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Abstract

Background Discovering potential drug-drug interactions (DDIs) is a long-standing
challenge in clinical treatments and drug developments. Recently, deep learning
techniques have been developed for DDI prediction. However, they generally require a huge
number of samples, while known DDIs are rare.
Methods In this work, we present KnowDDI, a graph neural network-based method that
addresses the above challenge. KnowDDI enhances drug representations by adaptively
leveraging rich neighborhood information from large biomedical knowledge graphs. Then, it
learns a knowledge subgraph for each drug-pair to interpret the predicted DDI, where each
of the edges is associated with a connection strength indicating the importance of a known
DDI or resembling strength between a drug-pair whose connection is unknown. Thus, the
lack ofDDIs is implicitly compensated by the enricheddrug representations andpropagated
drug similarities.
Results Here we show the evaluation results of KnowDDI on two benchmark DDI datasets.
Results show that KnowDDI obtains the state-of-the-art prediction performance with better
interpretability. We also find that KnowDDI suffers less than existing works given a sparser
knowledge graph. This indicates that the propagated drug similarities play amore important
role in compensating for the lack of DDIs when the drug representations are less enriched.
Conclusions KnowDDI nicely combines the efficiency of deep learning techniques and the
rich prior knowledge in biomedical knowledge graphs. As an original open-source tool,
KnowDDI can help detect possible interactions in a broad range of relevant interaction
prediction tasks, such as protein-protein interactions, drug-target interactions and disease-
gene interactions, eventually promoting the development of biomedicine and healthcare.

Accurately predicting drug-drug interaction (DDI) can play an important
role in the field of biomedicine and healthcare. On the one hand, combi-
nation therapies,wheremultiple drugs areused together, canbeused to treat
complexdisease and comorbidities, such ashuman immunodeficiency virus
(HIV)1,2. Recent study also shows that combination therapies, such as a
combination of lopinavir and ritonavir, may treat coronavirus disease
(COVID-19)3–5, the infectious disease which causes global pandemic in the
past three years. On the other hand, DDI is an important cause of adverse
drug reactions, which accounts for 1% hospitalizations in the general
population and 2–5% hospital admissions in the elderly6–8. A concrete

example is that if warfarin and aspirin enter the body together, they will
compete for binding to plasma proteins. Then, the remained warfarin that
cannot be bounded to plasma proteins will remain in the blood, which
results in acute bleeding in patients9.

Identifying DDIs by clinical evidence such as laboratory studies is
extremely costly and time-consuming6,8. In recent years, computational
techniques especially deep learning approaches are developed to speed up
the discovery of potential DDIs. Naturally, DDI fact triplets can be repre-
sented as a graph where each node corresponds to a drug, and each edge
represents an interaction between two drugs. Provided with DDI fact
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Plain Language Summary

Understanding how drugs interact is crucial
for safe healthcare and the development of
new medicines. We developed a
computational tool that can analyze the data
about medicines within large medical
databases and predict the impact of being
treated bymultiple drugs at the same time on
the person taking the drugs. Our tool, named
KnowDDI, can predict which drugs interact
with each other and also provide an
explanation for why the interaction is likely to
take place. We demonstrated that our tool
can identify known drug interactions. It could
potentially be used in the future to identify
previously unknown or unanticipated
interactions that could have negative
consequences to people being treated with
unusual combinations of medicines.
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triplets, a number of graph learning methods have been developed to
identify unknown interactions between drug-pairs. Graph neural networks
(GNNs)10,11, which can obtain expressive node embeddings by end-to-end
learning from the topological structure and associated node features, have
also been applied for DDI prediction problem. However, known DDI fact
triplets are rare due to the high experimental cost and continually emerging
new drugs12. For example, the latest DrugBank database with 14,931 drug
entries only contains 365,984 known DDI fact triplets13, the quantity of
which is less than 1% of the total potential DDIs. This makes over-
parameterized deep learning models fail to give full play to its expressive
ability and may perform even worse than traditional two-stage embedding
methods14,15.

