
communicationsmedicine Article

https://doi.org/10.1038/s43856-024-00489-9

Super-resolution neural networks
improve the spatiotemporal resolution
of adaptive MRI-guided radiation therapy
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Abstract

Background Magnetic resonance imaging (MRI) offers superb non-invasive, soft tissue
imaging of the human body. However, extensive data sampling requirements severely
restrict the spatiotemporal resolution achievable withMRI. This limits themodality’s utility in
real-time guidance applications, particularly for the rapidly growing MRI-guided radiation
therapy approach to cancer treatment. Recent advances in artificial intelligence (AI) could
reduce the trade-off between the spatial and the temporal resolution ofMRI, thus increasing
the clinical utility of the imaging modality.
MethodsWe trained deep learning-based super-resolution neural networks to increase the
spatial resolution of real-time MRI. We developed a framework to integrate neural networks
directly onto a 1.0 T MRI-linac enabling real-time super-resolution imaging. We integrated
this framework with the targeting system of the MRI-linac to demonstrate real-time beam
adaptation with super-resolution-based imaging. We tested the integrated system using
large publicly available datasets, healthy volunteer imaging, phantom imaging, and beam
tracking experiments using bicubic interpolation as a baseline comparison.
Results Deep learning-based super-resolution increases the spatial resolution of real-time
MRI across a variety of experiments, offering measured performance benefits compared to
bicubic interpolation. The temporal resolution is not compromised as measured by a real-
time adaptation latency experiment. These two effects, an increase in the spatial resolution
with a negligible decrease in the temporal resolution, leads to a net increase in the
spatiotemporal resolution.
Conclusions Deployed super-resolution neural networks can increase the spatiotemporal
resolution of real-time MRI. This has applications to domains such as MRI-guided radiation
therapy and interventional procedures.

Magnetic resonance imaging (MRI) is a non-ionising and non-invasive
imaging modality used in a broad range of medical applications. Human
anatomy can be visualised in unprecedented detail owing to the inherent
imaging physics behindmagnetic resonance. Traditionally used to diagnose
disease, advances in real-time MRI have enabled new applications in real-
time treatment guidance. Real-time MRI has a variety of medical

applications including cardiac, upper airway, and musculoskeletal imaging
as well as MRI-guided procedures including cardiac radioablation and
radiation therapy1–3. For real-time treatment guidance a challenge remains:
MRI is a slow imaging modality4.

Real-time MRI is traditionally governed by the trade-off inter-
play between spatial resolution, temporal resolution, signal-to-noise
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Plain Language Summary

Magnetic resonance imaging (MRI) is a
medical imaging modality that is used to
image organs such as the brain, lungs, and
liver as well as diseases such as cancer. MRI
scans taken at high resolution are of overly
long duration. This time constraint limits the
accuracy of MRI-guided cancer radiation
therapy, where imagingmust be fast to adapt
treatment to tumour motion. Here, we
deployed artificial intelligence (AI) models to
achieve fast and high detail MRI. We addi-
tionally validated our AI models across var-
ious scenarios. TheseAI-basedmodels could
potentially enable people with cancer to be
treated with higher accuracy and precision.
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ratio, artifacts, reconstruction latency, and modelling assumptions1.
The main components in MR imaging time are the acquisition time
and the image reconstruction time5. MRI acquisition refers to the
application of magnetic gradients, spin relaxation, and the encoding
of the spatial frequency domain (k-space). Image reconstruction
refers to the process of converting k-space into the image domain
and associated processing. Decreases in the acquisition time have
been enabled through techniques such as multi-coil imaging, non-
Cartesian k-space encoding, and under-sampling k-space1,6–9. Clinical
benefits include reduced patient time in scanner, reduced motion
blur, and increased framerate (for real-time MRI). However, many of
these techniques require additional processing that increase the
image reconstruction time delaying the availability of images for
treatment guidance.

An application of real-time MRI for treatment guidance is the treat-
ment of cancer through radiation therapy. High doses of ionising radiation
are delivered with the intent to control the tumour whilst sparing sur-
rounding healthy tissue from radiation-induced toxicities. A treatment
device known as an MRI linear accelerator (MRI-linac) is the synergy of
MRI with radiation therapy to deliver MRI guided radiation therapy
(MRIgRT)10. There is emergingevidence thatMRIgRToffers improveddose
coverage and reduced radiation-induced toxicities compared to conven-
tional radiation therapy treatments11–13. Adaptation of radiation specific to
the changing anatomyof the patient encompasses longer termchanges (e.g.,
patient weight change and tumour response) and real-time changes (e.g.,
tumour motion due to patients’ respiration)14–16. Integrating real-time
adaptiveMRIgRTposesunique challenges, in particular, the spatiotemporal
limitations observed in real-time MRI3,4,17. Real-time adaptive radiation
therapy can incorporate the direct targeting of the precise radiation beam to
themoving target in a technique calledmulti-leaf collimator (MLC) tracking
or beam targeting18,19.

Deep learning has enabled unprecedented image enhancement
across the sciences. A type of image enhancement is super-resolution:
the process where higher resolution data are generated from a
measured lower resolution through up-sampling20. Applications of
super-resolution vary to overcome traditional barriers such as the
diffraction limit in fluorescence microscopy and prohibitive expense
present in space hyperspectral imaging21,22. Although offline, retro-
spective studies showing the potential of super-resolution to improve
image quality are prevalent, publications reporting the translation of
super-resolution onto real world systems are rare, especially in
medical imaging23–25.

