference with our reference scanner, to
each original image patch, and the details are provided in Supplementary
Table 2. The training configurations are the same for the original model
and the model with color augmentation.

The annotationswere created by pathologists in the images scannedby
Vectra Polaris fromAkoya Biosciences scanner, and they cannot be directly
applied to images scanned by other scanners since the images were not
aligned with each other. To resolve this issue, we performed image regis-
tration to transfer the annotations created in Akoya-scanned images to the
images obtained from other scanners. After registration, the images
obtained from other scanners had corresponding ground truth annotations
and could be compared with the prediction results to evaluate the perfor-
mance before and after applying generalization techniques. We achieved
accurate image registration, as indicated by the average Structural Similarity
Index Measure (SSIM) of 0.99 between the original annotations and
registered annotations.

Pathologist-AI interactionviaA!HistoCloudstoexpediteAImodel
development: semi-automatic annotation and incremental
learning
Initially, the AI model was trained and optimized based on the manual
annotations of three pathologists fromNUH. This model was known as the
base model and serves as a foundation for future development.While more
datawill be collected to expand the annotation database and improvemodel
performance, manual annotation and retraining the model from scratch is
time-consuming and inefficient.

To facilitate further development based on the existing model,
Pathologist-AI interaction (PAI) was implemented in A!HistoClouds, as
shown in Fig. 1c. During PAI, pathologists perform semi-automatic
annotation by correcting pseudo annotations generated by the AI model.
Subsequently, these annotations are directly applied to updating the existing
model through further training. Outputs of the new AI model serve as a

Fig. 3 | Color augmentation and patch sampling of training and testing of the AI
model development. To prepare the image patches for training, data augmentation
was applied to each patch, as demonstrated in (a) and (b). Besides random rotation
and flipping, color augmentation changed the intensity of pixel values randomly
within a certain range (details provided in Supp Table 4). The structures of

ResNet50, VGG16, and NasNet Mobile were used, and their regular classification
layers were replaced with a weighted classification layer. cCommon structures of the
AI model. d In the testing process, the trained model was applied to the test image
using a sliding window operation with (e) a voting strategy. f An example of pre-
diction results and (g) its corresponding ground truth.
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starting point of semi-automatic annotation for pathologists in next round
of PAI, allowing for a closed loop between the AI model and pathologists.

In this experiment, the base model was applied to 39 slides randomly
selected from the testing set to generate pseudo annotations,while the rest of
the 17 slides remained as testing images. Pathologists from China and
Singapore used A!HistoClouds to correct the pseudo annotations and
record the time spent on each image. The corrected annotations were used
to update the basemodel using an incremental learning approach, meaning
that the model learned from the new data directly from the base model.
Specifically,we froze the top layer of themodel andonlyupdated theweights
of the bottom layer during training. After training, the base model and
updated model were applied to the remaining 17 WSIs in the test set to
compare their performance in distinguishing between malignant and
benign tissues annotated by NUH pathologists.

Evaluation metrics
We evaluated the performance on both the annotation-level and the
WSI-level. On annotation-level, sensitivity and F1 scores of each class
label were calculated for multi-class classification on prostatectomy
specimens. For the performance assessment across different scanner
dataset,macro average F1 score is computed using the arithmeticmean of
F1 scores of different classes. For core needle biopsy samples, we sim-
plified the comparison to binary classification according to clinical needs.
Sensitivity, specificity, positive predictive value, and NPV) were used.
Pathologists’ annotations are non-exhaustive, and each image contains
multiple labeled instances, whereas the AI model predicted the label at
the pixel level for the entire tissue region. Thus for any instance annotated
by pathologists, the corresponding regions in AI output might contain
various labels. To reconcile these labels, we adopted a majority voting
strategy to select the predicted label that covers the largest pixel area as
the final label for that instance in AI output.