In biomedicine and healthcare, many international level agencies such
as National Center for Biotechnology Information and European Bioin-
formatics Institute are endeavored to regularly maintain rich publicly
available biomedical data resources16. Researchers then integrate these dis-
parate and heterogeneous data resources into knowledge graphs (KGs) to
facilitate an organized use of information. Examples are Hetionet17,18,
PharmKG19 and PrimeKG20. These KGs contain rich prior knowledge dis-
covered in biomedicine and healthcare. A proper usage of them may
compensate for the lack of samples for DDI prediction. The pioneer work
KGNN21

firstly leverages external KGs to provide topological information
for each drug in target drug-pair. In particular, it uniformly samples a fixed
size set of neighbors around each drug, then aggregates drug features and
messages from the sampled neighbors into the drug representation without
considering which drug to interact. Later works merge the DDI network
with external KGs as a combined network, extract enclosing subgraphs for
different drug-pairs to encode the drug-pair specific information, and then
predict DDI for the target drug-pair using the concatenation of nodes
embeddings of drugs and subgraph embedding of enclosing subgraphs22–24.
However, as these KGs integrate diverse data resources by automated
process or experts, existing methods fail to filter out noise or inconsistent
information. As a result, properly leveraging external KGs is still a chal-
lenging problem.

In this paper, we propose KnowDDI, an accurate and interpretable
method forDDI prediction. First, wemerge the providedDDI graph and an
external KG into a combined network, upon which generic representations

for all nodes are learned to encode the generic knowledge.Next, we extract a
drug-flow subgraph for each drug-pair from the combined network. We
then learn a knowledge subgraph from generic representations and the
drug-flow subgraph. After optimization, the representations of drugs are
transformed to bemore predictive of theDDI typesbetween the target drug-
pair. In addition, the returned knowledge subgraph contains explaining
paths to interpret the prediction result for the drug-pair, where the
explaining paths consist of only edges of important known DDIs or newly-
added edges connecting highly similar drugs. In other words, the learned
knowledge subgraph helps filter out irrelevant information and adds in
resembling relationships between drugs whose interactions are unknown.
This allows the lack of DDIs to be implicitly compensated by the enriched
drug representations and propagated drug similarities. We perform
extensive experimental results on benchmark datasets, and observe that
KnowDDI consistently outperforms existing works. We also conduct a
series of case studies which further show that KnowDDI can discover
convincing explaining paths which help interpret the DDI prediction
results. KnowDDI has the potential to be used in a broad range of relevant
interaction prediction tasks, such as protein-protein interactions, drug-
target interactions and disease-gene interactions to help detect potential
interactions, eventually advancing the development of biomedicine and
healthcare.

Methods
Overview of KnowDDI
OurKnowDDI (Fig. 1) learns to predictDDIs between a drug-pair, i.e., head
drug h and tail drug t in the DDI graph, by learning with knowledge sub-
graph, i.e., denoted asSh;t . The providedDDI graph and an external KG are
merged into a combined network as the start. Every node of the combined
network is associated with a unique generic embedding which is learned to
encode the generic knowledge. Given a target drug-pair (h, t), a drug-flow
subgraph �Sh;t which captures local context relevant to (h, t) is extracted
from the combined network. As directly leveraging external KG (and hence
�Sh;t) may bring in irrelevant information, the graph structure and node
embeddingsof �Sh;t are further iteratively optimized.During this process, the
generic embeddings are transformed to bemore predictive of theDDI types
between the target drug-pair. In addition, KnowDDI estimates a connection