Currently, the balance of spatiotemporal resolution in real-time
adaptive MRIgRT is maintained by using large pixel sizes to ensure
temporal latencies are at an acceptable level5,26,27. Here, we train and test a
leading super-resolution network, showing that it increases the resolution
of MRI scans with high accuracy when tested on large external datasets.
We then prospectively deploy an open-source integration of super-
resolution into a real-time adaptive MRIgRT workflow that allows for
real-time MR imaging at increased resolution without compromising the
temporal resolution. We validated this integration using volunteers for a
variety of sequences and anatomical sites to assess the image quality
improvement afforded by integrated super-resolution. Finally, we
experimentally demonstrate the real-time performance of our super-
resolution deployment by measuring the temporal resolution of the
integrated system and guidance latencies through a beam tracking
experiment on an MRI-Linac. Our integration of super-resolution
enables real-time higher-resolution imaging across a broad range of
applications in medicine including interventional radiology.

Methods
The methodology of this research is split into three components: super-
resolutiondevelopment, integration into theMRI-linac, and spatiotemporal
resolution characterisation. An overview of the methodology is provided
in Fig. 1.

Super-resolution development
The super-resolution methods developed in our integration were 2D single
image using a 4× scale factor to up-sample a 64 × 64 MRI matrix size to
256 × 256. To relate this to physical anatomical size, for a commonly used
thoracic field-of-view of 400 × 400mm2, the pixel size is transformed from
6.25 × 6.25mm2 to 1.56 × 1.56mm2.

Deep learning-based super-resolutionused the enhanced deep residual
network for single-image super-resolution (EDSR) architecture28. This
architecture has a foundational residual block, similar in design to ResNet
but with key modifications, such as the removal of batch normalisation29.
Following residual blocks, an up-sample block comprised of convolution
and pixel shuffle layers are used to up-sample image data. The PyTorch
framework was used for deep learning development and super-resolution
technique compilation described later30. The EDSR architecture was mod-
ified to accept single channel input and produce a single channel label, as
required by grayscaleMRI. A furthermodificationwas to subtract themean
grayscale (cf. RGB) value of each forward pass. This mean value was sub-
sequently added to the output serving as the method of normalisation for
both training and inference.

Dataset selection is of critical importance when training neural net-
works. In the case of training a large parameter model, it is paramount the
dataset resembles the inference application (i.e.,MRI) and is large enough as
to not overfit. Consequently, the QIN-GBM Treatment Response dataset
available on the Cancer Imaging Archive was used to train the EDSR
(https://wiki.cancerimagingarchive.net/display/Public/QIN+GBM
+Treatment+Response)31–33. This dataset contains T1-weighted (pre and
post-contrast), T2-weighted, FLAIR, MEMPRAGE along with other
advanced sequences for over 50 patients. A script was produced to load
specific sequences (T1-weighted pre and post-contrast, T2 weighted, and
FLAIR) for training. Choosing multiple sequences was anticipated to
improve the generalisability to different sequences on the MRI-linac.

A 2× (corresponding to increasing the spatial resolution by a factor of
2) brain model was trained until convergence of the validation loss. These
trained parameters were transferred to a 4× brainmodel (EDSRbrain) where
additional training was carried out using a higher up-sample ratio for
consistency with the original EDSR implementation28. EDSRbrain was fine-
tuned to thorax acquisitions creating a 4× thorax model (EDSRthorax) uti-
lising a lung cancer dataset previously described (the AVATAR study)34,35.
The training pipeline is provided in supplementary method 1 and supple-
mentary fig. 1.

The matrix size varied across different sequences and was not neces-
sarily the targetmatrix size. For sequenceswithmatrix sizes smaller than the
target, these imageswere zero paddedup to the targetmatrix size. In the case
of the matrix size being larger than the target, these images were down-
sampled in k-space in a procedure previously described24. Down-sampling
in k-space is the technique where a high-resolution image has a fast Fourier
transform (FFT) applied producing the frequency domain representation of
the image. The centre of this frequency domain, corresponding to low
spatial frequency information, is cropped to the desired matrix size. This
cropped frequency domain then has an inverse FFT applied producing an
image with the desired image resolution.

Once the sequences were processed, ensuring (or transforming) each
had the correct target matrix size, pre-processing for the neural network
training commenced. Labels were randomly cropped, made possible by the
EDSR architecture being independent of input matrix size, for further
consistency with the literature24,28,36. Inputs were generated inline per batch
from the cropped labels. To generate corresponding inputs, each label image
was down-sampled in k-space by a factor of four to produce a low spatial
resolution input.

A by-product of removing the periphery of the frequency domain
(when down-sampling in k-space) is that high spatial frequency informa-
tion is lost. Consequently, edges and other finer structures are diminished.
To account for this, an edge-based loss function was developed for training
and is outlined in the supplementary method 1 being previously described
for single-image super-resolution36.
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The validation loss and metrics: normalised root mean-square-error
(NRMSE), structural similarity (SSIM), and peak signal-to-noise ratio
(PSNR)were tracked during training. Parameterswere saved for integration
on theMRI-linacwhen the edgebasedL1 losswasminimised.Theoptimiser
used for training was the Adaptive Momentum Estimation (Adam)
algorithm37. A one-cycle learning rate scheduler was used during training to
modulate the learning rate during training38. The maximum learning rate
assigned to the learning rate schedulerwas 1 × 10−5, 5 × 10−5, 1 × 10−6 for the
2× brain, 4× brain, and 4× thorax models respectively. Two 4× deep
learning-based super-resolutionmodels were integrated into theMRI-linac
(EDSRbrain and EDSRthorax).