On WSI-level of evaluation, we compared the Gleason Grade Group
(GG)38 determined by the AI model and pathologists. GG 1: Gleason Score
6, GG 2: 7(3+ 4), GG 3: 7(4+ 3), GG 4: Gleason Score 8, GG 5: Gleason
Score 9 and 10. Quadratic weighted Kappa was used to measure the con-
sistency of two observers.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Scale optimization and evaluation of AI model
After selecting the structures of the AI model (details described in Supple-
mentary Methods and Supplementary Fig. 3), the model performance is
evaluated at different resolutions/scales using prostatectomy specimens. A
representative image and the results at different scales are shown in Fig. 4a.
Four models at different scales are trained using Resnet 50 structures and
tested, revealing that scale factors have less impact on the detection of G3,
G4, and non-malignant classes. However, the F1 score of G5 increasesmore
than 4-fold with high resolution, as shown in Fig. 4b. Overall, the model
trained on high-resolution patches (1.12 µm/pixel) is found to be most
effective. It demonstrate high F1 score in predicting GP3 (0.93), GP4 (0.84),
GP5 (0.44), and non-malignant tissue (0.99). Of note, the precision, sensi-
tivity and F1 score of predicting non-malignant tissue are all 0.99, which
means themodel rarelymisclassify tumor as benign tissue. Evaluation of the
AI model using multiple pathologists’ annotations individually is described
in Supplementary Methods and Supplementary Fig. 4.

The AI model is also used for pre-screening biopsy samples, and the
optimizedmodel is applied to test tumordetectionperformance. Extrahigh-
resolution images are found to bemore suitable for biopsy specimens as they
achieve better performance, particularly for sensitivity and negative pre-
dictive value (NPV), as shown in Fig. 4c, d. The NPV is 0.96 for 156 biopsy
samples, meaning that tumors are very unlikely to exist when the AI model
classify samples as non-malignant.

Image quality assessment using A!MagQC and image appear-
ance migration
Images of the same set of glass slides show remarkable variations when
acquired from different scanners, as demonstrated in Fig. 5a. Using the A!
MagQCsoftware,we quantitatively assess the quality properties andprofiles
of images from these scanners, and the low-quality percentage identified by
A!MagQC of each image was summarized in Fig. 5b. Our analysis reveals
that there are serious quality issueswith the image acquired from Scanner C
(in order to avoid potential market conflicts, we anonymize the scanner
brand andmodels). After manually reviewing and communicating with the
technicians, we confirm the “out-of-focus” issue indicated by theA!MagQC
software, which is due to faulty compartment and maintenance issues of
Scanner C. Although images acquired from Scanner A and B had more
artifacts, the general quality of all images scanned by different scanners are
satisfactory and pass the QC test. Specifically, someWSIs have higher “out-

Fig. 4 | Scale optimization andmodel performance on prostatectomy and biopsy
specimens. aModel performances at different resolutions and the ground truth
annotations. b Sensitivity, specificity, and F1 scores. The high-resolution model was
selected for processing prostatectomy specimens because its F1 score is the highest for

all labels. c Similarly, models at different resolutions were applied to biopsy images.
d Considering the shape and size of the biopsy, a model at an extra-high resolution is
more desirable. In particular, part of the biopsy was barely processed at lower reso-
lution but was correctly identified as benign tissue at an extra-high resolution.
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of-focus” scores than others. We perform manual review for all WSIs of
comparatively lower quality and confirm that the QC results are accurate.
Some example of patches that pass or fail the A!MagQC assessment are
demonstrated in Fig. 5c.

Variations in image appearance caused by scanning might impact
the performance of the AI model, as shown in Fig. 6a, b. Image
appearance migration, specifically employing PDF matching to align
images scanned by different scanners with the reference distribution of
the Akoya scanner (baseline), is used to reduce scanner-induced dis-
crepancies. The resultant images are demonstrated in Fig. 6c. We assess
its effectiveness bymeasuring the histogram intersection of tissue regions
between baseline and image datasets before/after appearance migration,
as shown in Supplementary Fig. 5. The results show that image appear-
ance migration greatly increase the similarity between baseline and
acquired from other scanners, with almost perfect overlap in histogram
intersection for all channels.