Fig. 1 |Overview of KnowDDI.Ona combinednetworkwhichmerges thedrug-drug
interaction (DDI) graph with an external knowledge graph (KG), generic embeddings
of all nodes are firstly learned to capture generic knowledge. Then for each target drug-
pair, a drug-flow subgraph is extracted from the combined network, whose node

embeddingsare initialized as the generic embeddings.Viapropagatingdrug resembling
relationships, the generic embeddingsare transformed tobemorepredictiveof theDDI
types between the drug-pair, and the drug-flow subgraph is adapted as knowledge
subgraph which contains explaining paths to interpret the prediction result.
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strength for every drug-pair in the subgraph, representing the importance of
a given edge between connected nodes in the drug-flow subgraph or simi-
larity between twonodeswhose connection is unknown.Accordingly, a new
edge of type “resemble" is added between two nodes if their node embed-
dings are highly similar, and existing edges canbedropped if the importance
is estimated as low. Thus, only useful information flows between nodes are
kept. The final optimized subgraph becomes our knowledge subgraph Sh;t
which consists of explaining paths. The average connection strength over all
consecutive node-pairs along each explaining path indicates its ability of
explaining the current prediction result in the perspective of KnowDDI.
Supplementary Table 1 shows a summary of characteristics comparing
KnowDDI with existing works.

Problem setup
A Drug-Drug Interaction (DDI) graph is denoted as GDDI = fVDDI; EDDI;
RDDIg, whereVDDI is a set of drugnodes,EDDI is a set of edges, andRDDI is a
set of DDI relation types associated with the edges. In particular, each edge
ðu; r; vÞ 2 EDDI corresponds to an observed fact triplet, which records the
DDI relation type r 2 RDDI associated with (u, v).

The external Knowledge Graph (KG) is denoted as GKG ¼
fVKG; EKG;RKGg, which contains rich biomedical knowledge of various
kinds of biomedical entities. Particularly, VKG consists of jVKGj entities
ranging from drugs, genes to proteins, RKG consists of jRKGj types of
interactions occurred inGKG, while EKG ¼ fðu; r; vÞju; v 2 VKG; r 2 RKGg
consists of observed fact triplets in GKG. Usually, GKG is much larger than
GDDI, such that VDDI � VKG andRDDI � RKG hold.

The combination of GDDI and GKG then forms a large combined net-
work G ¼ fV; E;Rg ¼ fVDDI ∪VKG; EDDI ∪ EKG;RDDI ∪RKGg.

The target of this paper is to learn a mapping function from the
combined network G, which can predict the relation type between new
drug-pairs. For multiclass DDI prediction, each drug-pair only has one
specific relation type r 2 RDDI. As for multilabel DDI prediction, multiple
relation types r1, r2,… ∈RDDI can co-occur between a drug-pair.

Architecture of KnowDDI
The overall architecture of KnowDDI is shown in Fig. 1. Here, we provide
the details of how drug representations are enriched by an external KG and
how similarities are propagated in knowledge subgraphs. The complete
algorithms of training and testing KnowDDI are summarized in Supple-
mentary Note 1.

Generic embedding generation. To encode the generic knowledge of
various other type of entities in G, which can help enrich representation
for drug nodes, we run a GNN on the combined network G to obtain
generic embedding of each node.

Let eð0Þv denote the feature of node v 2 V. In KnowDDI, we follow
GraphSAGE25 and update the embedding eðlÞv for node v at the lth layer as:

aðlÞv ¼ MEAN fReLUðWðlÞ
a e

ðlÞ
u Þ : ðu; r; vÞ 2 Eg� �

; ð1Þ

eðlÞv ¼ WðlÞ
c � aðlÞv k eðl�1Þ

v

� �
; ð2Þ

whereMEAN( ⋅ ) is element-wisemeanpooling,WðlÞ
a andWðlÞ

c are learnable
parameters, and � k �½ � concatenates vectors along the last dimension. After
L layers of message passing, the final node embedding eðLÞv is taken as the
generic embedding of v 2 V .