Integration into MRI-linac
The Gadgetron image reconstruction framework was employed for online
(deployed through Docker for prospective experiments) and offline (for
retrospective experiments) reconstruction39,40.Gadgetron functions through

a sequence of gadgets that ultimately reconstruct MR images from acqui-
sitions. We developed a framework that integrated with Gadgetron. This
framework utilised generic and custom Gadgetron gadgets, allowing for
end-to-end reconstruction, application of deep learning-based super-reso-
lution or bicubic interpolation, and the sending of reconstructedMR images
with associated metadata via transmission control protocol to an in-house
multi-leaf collimator (MLC) tracking software5.

All methods of super-resolution (deep learning-based and bicubic
interpolation) were compiled utilising the PyTorch framework. This com-
pilation allowed for the saving of the network/algorithm architecture and
weights into a single file that could be loaded efficiently into memory upon
use in Gadgetron.

The AustralianMRI-linac was the target system in this study41. Details
of this MRI-linac system pertinent to this study have been described
previously5. A 1.0 T split bore magnet (Agilent, UK) with a Magnetom
Avanto spectrometer-based control system (Siemens, Germany) is used for

Fig. 1 | Overview of the methodology. Super-resolution (SR) development incor-
porated the training of an enhanced deep super-resolution (EDSR) network to brain
and thorax MR images to establish a specifically trained brain (EDSRbrain) and
thorax (EDSRthorax) models. These deep learning-based and bicubic interpolation
(as a conventionally based baseline) techniques were integrated into the MRI-linac
through Gadgetron and an in-house framework. Our framework additionally

integrated with multi-leaf collimator (MLC) tracking to realise deep learning
enhanced real-time treatment guidance. The spatial resolution was assessed com-
paring super-resolution methods (EDSRbrain, EDSRthorax, and bicubic) with no up-
sampling (nearest) to quantify a spatial resolution increase. The temporal resolution
was also assessed to measure if super-resolution methods prohibitively increased
system latency and their effect on beam tracking.
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MR imaging. A 6 MV Linatron linear accelerator (Varex Imaging, USA)
complimented by a 120 leaf Millennium MLC (Varian, USA) is used to
deliver a conformal treatment beam.

MLC tracking utilised two different technologies: one calculated a
displacement vector of the tracked target and the other optimised leaf
positions to this displacement vector.Calculationof the displacement vector
was achieved through an in-house software that performed template
matching to delineate the target position forming a displacement vector <x,
y, z> from the initial target position5. This displacement vector is provided to
theMLC tracking software to optimize leaf positions based on their current
position, maximum leaf velocity and other physical properties of the MLC
system.Theseoptimised leaf positions are thensent to theMLCcontroller to
actualise treatment adaptation.

Spatiotemporal resolution experimentation
External data validationwasperformed tocharacterise the generalisabilityof
both super-resolution models (EDSRbrain and EDSRthorax). The UPENN-
GBM dataset consists of T1w, T1w with contrast, T2w, and FLAIR brain
images for over 600 subjects (https://wiki.cancerimagingarchive.net/pages/
viewpage.action?pageId=70225642)33,42. T1w, T2w, and FLAIR sequences
were loaded in as a 3Dmatrix andwere either paddedwith zeros or cropped
to ensure a label dimension of [slices, 256, 256]. These label images were
down-sampled in k-space on a slice-by-slice basis to input dimensions of
[slices, 64, 64]. Both input and label images weremin-max scaled between 0
and 4096. These input imageswere provided to eachup-sampling technique
(nearest neighbour, bicubic interpolation, EDSRbrain). The quantitative
andqualitative results for this test set are provided inFig. 2.A similar process
was performed for the prostate-diagnosis dataset (https://wiki.
cancerimagingarchive.net/display/Public/PROSTATE-DIAGNOSIS)33,43.
Prior to the generation of the inputs, the labels had any voxel
value > 4096 set equal to 4096 as some of the images in the dataset had small
regions of extremely high intensity ( > 10,000). These input images were
then provided to each up-sampling technique (nearest neighbour, bicubic
interpolation, EDSRthorax). The quantitative and qualitative results for this
test set are provided in supplementary discussion 1 and supplementaryfig. 2
as part of a hallucination analysis.

To test the efficacy of our integration of super-resolution to enhance
real-time tracking we tested the spatiotemporal resolution by phantom
imaging and volunteer imaging. Quantitative analysis was performed using
Python and an in-house electronic portal imaging detector (EPID) tracking
software using MATLAB (The MathWorks Inc., USA). Acquisition para-
meters for these experiments at the MRI-linac are provided in Supple-
mentary Table 1.

Spatial resolution was prospectively tested using volunteer imaging
both quantitatively and qualitatively for two anatomical sites: the brain and
thorax. Additionally phantom imaging was used to investigate hallucina-
tions in the model (Supplementary discussion 1, Supplementary Fig. 3, and
Supplementary Table 2).