Model generalization for invariant performance across multiple
scanners
Our study shows that unadjusted variations in the intensity and color of
commonly used scanners could lead to inconsistent predictions. Notable
variations in the imaging of the same glass slides yielded by different
scanners, resulting in discrepancies in AI model outcomes despite identical

underlying histopathological content. Specifically, Scanner B and C tend to
over-diagnose due to darker images, while Scanner D tends to under-
diagnose due to lighter images, compared to the baseline.

To improve the generalizability of the AI model across different
scanners, we apply image appearance migration to the WSIs and color
augmentation to the model training. After these techniques are applied, the
AI results across various scanners becomemore consistent and alignedwith
the ground truth annotations, as shown in Fig. 6e, f. A marked increase in
sensitivity, specificity, and F1-score of tumor grading is observed after
applying image appearancemigration and color augmentation, as shown in
Supplementary Fig. 6a–c. The improvement is particularly pronounced for
images scanned by Scanner B, C, andD,whose differences from the baseline
are more substantial. However, if images acquired from other scanners are
close to the baseline dataset, generalization techniques might not be
necessary. In addition, we conduct a comparison of the macro average F1
score when applying image normalization only versus color augmentation
only, to evaluate their effectiveness individually as shown in Supplementary
Fig. 6d. Our results show that the differences in the macro average F1 score
between applying image normalization only, color augmentation only, and
both imagenormalizationandcolor augmentationare comparatively subtle.
These findings suggest that both image normalization and color augmen-
tation optimize the generalization performance across images scanned by
different scanners.

Fig. 5 | Image Quality Assessment Using A!MagQC. a A!MagQC assessed the
images from different scanners and identified five common quality issues. b The
percentage of image tiles classified as “Low Quality” in different scanner datasetss,
where a tile was considered “Low Quality” if it exhibited more than two quality

issues. Notably, images obtained from Scanner C displayed lower quality due to
issues related to the scanner’s faulty hardware. To validate the A!MagQC results,
manual examination was conducted on randomly-selected tiles. c provides examples
of patches with and without severe quality issues as identified by A!MagQC.
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Three-phase clinical validation of AI-assisted diagnosis
We aim to assess whether the use of an AImodel can improve the accuracy
and efficiency of Gleason grading in histopathology departments. A three-
phase clinical validation is conducted involving five pathologists from
China and Singapore. In the experiment, we compare traditional micro-
scopic examination (Phase 1), WSI examination without AI-assistance
(Phase 2), and WSI examination enhanced by AI-assistance (Phase 3), as
shown in Fig. 7a. In phases 2 and 3, pathologists use A!HistoClouds to
examine the WSIs. In phase 3, pseudo annotations generated by the AI
model, along with Gleason scores and tumor percentages, are provided as
references for the pathologists. Pseudo annotations are simplified for easier
interpretation and quicker diagnosis based on pathologists’ feedback prior
to the experiment, as shown in Fig. 7b. Details of this experiment are
described in Supplementary Methods.

The accuracy of GG classification is assessed by calculating the
Quadratic Weighted Kappa of pathologists A–E across the three phases,
using theGGs annotated as references by another four senior pathologists, as
indicated in Fig. 7c. In Phase 3 the average agreement level between the AI-
assisted diagnosis and Senior Pathologists 2 and 3 is found to be the highest,
indicating that the AI-assistance improved the accuracy of Gleason grading.

However, if we consider Senior Pathologists 1 and 4 as the reference, Phase 3
do not consistently achieve the best results, although the difference was only
subtle. It is worth mentioning that the agreement level of the AI model and
senior pathologists is consistent with that of pathologists A–E across dif-
ferent phases. Almost no difference is observed between Phase 1 and 2
among pathologists A, B, and C in terms of time taken for histological
examination, as shown in Fig. 7d. However, there is notable improvement
for all 5pathologists inPhase 3, especially forpathologistsA,D, andE,whose
average examination time is reduced by 41–58%. With the introduction of
AI-assistance in thefinal phase, the average examination timeof pathologists
is reduced by 43%, decreasing from 148s (Phase 1) and 147s (Phase 2) to 84s
(Phase 3). The p value of the two-sided paired t-test is calculated, indicating a
clear decrease in diagnosis time for Pathologists A, D, and E. These results
show thatusingWSI examinationwithAI-assistance considerably improved
the efficiency of Gleason grading without compromising accuracy, sug-
gesting a role as assistant to support pathologists in their diagnostic work.