Drug-flow subgraph construction. As each drug-pair can depend on
different local contexts, i.e., entities and relations, we construct a drug-
flow subgraph �Sh;t specific to (h, t) from the combined network G, which
transforms drug representations obtained in Section 6 to be drug-
pair-aware.

For each (h, t), we define its drug-flow subgraph �Sh;t ¼
f�Vh;t ;

�Eh;t ; �Rh;tg as a directed subgraph of graph G consisting of relational
paths f�ph;tg with length at most P pointing from h to t in G, where a

relational path

�ph;t ¼ h!r1 v1 !
r2

v2 � � �!
rP

t; ð3Þ

is a sequence of nodes connected by relations. Here, �Vh;t is a set of nodes
appearing in �Sh;t , �Rh;t is a set of relation types occurred between nodes in
�Vh;t and �Eh;t ¼ fðu; r; vÞju; v 2 Vh;t and ðu; r; vÞ 2 Eg is a set of edges
connecting nodes in �Vh;t .

Algorithm ?? in Supplementary Note 1 summarizes the procedure of
extracting �Sh;t . Given a drug-pair (h, t), we first extract the interaction of
local neighborhoods ofh and t (i.e.K-hop enclosing subgraph22, whereK is a
hyperparameter) from G. For computational simplicity, we make all the
relational paths f�ph;tg between h and t have length P. This is done by
augmenting relational paths with length less than P by identity relations26,27,
i.e., (t, ridentity, t). If there is no relational path connecting h and t, we return
�Sh;t ¼ ffh; tg; ;; ;g. As these K-hop enclosing subgraphs neglect direc-
tional information, we need to conduct directional pruning to remove all
nodes and corresponding edges which are not on any relational path
pointing from h to t. Thus, after directional pruning, the resultant drug-flow
subgraph �Sh;t only contains nodeswhich supports learning the information
flow from h to t.

Knowledge subgraph generation. Further, we learn a knowledge
subgraphSh;t from generic embeddings and the drug-flow subgraph �Sh;t .
During this process, irrelevant edges are removed and new edges of type
“resemble" are added between nodes with highly similar node
embeddings.

Let �Ah;t be a binary third-order tensor with size j�Vh;t j× j�Vh;t j× j �Rh;t j.
Its (u, v, r)th entry is computed as

�Ah;tðu; v; rÞ ¼
1 if ðu; r; vÞ 2 �Eh;t

0 otherwise

(
; ð4Þ

which records whether drug-pair (u, v) is connected by relation type r 2
�Rh;t in �Sh;t .

In addition, we estimate another third-order tensorAh,t from �Ah;t with
elementsAh,t(u, v, r)∈ [0, 1] and size j�Vh;t j× j�Vh;t j× ðj �Rh;t j þ 1Þ to record
the connection strength between nodes u; v 2 �Vh;t w.r.t. relation r. Speci-
fically, if �Ah;tðu; v; rÞ ¼ 1 but Ah,t(u, v, r) = 0, this means the existing edge

(u, r, v) is not useful and should be removed. Besides, if �Ah;tðu; v; rÞ ¼ 0 for

all r 2 �Rh;t , we add an edge of relation type “resemble" rsim 2 R to connect
u and v. Ah;tðu; v; rsimÞ > 0 then represents the similarity between u and v.

Corresponding toAh,t and �Sh;t , the knowledge subgraphSh;t is generated as

Sh;t ¼ �Vh;t ; Eh;t ;Rh;t

� �
; ð5Þ

where Rh;t ¼ frsimg �Rh;t , and Eh;t ¼ fðu; r; vÞg with each (u, r, v) con-
structed as ðu; r; vÞ 2 �Eh;t if �Ah;tðu; v; rÞ ¼ 1 ^ Ah;tðu; v; rÞ > 0, or
ðu; rsim; vÞ if �Ah;tðu; v; rÞ ¼ 0 ^ Ah;tðu; v; rsimÞ > 0.