Volunteer brain imaging was performed to test super-resolution on
anatomywith limitedmotion. Low-resolution acquisitions (LRbrain-n

FLASH-FS-

SAGITTAL, LRbrain-n
FLASH-FS-AXIAL, LRbrain-n

FLASH-FS-CORONAL of Supplementary
Table 1) were up-sampled utilising the deep learning-based EDSRbrain

model and bicubic interpolation. A qualitative comparison was made
between theseup-sampled super-resolution images and their corresponding
high-resolution images (HRbrain-n

FLASH-FS-SAGITTAL, HRbrain-n
FLASH-FS-AXIAL,

HRbrain-n
FLASH-FS-CORONAL of Supplementary Table 1). A quantitative com-

parison between the up-sampled super-resolution images were then com-
pared to their HR counterpart through a NRMSE and SSIM. To remove
extremebright spots in the images, anyvoxel thatwas greater than the99.9th
percentile of the entire imagewas set as themaximum(thus only reassigning
0.1% of voxels). To equalise the noise floor all images were min-max nor-
malised between 0 and their maximum. A misalignment of the low-
resolution and high-resolution brain MR images was observed and hypo-
thesised to be due to head motion between serial low-resolution and high-
resolution acquisition. Each super-resolution image (nearest neighbour,
bicubic interpolation, EDSRbrain)was rigidly registered to the corresponding
high spatial resolution reference image using SimpleITK44. Finally, a mask
was generated on the referenceHR image to isolate the pixels containing the
brain utilising thresholding and morphological operations using scikit-
image45. This referenceHRmaskwas applied jointly to the super-resolution
images prior to performance metric calculation. The results for this
experiment are displayed in Figs. 3, 4, and Supplementary Figs 4, 5, 6.

Fig. 2 | External validation on UPENN-GBM dataset. a T1w image from the
UPENN-GBMdataset. LR input / nearest is the low spatial resolution input to super-
resolution technique (EDSRbrain and bicubic) derived from the high spatial resolu-
tion label (HR reference). b Is a boxplot of quantitative performancemeasures across
the n = 630 subjects each containing a T1w, T2w, and FLAIR image. All images

scaled between 0 and 1. Asterisks denote statistical significance in a paired t test. ns:
no statistical significance, *p < 0.05, **p < 0.01, ***p < 0.001. Exact p values are
given in supplementary data 1. Error bars correspond to the 1.5× interquartile range
values. EDSR: enhanced deep super-resolution. NRMSE normalised root mean-
square-error, SSIM structural similarity.
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Volunteer thorax imaging was undertaken to observe super-resolution
on anatomy where high amplitude (due to inhalation/exhalation) and high
frequency (due to the cardiac cycle) motion is present. Real-time acquisi-
tions were taken in the coronal imaging plane to clearly observe diaphragm
and cardiac motion. A variety of sequences were selected including fast low
angle shot (FLASH) and steady state free precession (SSFP) sequences. Due
to the inevitable increased acquisition time of high-resolution culminating
in motion artifacts and mismatches between the respiratory and cardiac
cycle phases, a direct quantitative comparison between super-resolution
images and high-resolution images was not undertaken. Reconstructed
imageswith/without super-resolution are displayed in Fig. 5 (LRthorax-1

FLASH-

FS of Supplementary Table 1).
Temporal resolution was evaluated using a motion phantom in a

latency experiment. Three performance indicators were measured: end-to-
end system latency, geometric error, and latency-corrected geometric error.
The end-to-end system latency is the time differential between motion of a
tracked target and the MLC adapting the treatment beam to this motion.
This is divided into three main categories: MR imaging, target localisation,
andMLC tracking5. Geometric error is defined by the distance between the
centroid of a target (ground-truth) and the centroid of the MLC aperture
(prediction). Latency-corrected geometric error is the geometric error with
the latency being retrospectively removed thereby separating the error into

latency-contributed and tracking-contributed error with the latter being
influenced largely by the provided MR images.

The experimental set-up was as follows: an MRI-compatible Quasar
one-dimensional motion phantom (Modus Medical Devices, Canada)
was placed at isocentre at a source-to-surface distance of 2.4 m. A single
angle conformal treatment beam was applied, irradiating a moving
spherical target (radius ≈ 30mm) contained in the motion phantom. To
quantify latency and error, electronic portal imaging detector (EPID)
images were acquired at 3.6 Hz, directly imaging the treatment beam.
The motion phantom was programmed to a sinusoidal trace to quantify
latency and subsequently to a patient breathing trace to quantify error.
The motion phantom was imaged with an eight-coil receiver array to
allow for increased image quality and higher temporal resolution.
Acquisition data streamed from the Siemens Image Calculation Envir-
onment (ICE) through to Gadgetron (with our integrated framework).
MR images were generated in Gadgetron using a GRAPPA-based
reconstruction7. These reconstructed images were then sent to the
tracking software with or without up-sampling within Gadgetron. We
tested this on low spatial resolution MRI to establish a baseline latency
and error. This was followed by utilising EDSRthorax, bicubic interpola-
tion, and high spatial resolution MR images to quantify changes in
latency and error compared to the low spatial resolution baseline. The

Fig. 3 | Super-resolution on orthogonal single-image brain MRIs. These MRIs
were acquired on a prototype 1.0 T MRI-linac. Quick-to-acquire low spatial reso-
lution acquisitions (LR input / nearest [a], [e], [i]) were input to super-resolution
technique bicubic interpolation [c], [g], [k] and EDSRbrain [d], [h], [l]. These super-
resolution images were then compared to a long-to-acquire high spatial resolution

(HR reference [b], [f], [j]) through normalised root mean-square-error (NRMSE)
and structural similarity (SSIM). Additionally, the low spatial resolution acquisitions
had nearest neighbour applied to allow for quantitative analysis with the high spatial
resolution reference. All images scaled between 0 and 1. LR low resolution, EDSR
enhanced deep super-resolution, HR high resolution.
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sinusoid and patient trace experiments for each type of imaging (low
spatial resolution, EDSRthorax, bicubic interpolation, and high spatial
resolution) were performed three times consecutively to increase
the reliability of the results (Table 1). EPID images were saved for ret-
rospective latency and error analysis.