Evaluation of pathologist–AI interaction efficacy
The PAI strategy, comprising two components: semi-automatic and
incremental learning, is designed to reduce the annotation time of

Fig. 6 |Model performance generalization across images fromdifferent scanners.
a Images acquired from different scanners exhibit diverse appearances. Without
applying generalization techniques, these variations lead to inconsistent AI results,
as shown in (b). To mitigate the impact of appearance variations on AI model
performance, images from various scanners underwent image appearance migra-
tion, reducing appearance differences. Additionally, color augmentation was
employed during the generalization process, training the model using the same
method as previously described. c and d display images after appearance migration

and their corresponding outputs from AI model with color augmentation, respec-
tively. With the implementation of the generalization technique, the AI outputs
demonstrated increased consistency. e And the corresponding AI outputs better
aligned with the ground truth annotations. f The macro average F1 score of each
scanner dataset before and after the generalization techniques were applied.Notably,
Gleason Pattern 5 was excluded due to the limited availability of annotated GP5
regions in cases scanned by multiple scanners.
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pathologists and upgrade the existing AI model when new data becomes
available. We evaluate PAI’s effectiveness from two perspectives: the
efficiency of semi-automatic annotation and the improvement of AI
model performance. First, we record the time required for pathologists to
perform annotation using fully-manual and semi-auto methods (see
Fig. 8a). We find that semi-automatic annotation was about 2.5 times
faster than fully manual annotation. The average annotation speed
decreases from 1267s/per image for fully manual annotation to 508 s/per
image for semi-automatic annotations and the p value of two-sided
paired t test is 0.0009, indicating substantial decrease as demonstrated in
Fig. 8b. From this perspective, semi-automatic annotation supported by
our AI model greatly improved a pathologist’s efficiency to iteratively
integrate new data into the model. We also compare the total annotated
areas before and after pathologists’ corrections to quantify the quality of
pseudo annotations generated by theAImodel. As shown in Fig. 8c, most
of the pseudo annotations of GP3, GP4, normal, and stroma are pre-
served, while many GP5 annotations are removed. These findings align
with the image dataset’s validation results, indicating the AI model’s
satisfactory performance in identifying GP3, GP4, and non-malignant
samples, but relatively poor performance in identifying GP5 due to
limited data availability.

More importantly, after feeding the corrected annotations directly
into the existing base model for further training (see Fig. 8d), the overall
performance of the AI model increases across all metrics, as shown in
Fig. 8e, demonstrating its capability of incremental learning without the
need for complete retraining. As the AI model’s performance will
improve continuously through learning from pathologists’ corrections,
we anticipate that pathologists will require less time and effort to perform
semi-automatic annotations, leading to increased accuracy of pseudo-
annotations.

Discussion
We address key unmet challenges in AI-assisted prostate Gleason grading,
including the lack of automated image quality assessment, inefficient
annotation and model updating, and poor model generalizability. Our
solution is a comprehensive pipeline for developing AI models. This
workflow comprises several crucial components: (1). A!MagQC performs
automated quality control on digital pathology images, ensuring consistent
data quality for reliable AI model development. (2) A!HistoClouds facil-
itates efficient annotation and visualization of AI results, enabling pathol-
ogist contributions to model training and benefiting from AI-assisted
diagnosis. (3) Pathologist-AI Interaction (PAI) bridges the gap between
pathologists and the AI model through semi-automatic annotation and
incremental learning, leading to continuous improvement and adaptation.
Notably, we also implemented robust generalization techniques, including
image appearance migration, to ensure consistent performance across
multiple scanner models, which was rarely considered in previous studies.
This comprehensive approach, which is generalizable to other AI pathology
diagnostic model development, tackles critical bottlenecks in AI-assisted
Gleason grading, paving the way for its widespread adoption and trans-
formative impact in clinical practice.