To learn such a Ah,t, we conduct graph structure learning to alternate
the following two steps for T times:
• estimate connection strengths between every pair of nodes in �Vh;t , and
• refine node embeddings on the updated subgraph.

First,we initialize thenode embeddingof each v 2 �Vh;t ash
ð0Þ
u ¼ eðLÞu to

encode the global topology of G. LetAðτÞ
h;t be the estimation ofAh,t at the τth

iteration. We initialize Að0Þ
h;t ¼ �Ah;t . Next, we estimate relevance score

CðτÞ
h;tðu; v; rÞ for each relation r 2 Rh;t between every node-pair (u, v) inSh;t

as

CðτÞ
h;tðu; v; rÞ ¼ MLP hτ�1

uv k hr
� �� �

; ð6Þ
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where hτ�1
uv ¼ expð�jhðτ�1Þ

u � hðτ�1Þ
v jÞ, ∣ ⋅ ∣ returns the element-wise

absolute value, MLP is multi-layer perception, and hr is the learnable
relation embedding of relation r. We set CðτÞ

h;tðv; v; rÞ ¼ 1 for all v 2 �Vh;t
and r 2 Rh;t .

This learned CðτÞ
h;t reveals how the model understands the connection

between different node-pairs at the τth iteration. It helps filter out irrelevant
information and captures resembling relationships between drugs whose
interactions are unknown. In the early stage of optimization,CðτÞ

h;t can be less
trustworthy. Hence, we merge this learned subgraph with �Ah;t to obtain
AðτÞ
h;t , i.e.,

AðτÞ
h;t ¼ ReLU δ αAð0Þ

h;t þ ð1� αÞCðτÞ
h;t

� 	
� γ

� 	
; ð7Þ

where hyperparameter α is used to balance their contribution in the final
prediction, the threshold γ ≥ 0 is used to screen out those less informative
edges, and ½ReLUðxÞ� ¼ maxðx; 0Þ. Considering that nodes are connected
by different numbers of neighbors, we use function δ( ⋅ ) to ensure that the
relevance scores of incoming edges for v sum into 1, i.e.,

X
i2�Vh;t

X
r2Rh;t

AðτÞ
h;tði; v; rÞ ¼ 1: ð8Þ

Here,we instantiate δ( ⋅ ) as edge softmax functionwhich computes softmax
over attention weights of incoming edges regardless of their relation types
for every node, i.e., softmaxðxiÞ ¼ expðxiÞ=

P
j2N ðiÞ expðxjÞ where

N ðiÞ ¼ fj : ðj; r; iÞ 2 Eh;tg. Let HðτÞ
h;t be embeddings of all nodes in �Vh;t

where the vth row corresponds to node embedding hðτÞv of v 2 �Vh;t , and

QðτÞ
h;t;r ¼ ReLU AðτÞ

h;tð:; :; rÞHðτ�1Þ
h;t Wr

� 	
; ð9Þ

where AðτÞ
h;tð:; :; rÞ is the rth slice of AðτÞ

h;t and Wr is a learnable parameter.
Then,HðτÞ

h;t is updated as

HðτÞ
h;t ¼ MEANðfQðτÞ

h;t;r : r 2 Rh;tgÞ: ð10Þ

After T iterations, the representations of drugs are transformed to be
more predictive of theDDI types between the target drug-pair, andSh;t only
keeps edges of important known DDIs or newly-added edges connecting
highly similar drugs. We set hv ¼ hðTÞv as the final node embedding, and
return Ah;t ¼ AðTÞ

h;t which records the updated graph structure of Sh;t .
Learning subgraph embedding of Sh;t is commonly adopted to encode the
subgraph topology 22,23,25. Hence, we follow this routine and obtain the
subgraph embedding hSh;t

of Sh;t as

hSh;t
¼ MEAN fhvjv 2 �Vh;tg

� �
: ð11Þ

Finally, we predict the relation for (h, t) as

ŷh;t ¼ δ Wc � hSh;t
k hh k ht

h i� 	
; ð12Þ

whereWc is the classifier parameter.
The results of applying different knowledge subgraph generation

strategies are shown in Supplementary Fig. 1 and analyzed in Supplemen-
tary Note 2.