The EPID images were processed in a manner consistent with a
multi-target tracking experiment on the same MRI-linac5. The same
pre-defined templates for the aperture and target were used for each
type of imaging, ensuring the most valid comparison. The time-series
EPID images were run where in each frame a template match was
performed for the target and aperture. These templates were then
used to calculate a centroid forming a trace. End-to-end system
latency was calculated by fitting two sinusoids: one to the target trace
and the other to the aperture trace when the motion phantom was
moving in a sinusoid. These two sinusoids had a phase shift equal to
the end-to-end system latency. Geometric error was calculated by
measuring the root mean-square-error between target trace and the
aperture trace when using the patient trace. Latency-corrected geo-
metric error was calculated by first shifting the aperture trace by a
temporal factor equal to the measured end-to-end system latency
then calculating the root mean-square-error between the target trace
and this shifted aperture trace. The results from this experiment are
presented in Fig. 6 and Table 1.

Volunteer diaphragm imaging was conducted to observe tracking
efficacy on human anatomy. For ethical and safety considerations, no
radiation was used in this experiment. As a result, a direct latency and
subsequently error calculation was not made (cf. latency experiment). We
do, however, use the corresponding latency results from the latency
experiment due to the acquisitions being extremely similar (supplementary
Table 1). Here, we simulated thorax treatment using real-time super-reso-
lution enhancedMLC tracking. Thisworkflowwas conducted prospectively
at theMRI-linac for testing the integrationof super-resolution into theMRI-
linac and re-created retrospectively for analysis. This analysis served three
purposes: an extra dataset for super-resolution inference using previously
untested acquisition parameters, visualising super-resolution enhanced
tracking on anatomy, and simulating the effect of latency on tracking
anatomy. The results from this experiment are displayed in Supplementary
Note 1 and Supplementary Fig. 7.

Ethics
Prospective volunteer imaging studies on the MRI-linac were performed
under the ‘Magnetic Resonance Imaging in healthy volunteers’ study
approved by the South Western Sydney Local Health District Human
Research Ethics Committee (SWSLHD HREC Reference No: HE 15/270).
All volunteers gave written informed consent and were prospectively
recruited for validation of the super-resolution methods in this study. The
figures these data relate to are Figs. 3, 4, 5, Supplementary Figs 4, 5, 6, 7, in
addition to Supplementary data 1 and 2.

Fine-tuning the EDSRbrain model to create the EDSRthorax model uti-
lised data from theAVATAR study. TheAVATAR study was sponsored by
the University of Sydney and was approved by the Hunter New England
Local Health District Human Research Ethics Committee (NSW HREC
Reference No: HREC/12/HNE/414). The protocol and Participant Infor-
mation and Consent Form (PICF) both allowed for de-identified data to be
shared with the University of Sydney for future research. Therefore, no
additional approvals were required to use this data.

Three de-identified datasets from the Cancer Imaging Archive were
used to train and evaluate the super-resolution models: QIN-GBM Treat-
ment Response, UPENN-GBM, and Prostate-diagnosis. These datasets are
available for approved research use on the Cancer Imaging Archive upon
agreement with their data usage policy and restrictions. No additional
approvals were necessary. The figures these data relate to are Fig. 2 and
supplementary fig. 2 in addition to supplementary data 1.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Super-resolution training and retrospective validation
We begin our study by training enhanced deep super-resolution (EDSR)
neural networks toMRIdatasets of the humanbrain (EDSRbrain) and thorax
(EDSRthorax) across different sequence types (see methods for full details).
EDSRbrain (and EDSRthorax) had approximately 43 million trainable para-
meters indicating a large learning capacity. To demonstrate the improved
performance of our super-resolution network compared to conventional
methods, such as bicubic and nearest-neighbour interpolation, in Fig. 2 we
retrospectively applied super-resolution to brain images from an external
test dataset (the UPENN-GBM dataset)33,42. Performance metrics were
significantly better for EDSRbrain and across T1w, T2w, and FLAIR
sequences compared to bicubic (paired t test, p«0.0001, n = 630) andnearest
neighbour interpolation (paired t test, p«0.0001, n = 630). Exact p-values
provided in supplementary data 1. On average the EDSRbrain network
reduced the normalized (min-max) root mean-square-error (NRMSE) by
45% when compared to bicubic interpolation. Qualitatively, fine structures
could be recovered using super-resolution with EDSRbrain recovering
sharper edges to finer structures. The individual data points to produce the
boxplots in Fig. 2 are provided in supplementary data 1.

Additionally, a super-resolution network trained on thorax imageswas
applied to a prostate imaging dataset, to test whether trained networks were
robust to use on anatomical sites that differed from their training domains
(supplementary discussion 1 and Supplementary Fig. 2)33,43. Minimal
hallucination-type artifacts were observed with this out of domain use and
performance metrics were significantly better for EDSRthorax compared to
bicubic interpolation (paired t test, p«0.0001, n = 89) and nearest neighbour
(paired t test, p«0.0001, n = 89). Exact p values provided in Supplemen-
tary Data 1.