Scanning plays a crucial role in Digital Pathology, and our A!MagQC
provides a tool for identifying quality issues in WSIs. The study shows that
A!MagQCcan also detect theworking condition of scanners. It is important
to note that the performance of theAImodel can be affected by variations in
the appearance of images acquired from different scanners. The general-
izability of AImodels across image scanners is a crucial consideration when
deploying the AI model for diagnosis in hospitals using existing pathology
workflows and scanners, ideally without the need to retrain the model. It is
important to highlight that, while image appearance migration and color
augmentation both offer similar generalizability as in Supplementary

Fig. 7 | Three-phase clinical validation. aWe designed a 3-phase clinical validation
to assess AI-assisted diagnosis by comparing microscopic examination and WSI
examination with and without AI-assistance. b In Phase 3, the pseudo annotations
we presented to pathologists were simplified according to pathologists’ feedback,
since the original prediction generated by the model contains excess detail). cWe

assessed the accuracy of Gleason Grade Group at different phases by comparing
pathologists A–E’s readings with those of four senior pathologists. d The average
time pathologists are required to examine a WSI at different phases, demonstrating
that the highest diagnosis efficiency was achieved in Phase 3.
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Fig. 6d, image appearance migration may present a more viable option for
real-world applications. Firstly, the color augmentation in our study was
specifically targeted to mimic the images scanned by scanners B, C and D,
rather than being universally. Although models trained with color-
augmented data performed well within our study, this approach does not
assure generalizability to images scanned by unknown and untested scan-
ners with unforeseen appearances without additional model training. Sec-
ondly, color augmentation significantly increases the volume of training
data, which leads to increased computational costs, particularly when
attempting to simulate images from numerous scanners. In contrast, image
appearancemigration can be effortlessly applied to images from any source
without additional training. This method is regarded as a more straight-
forward, cost-effective, and robust solution.

By employing the image appearance migration techniques, our
approachminimized variations in image presentation. Thismethod enables
AI models to precisely identify and assess critical biological, pathological,
and cytological features with minimal impact from procedural variations,
thereby enhancing their generalizability. Consequently, this approach sig-
nificantly improves the ability of AI models to generalize across different
datasets (including the variable of staining, hospitals and scanning),
representing a notable progress in the field of digital pathology. It ensures
that AI models can reliably interpret and analyses medical images,
regardless of the source or method of preparation, paving the way for more
consistent and accurate diagnostic outcomes. Better generalization will
potentially improve the adoption and scalability of the AI model applica-
tions. We emphasize the need for developing and validating the AI models
based on the dataset with real-world variations, as this will allow the model
to be implemented in different hospitals and labs. Furthermore, a general-
izable model that is tolerant of changes in imaging parameters is crucial for
clinical practices, where suboptimal tissue processing and scanning condi-
tions inevitably occur. Our findings strongly suggest that image appearance

migration solution are effective for enhancing the consistency and perfor-
mance of AI models across different types of scanners.

Although we only investigate the variations caused by scanning in
the study, the proposed methods should also be capable to deal with any
other variations in image appearance caused by other upstreaming
process, e.g., tissue cutting, staining, and sample storage. Image
appearance migration should be one of the primary solutions to improve
the generalization ability of AImodels inDP. Similar concept is able to be
generalized to cytology samples, while the solution described in this work
may not be directly applicable to cytology images which require more
elaborative techniques.

Our AI model shows high accuracy in detecting and grading PCa in
both biopsy and prostatectomy specimens, achieving a specificity of over
90% for the more commonly observed GP3 and GP4 samples. Moreover, it
can serves as a valuable pre-screening tool, enabling pathologists to quickly
identify benign cases and focus on suspicious specimens with greater con-
fidence. This binarymodel can identifymalignancies froma largenumberof
otherwise benign cases, decreasing the workload of pathologists who can
then focus on potentially malignant cases. Nonetheless, our model’s accu-
racy in identifyingGP5 is relatively lowdue to its rarity in our dataset, which
impede the model’s ability to differentiate it from other patterns. Further-
more, we find that GP5 was barely detected at lower resolutions. This is
consistent with the fact that pathologists require higher magnification to
determine Gleason grading accurately.We expect that gatheringmore GP5
data in the future will enhance the model’s performance for this grade.