Learning and inference. Let θg and θk denote the collection of para-
meters associated with generic embedding generation and knowledge
subgraph generation respectively. Further, let yh,t = [yh,t(i)] be a vector
where the ith element yh,t(i) = 1 if relation i 2 RDDI occurs in (h, t) and 0
otherwise.

For multiclass DDI prediction, we optimize KnowDDI w.r.t. the cross
entropy loss:

min
θg ;θk

‘CE �
X

ðh;r;tÞ2EDDI

�y>h;t � log ŷh;t

� 	
: ð13Þ

As for multilabel DDI prediction, drug-pairs are associated with
varying number of relations. We further use a loss function with negative
sampling. Following related works22,23, we construct negative triplets to
prevent KnowDDI from selecting those unknown relations. For each
ðh; r; tÞ 2 EDDI, we replace tby a randomly sampled drugw 2 VDDI to form
(h, r,w) whose label vector yh,w = [0,…, 0] contains zeros only. Let Eneg ¼
fðh; r;wÞjðh; r; tÞ 2 EDDI and ðh; r;wÞ =2 EDDIg collectively contains the
negative triplets. We optimize KnowDDI w.r.t. the following loss for mul-
tilabel DDI prediction:

min
θg ;θk

‘CE þ
X

ðh;r;wÞ2Eneg
�1> � log 1� ŷh;w

� 	
; ð14Þ

where 1 is a vector of all 1s. Note that Eq. (14) only penalizes wrong
prediction of known relations between drug-pairs. In other words, for
triplets that are not observed in EDDI, we regard them as unknown.

During inference, given a new drug-pair ðh0; t0Þ where h0; t0 2 V, we
directly use KnowDDI with optimized θg, θk to obtain the class prediction
vector ŷh0 ;t0 . For multiclass prediction, the class is predicted as the relation
which obtains the highest possibility in ŷh0;t0 . As for multilabel prediction,
the complete ŷh0;t0 is returned.Please refer toAlgorithm?? in Supplementary
Note 1 for details.

Identifying explaining paths. To explain the predictedDDI for (h, t), we
take out the explaining paths from Sh;t . In particular, an explaining path

ph;t ¼ h �!
Ah;t ðh;v1 ;r1Þ

v1 �!
Ah;t ðv1 ;v2 ;r2Þ

v2 ð15Þ

� � � �!
Ah;t ðvP�1;t;rPÞ

t; ð16Þ

is a sequence of nodes, where node vi and node vi+1 are connected by
relation riþ1 2 Rwith a connection strength indicated byAh,t(vi, vj, rj).We
then obtain the average connection strength of ph,t by averaging over
Ah,t(vi, vj, rj) of consecutive pairs of nodes in ph,t. This average connection
strength reflects the ability of the explaining path to interpret the prediction
result from the perspective of KnowDDI.