Deployed super-resolution brain imaging
Having demonstrated the strength of the EDSR method in silico, we now
turn to analyze the performance of the trained network in the real-world
whereAI algorithms can struggle to showperformance benefits.Wepresent
the results of a suite of healthy volunteer imaging studies that test the
performance of super-resolution technologies deployed for prospective use

Fig. 4 | Quantitative performance measures of deployed super-resolution. These
results are for volunteer brain imaging on a prototype 1.0 T MRI-linac. Box plots
illustrate the distribution of the normalised root mean-square-error (NRMSE) and
structural similarity (SSIM) for up-sampling methods. Asterisks denote statistical
significance in a paired t test. ns: no statistical significance, *p < 0.05, **p < 0.01,
***p < 0.001. Exact p values are given in Supplementary data 1. Error bars corre-
spond to the 1.5× interquartile range values. EDSR enhanced deep super-resolution.
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on our 1.0 T MRI-Linac. Bicubic interpolation was selected as a baseline,
non-deep learning-based, technique for increasing the spatial resolution of
the real-time MRI. Nearest neighbour was also used to quantitatively
compare the low spatial resolution images to a high spatial resolution
reference. All volunteer imaging studies were performed on the MRI-linac
and are therefore external validation datasets as the data used to train the
deep learning models were from different imaging centres.

Orthogonal brain imaging on the MRI-linac demonstrated super-
resolution in an anatomical area with minimal motion and consequently
slow high spatial resolution reference images were obtained (Fig. 3). Three
volunteers were imaged forming a dataset of 9 orthogonal slices. We note
that while all interpolation techniques have been prospectively deployed
on the MRI-Linac, it is only possible to apply one interpolation method in

real-time and thus images presented in Fig. 3 were retrospectively processed
for comparison of algorithms on the same raw data.

Qualitatively, super-resolution successfully recovered high spatial fre-
quency features showing comparable anatomical detail to the high spatial
resolution reference imaging while taking significantly less time to image.
Additionally, Gibb’s ringing artifacts were reduced and recovery of fine
structure was more prominent when utilising EDSRbrain compared to
bicubic interpolation. Supplementary Figs 4, 5, 6 provides the results for all
three volunteers.

Quantitatively, EDSRbrain outperformed both nearest neighbour
(paired t test, p = 0.0127/ < 0.0001 [NRMSE/SSIM], n = 9) and bicubic
interpolation (paired t test, p = 0.0019/0.0001 [NRMSE/SSIM], n = 9) to
statistical significancewhenmeasuring theNRMSEand structural similarity

Fig. 5 | Super-resolution on thorax real-time MRI. These MR images were
acquired on a prototype 1.0 T MRI-linac. A joint section of the real-time MRI
sequence is displayed. [a], [d], [g] display the quick-to-acquire low spatial resolution
input (LR input). These acquisitions were provided to the super-resolution

techniques bicubic interpolation [b], [e], [h] and EDSRthorax [c], [f], [i]. Zoomed
insets are provided to various anatomical regions to illustrate the image enhance-
ment offered using super-resolution. LR low-resolution, EDSR enhanced deep
super-resolution.

Table 1 | Key performance indicators for multi-leaf collimator tracking performance using super-resolution

Up-sample Method Tracking Resolution Latency [s] RMSE [mm] RMSElatency-corr [mm]

No Up-Sampling 64 × 64 0.350 ± 0.005 3.36 ± 0.06 1.46 ± 0.18

EDSRthorax 256 × 256 0.362 ± 0.002 3.33 ± 0.02 0.82 ± 0.04

Bicubic Interpolation 256 × 256 0.348 ± 0.001 3.19 ± 0.06 0.82 ± 0.15

No Up-Sampling 256 × 256 1.626 ± 0.020 N/A N/A

Results provided are themean ± standard deviation over three consecutivemeasurements. EDSRthorax and bicubic interpolation increased the tracking resolution with negligible effect on the latency. The
tracking error (RMSE) when themotion phantom target moved to a patient lung tumour trace, decreased using super-resolution. EDSR: enhanced deep super-resolution. RMSE: Rootmean-square-error.
RMSElatency-corr: Root mean-square-error after latency has been removed in post-processing.
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(SSIM) as demonstrated in Fig. 4. Exact p values provided in Supplementary
Data 1. On average the EDSRbrain network reduced the NRMSE by 17% for
the 1.0 T MRI-Linac experiment when compared to bicubic interpolation,
which is smaller than that observed for the external dataset tested in Fig. 2.
The individual data points to produce the boxplots in Fig. 4 are provided in
supplementary data 1.

Super-resolution thorax imaging
Respiratory motion can be responsible for the motion of radiotherapy tar-
gets across the cardiothoracic and abdominal regions including the lungs,
liver, and pancreas46. Pursuant to this, we performed a series of breath-hold
and free-breathing thorax and abdomen real-time MRI studies to observe
the effect of super-resolution in these anatomical regions. Our pipeline,

upon image reconstruction in Gadgetron, immediately applied super-
resolution to the real-time MR images while only imposing an additional
5ms processing time on an NVIDIA RTX A5000 GPU workstation
(NVIDIA, USA). Using an up-sample factor of 4, pixel sizes were reduced
from 6.5 × 6.5mm2 to 1.56 × 1.56mm2 leading to an increase in anatomical
detail in the cardiothoracic region (Fig. 5).