The three-phase clinical validation with five pathologists confirms the
AI model’s effectiveness in improving both the accuracy and efficiency of
Gleason grading. Compared to traditional methods, all five pathologists
achieve faster examination times with the AI-assistance, without compro-
mising accuracy. Despite being new toWSI examination with AI-assistance
in contrast to their familiarity with examination by traditional microscope,

Fig. 8 | Assessment of PAI. In this study, the Pathologist-AI interaction (PAI)
strategy is evaluated, comprising two components: semi-automatic annotations to
enhance pathologists’ annotation efficiency, and incremental learning for updating
the existing AI model without full retraining. a illustrates the comparison between
fully-manual annotation where pathologists annotate from scratch, and semi-
automatic annotation where pathologists adjust pseudo annotations generated by

the AI model. b presents a time comparison between fully-manual and semi-
automatic annotation methods, while (c) compares the annotation area for each
class before and after pathologists’ corrections. d demonstrates the workflow of
incremental learning, where the base model is updated using semi-automatic
annotations, leading to improved model performance after the 1st round of PAI, as
shown in (e).
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the pathologists benefit substantially from the information provided by our
AI model integrated with A!HistoClouds.

The PAI experiment results demonstrate that AI-assistance increases
the speed of annotations by 2.5 times compared to manual annotation,
thereby reducing pathologists’ workload. This feature is crucial for cost-
effective and time-efficient AImodel training, which typically requires large
datasets. By facilitating an iterative feedback loop between pathologists and
the AI model via A!HistoClouds and using incremental learning, the AI
model can be efficiently trained and validated, leading to a larger and more
generalizable database.

Effective presentation of AI-generated data is crucial for rapid
human processing and informed decision-making. In the three-phase
clinical validation study, the results show that the AI-assistance imple-
mented in A!HistoClouds enables pathologists to locate and grade
tumors more efficiently, thereby greatly reducing the time required for
pathologists’ evaluation.While computers are potentially more powerful
than the human brain in processing information, AI-generated data can
be too enriched for humans to interpret effectively. In our case, AI
processes every pixel in segmentation tasks, creating a large amount of
information. We find that presenting all this information to human
pathologists can potentially confuse them and slow down decision-
making. Therefore, we interact with pathologists to better understand
their diagnostic habits and designed a concise and optimal way to present
the AI-processed information to facilitate rapid diagnosis. Close colla-
boration with pathologists enable us to provide useful information to
assist them in making faster decisions.

Furthermore, the ground truth annotations visualized in A!Histo-
Clouds offer a valuable resource for researchers developing AI models. By
providing a quick overview of annotated structures, A!HistoClouds enhances
the efficiency of AI solution development and deployment, serving both
pathologists and researchers in the digital pathology field. Importantly, the
proposed workflow extends beyond the development of AI-assisted Gleason
grading models. Its generalizability allows for its wide-ranging adoption in
the development of diverse AI-powered digital pathology solutions for
various diseases not limited to a recent comprehensive work29.

Our future work will concentrate on developing AI model capable of
learning from multiple annotators with diverse experience level as we rea-
lized that variations exist on both annotation- andWSI-levels. Additionally,
we aim to validate and optimize our model for a more diverse range of
clinical scenarios, including different tissue thicknesses, staining types, and
scanners. Lastly, ourAImodeldevelopmentworkflow, includingA!MagQC
and A!HistoClouds, can be applied to develop and validate AI-based
diagnostics for other cancers.

Data availability
The image data set has been published for the Automated Gleason Grading
Challenge (AGGC) 2022 as a registered MICCAI 2022 challenge. The
dataset can be downloaded at the challenge website: https://aggc22.grand-
challenge.org. The data can be used under anAttribution-NonCommercial-
ShareAlike 4.0 International (CCBY-NC-SA 4.0) license. Anyone who uses
the data should cite the current article. All source data are available in
Supplementary Data.

Code availability
Access to the code is restricted due copyright considerations and anticipated
commercialization prospects. To request access, please send an email to Dr
Weimiao Yu: yu_weimiao@bii.a-star.edu.sg/wmyu@imcb.a-star.edu.sg.
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