Training details
In KnowDDI, we use a two-layer GraphSAGE25 to obtain the generic node
embedding eðlÞv whose dimension is set as 32. For drug-flow subgraph
extraction, we extract 2-hop neighborhood and then extract relational paths
with length at most 4 pointing from h to t. The dimension of edge
embedding hr in Eq. (6) is set as 32. We alternate between estimating
connection strengths and refining node embeddings for 3 times (T in
Algorithm ??).We select γ in Eq. (7) from [0.05, 0.2] and α in Eq. (10) from
[0.3, 0.7]. We train the model for a maximum number of 50 epochs using
Adam28with learning rate 5 ∗ 10−3 andweight decay rate 10−5.We early stop
training if the validation loss does not decrease for 10 consecutive epochs.
We set dropout rate as 0.2 and batch size as 256.All results are averaged over
five runs and are obtained on a 32GB NVIDIA Tesla V100 GPU. A sum-
mary of hyperparameters used by KnowDDI is provided in Supplementary
Table 2. Their sensitivity analysis results are shown in Supplementary Fig. 2
and discussed in Supplementary Note 3.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Results
Data
In this study, we perform experiments on two publicly available benchmark
DDI datasets: (i) Drugbank13 is a multiclass DDI prediction dataset con-
sisting of 86 types of pharmacological relations occurredbetweendrugs; and
(ii) TWOSIDES29 is a multilabel DDI prediction dataset recording multiple
DDI side effects between drugs. We adopt Hetionet17,18, which is a bench-
mark biomedical KG for various taskswithin drug discovery, as the external
KG in this paper. Other recent developed biomedical KGs such as ogbl-
biokg30, OpenBioLink31, and PharmKG19 can also be used.

Data preprocessing. We preprocess the two benchmark DDI datasets
DrugBank13,32 andTWOSIDES29,33 following the same procedure adopted
by SumGNN23. In DrugBank, relations are skewed. Each drug-pair is
filtered to have one relation only23. In TWOSIDES, 200 commonly
occurring relations are selected. In particular, relations are ranked by
decreasing number of associating fact triplets, and the 200 relations
ranked between 600 to 800 are kept such that each relation is associated
with at least 900 fact triplets10. Thus, relations in TWOSIDES are asso-
ciated with comparable number of fact triplets. We formulate the
benchmark DDI datasets as DDI graphs separately, whose statistics are
summarized in Table 1. The fact triplets in DDI datasets are split into
training, validation, and testing sets with a ratio of 7:1:2 following
SumGNN23 for fair comparison. We remove from external KG the drug-
drug edges contained in DDI graph to avoid information leakage, then
merge the resultant external KG and DDI graph into a large combined
network. Eventually, the DDI graph of DrugBank is merged with a graph
of 33765 nodes and 1690693 edges extracted fromHetionet, and the DDI
graph of TWOSIDES ismergedwith a graph of 28132 nodes and 1666632
edges extracted from Hetionet, respectively. During training, the drug-
drug edges in validation and testing sets are unseen. After tuning
hyperparameters on fact triplets in validation set, themodel performance
is evaluated on fact triplets in testing set.

Evaluation metric. We evaluate the multiclass DDI prediction perfor-
mance by three metrics: (i) Macro-averaged F1 which is averaged over

class-wise F1 scores, (ii) Accuracy (ACC) which is the micro-averaged
F1 score calculated using all testing fact triplets, and (iii) Cohen’s κwhich
measures the inter-annotator agreement. As for multilabel DDI predic-
tion, we report the results averaged over all relation types. The perfor-
mance is evaluated by (i) AUROC which is the average area under the
receiver operating characteristics (ROC) curve, (ii) AUPRC which is the
average area under the precision-recall (PR) curve, and (iii) AP@50
which is the average precision at 50.

Comparison with the state-of-the-art
We consider multi-typed DDI prediction problem where interactions
between drugs can have multiple relation types. For example, a drug-pair
(drugA, drug B) can have two relation types “thematabolism of drug A can
be decreased when combined with drug B" and “the therapeutic efficacy of
drug A can be increased when combined with drug B". In particular, we
compare the proposed KnowDDI with the following models:
• Traditional two-stage methods (w/o external KG). (i) KG embedding-

based methods use shallow linear models to encode drug entities and
their associated relations into low-dimentional embeddings, then feed
the drug embeddings into a separately learned classifier for DDI
prediction. Exemplar methods are TransE34, KG-DDI35,36, and
MSTE15,37. (ii) Network embedding-based methods which use neural
networks to encode structural information into node embeddings of
drugs, and predict the relation types by a linear layer. Exemplar
methods are DeepWalk14,38, node2vec39,40, and LINE41,42.