Qualitatively, integrated super-resolution produced real-time MR
images with sharper anatomical boundaries with this effect most noticeable
using EDSRthorax as opposed to bicubic interpolation (Fig. 5). Due to the
prohibitive increase in the acquisition time, a high spatial resolution refer-
ence for a quantitative comparison was not attainable for cardiothoracic
real-time MRI. Supplementary data 2 contains animated GIFs of all thorax
cine acquisitions.

Fig. 6 | Motion traces of the motion phantom experiment. A target moving to a
previously measured patient lung trace was simultaneously measured with the
multi-leaf collimator aperture. aMotion trace for low resolution imaging. bMotion
trace for when bicubic interpolation was used. cMotion trace for when EDSRthorax

was used. Low-resolution (LR) imaging decreased the quality of tracking compared
to super-resolution imaging (EDSRthorax and bicubic interpolation). Latency and
mean error results are provided for each trace. EDSR enhanced deep super-reso-
lution, STD standard deviation.
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Real-time adaptive MRI-guided radiation therapy integration
The time to perform inference with the EDSR networks wasmeasured to be
approximately 5ms using the internal system clock, which is suitable for
real-time applications and similar to the variability in end-to-end latency
of the system (Table 1). Real-time adaptive MRIgRT was experimentally
tested on the MRI-linac using our integrated framework, a motion phan-
tom, and MLC tracking. Two performance indicators were measured: the
latency and tracking error. As measured by an electronic portal imaging
detector (EPID), the latency of the integrated system remained consistent
with other publishedbaselineswhenutilising super-resolution for 4 Hz real-
time MRI5,26,47. Super-resolution marginally decreased tracking error with
bicubic interpolation showing the least error, however, after accounting for
latency in post-processing both EDSRthorax and bicubic interpolation
showed approximately 40% less error. Quantitative results for these
experiments are detailed in Table 1. Upon moving the motion phantom’s
target to a previouslymeasured patient lung tumour trace, super-resolution
assisted in the accurate and precise placement of theMLC aperture over the
target (Fig. 6).

Diaphragm tracking of a volunteer was performed to observe the effect
of super-resolution on tracking a thoracic site. Retrospectively, real-time
MRIs of the thorax were tracked using a template matching approach for
consistency with the deployed tracking on the MRI-linac. We observed
increased granularity in the predicted diaphragm positions owing to the
reduced pixel size afforded by super-resolution. Adding a latency offset
(corresponding to experimentally measured latencies) to the tracked dia-
phragm positions demonstrated the suitability of using super-resolution
techniques for tracking anatomy (supplementary note 1 and supplementary
fig. 7). High resolution real-time MRI was inappropriate for real-time gui-
dance applications due to the considerable latency increase leading to
inaccurate template positioning of the diaphragm.

Discussion
Deep learning-based super-resolution was integrated into the real-time
adaptive MRIgRT workflow. Our experiments demonstrate a significant
increase in the spatial resolution without reducing the temporal resolution
thus effectively increasing the spatiotemporal resolution.

We demonstrated this prospectively in two anatomical sites: the brain
and thorax. It was previously reported in amulti-target tracking experiment
on the sameMRI-linac, the pixel size of the real-timeMRI used for tracking
was 3.125 × 3.125mm2 for 4Hz imaging5. In an evaluation of intrafraction
and interfraction tumour motion seen in lung stereotactic body radiation
therapy on a MRIdian ViewRay MRI-linac (ViewRay Inc., USA), real-time
MRI was used with a pixel size of 3.5 × 3.5mm2 for 4Hz imaging48. In our
work, after up-sampling, the pixel size was 1.56 × 1.56mm2. Anatomical
features/edges were clearer/sharper when using super-resolution compared
to using low spatial resolution images. Comparing deep learning-based
super-resolution with bicubic interpolation indicated a performance boost
when using the former method. This was demonstrated through improved
full-reference image quality metrics (Figs. 2, 4) and the qualitative
improvement in the recovery of high spatial frequency features seen in
Figs. 2, 3, 5.

We note difficulty in acquiring paired low and high spatial resolution
anatomical images due to motion between (or during) acquisitions. In the
case of brain imaging where single-image orthogonal views were taken, a
head displacement between serial low and high spatial resolution MR
images could result in a different slice of anatomybeing imaged (Fig. 3). The
magnitude of motion has been previously investigated in head MRI and is
approximately 3mm per minute49. Further investigation of the spatial
resolution on anatomy could include immobilisation devices to reduce this
motion. The lack of a reference high spatial resolution real-timeMRI of the
thorax is unavoidable due to phase differences in the respiratory and cardiac
cycle leading to changes in diaphragm position and cardiac shape.

While testing our models on external datasets provides useful insights
to the robustness of our models, they may provide artificially optimistic
performance metrics as the inputs are synthetically created from the labels.

We hypothesize this is a reason the results differ between using measured
low spatial resolution images (e.g., Fig. 3) and synthetically derived low
spatial resolution images (e.g., Fig. 2). This idea has been explored for super-
resolution andMR image reconstructionmore broadly50,51. To demonstrate
clinical utility, the repeatability, reproducibility, and robustness of super-
resolution methods, especially deep learning-based, should be evaluated
across a broad patient cohort on real-world paired data.

For the brain experiments, the enhanced deep super-resolution
(EDSR) model was trained on conventional anatomical MRIs from diag-
nostic 3.0 T MRI scanners. In silico testing of the EDSR model on similar
1.5/3.0 T diagnostic MRI scans (Fig. 2) showed bigger improvements in
image quality than the real-world tests of super-resolution on our 1.0 T
MRI-linac. We note this performance difference could be explained by the
domain shift between the high-field anatomical imaging used for training
and the lower-field real-time imaging performed on our MRI-linac. In
future,we expect tobe able toutilize growing registries ofMRI-linac imaging
data for training and translation, which would help alleviate this domain
shift52. However, we also note that in silico tests often overestimate the
performance of real-world super-resolution, and that improvements in
image degradation processes for network training may improve real-world
performance53. Furthermore, real-time MR imaging can lead to low signal-
to-noise ratio (SNR) images, especially on lower-field systems, and future
networks may be adapted to minimise the impact of this noise on super-
resolution performance24,54.

Hallucinations, in the context of MRI super-resolution, are incorrect
(usually high frequency) features introduced by the prior that cannot be
produced from the measurements55. Incorrect features could be especially
problematic in the field of real-time adaptation where a human observer
may not be able to detect and correct for these as radiation is being delivered
to the patient. We provide a hallucination analysis in supplementary dis-
cussion 1. The summary of this analysis is that the EDSR-based methods
held good quantitative performance metrics on data well outside the training
domain (prostate and phantomMRIs c.f., brain and thorax). Distortions of a
multi-compartment phantom were apparent in all up-sampling methods
(bicubic and EDSR-based). Noting that hallucinations can be more pro-
nounced in super-resolution applications when the learned probability dis-
tribution (brain/thorax) does not match the images on which the network is
being tested (phantom), the EDSR-based methods uniquely sharpened the
distorted phantom edges. While we did not observe any clear hallucinations
while testing EDSR networks on brains and thoraxes, we note that there is a
domain shift between high-field training and low-field deployment regimes.
Future work will likely integrate task-informed hallucination maps into the
real-time deployment, further building confidence in super-resolution
images before use for guidance in patient treatments can be considered55.

While balanced steady state free precession (bSSFP) sequences are
preferred for real-time imaging due to high spatiotemporal resolution, we
note that banding artifacts will change appearance as sequences parameters
such as repetition time (TR) are adjusted to alter the imaging resolution and
that such changes should be accounted for in clinical deployment of super-
resolution technology56.

Our integration of super-resolution did not prohibitively increase the
tracking latency. On the same MRI-linac, in a multi-target tracking
experiment, the uncertainty in the latency was measured to be 40ms5. Our
measured latency results when low spatial resolution or super-resolution
imaging was used were within a 40ms range (Table 1). We conclude the
increased spatial resolution came at a negligible cost to the latency. A
comparison can be drawn from previously published experimental results
utilising clinically deployed MRI-linacs. Volumetric modulated arc therapy
(VMAT) was experimentally demonstrated on an Elekta Unity MRI-linac
(Elekta AB, Sweden) utilising multi-leaf collimator (MLC) tracking on real-
time MRI as its real-time treatment adaptation strategy26. Here, they mea-
sured the end-to-end latency (using MLC tracking) to be 328ms. Char-
acterisation of MLC tracking performance on an Elekta Unity MRI-linac
(Elekta AB, Sweden) found latencies of 347ms and 205ms for 4 and 8Hz
imaging respectively47. We measured a latency of approximately 350ms
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using our integrated system that is comparable to clinically deployed
systems.

Super-resolution methods offered a slight increase in geometric accu-
racy as defined by the root mean-square-error (RMSE) with bicubic inter-
polation offering the largest increase. After correcting for latency, both
EDSRthorax and bicubic interpolation reduced the RMSE by around 40%
(Table 1). Tracking a spherical target within a motion phantom provides
preliminary geometric accuracy results, however, several key differences
remain when comparing the experimental set-up to tracking anatomy. These
key differences include but are not limited to out-of-plane motion, target
deformations, and surrounding anatomy. Further investigation is warranted
in this respect. We note that our Gadgetron-based integration also supports
neural network frameworks that operate on k-space data to correct motion
and distortion, which will likely also improve tracking accuracy57,58.

We establish super-resolution integrated into real-timeMRI treatment
guidance. To the best of our knowledge, this is a world-first in the deploy-
mentof deep learning to improve real-timeadaptiveMRIgRT.Wemakeour
framework publicly available to streamline future development (see Code
Availability).

Data availability
QIN-GBM Treatment Response (https://wiki.cancerimagingarchive.net/
display/Public/QIN+GBM+Treatment+Response), UPENN-GBM
(https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=
70225642), and Prostate-Diagnosis (https://wiki.cancerimagingarchive.net/
display/Public/PROSTATE-DIAGNOSIS) are available on the Cancer
Imaging Archive for approved research use upon agreement with their
respective terms of use and license31,33,42,43. AVATAR and MRI-linac
volunteer data cannot be shared publicly at this time. The terms of patient/
volunteer consent for these studies allow for de-identified data to be shared
with external research institutions under a formal collaboration agreement.
Researchers wishing to access these data should contact the corresponding
author.

The data points plotted in Figs. 2, 4 and supplementary fig. 2 can be
found in supplementary data 1.

Code availability
Integration code is available at https://github.com/Image-X-Institute/MRI-
Linac_SuperResolution. This repository is accessible and archived at
Zenodo59.
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