• GNN-based methods (w/o external KG) formulate the existing DDI
fact triplets into the form of a graph where each node corresponds to
a drug and each edge between two drugs represents one relation
type, then solve the resultant link prediction problem on the
DDI graph using GNNs43, including GAT44,45, Decagon10,46, and
SkipGNN11,47.

• GNN-based methods (w/ external KG) leverage an external KG to
provide rich organized biomedical knowledge, and aggregate the
messages from neighboring nodes of drugs by GNNs. Existing
methods include GraIL22,48, KGNN21,49, DDKG50,51, SumGNN23,52, and
LaGAT24,53.

Table 1 | Performance (%) is evaluated on two benchmark DDI datasets DrugBank and TWOSIDES

Dataset DrugBank (multiclass) TWOSIDES (multilabel)

Statistics jVj ¼ 1710; jRj ¼ 86; jEj ¼ 192284 jVj ¼ 604; jRj ¼ 200; jEj ¼ 41270 Avg.

Metric F1 ACC Cohen’s κ AUROC AUPRC AP@50 Rank

TransE 18.32 ± 0.16 64.60 ± 0.11 57.19 ± 1.22 77.53 ± 0.02 70.16 ± 0.02 77.54 ± 0.03 15

Traditional KG-DDI 37.21 ± 0.36 82.74 ± 0.10 78.71 ± 0.33 90.64 ± 0.09 87.99 ± 0.11 83.50 ± 0.06 10

Two-stage MSTE 53.96 ± 0.07 77.76 ± 0.11 73.35 ± 0.05 89.40 ± 0.04 83.06 ± 0.06 79.38 ± 0.03 12

(w/o external node2vec 50.00 ± 1.67 62.39 ± 0.99 56.27 ± 0.89 90.62 ± 0.43 89.42 ± 0.47 82.21 ± 0.54 12

KG) DeepWalk 49.17 ± 1.38 62.90 ± 0.37 56.77 ± 0.44 91.77 ± 0.26 90.56 ± 0.23 84.13 ± 0.35 9

LINE 48.89 ± 1.38 59.87 ± 0.92 52.15 ± 1.51 88.63 ± 0.20 87.02 ± 0.22 80.80 ± 0.20 14

GNN-based GAT 35.05 ± 0.41 78.02 ± 0.14 74.68 ± 0.21 91.22 ± 0.13 89.79 ± 0.10 83.05 ± 0.18 11

(w/o external Decagon 56.24 ± 0.27 86.97 ± 0.31 86.12 ± 0.09 91.83 ± 0.14 90.79 ± 0.18 82.49 ± 0.36 7

KG) SkipGNN 62.36 ± 0.96 88.04 ± 0.66 85.71 ± 0.81 92.31 ± 0.15 90.84 ± 0.03 84.23 ± 0.19 6

GraIL 75.92 ± 0.69 89.63 ± 0.39 87.63 ± 0.47 93.73 ± 0.10 92.26 ± 0.07 86.89 ± 0.11 3

GNN-based KGNN 74.08 ± 0.92 88.30 ± 0.08 86.09 ± 0.10 92.93 ± 0.10 90.11 ± 0.14 87.43 ± 0.09 5

(w/ external DDKG 75.84 ± 0.22 88.70 ± 0.39 87.53 ± 0.21 93.15 ± 0.18 91.09 ± 0.39 87.50 ± 0.43 4

KG) SumGNN 86.88 ± 0.63 91.86 ± 0.23 90.34 ± 0.28 94.61 ± 0.06 93.13 ± 0.15 88.38 ± 0.07 2

LaGAT 83.69 ± 0.74 88.86 ± 0.12 87.33 ± 0.14 88.72 ± 0.22 84.03 ± 0.43 82.46 ± 0.41 8

KnowDDI 91.53 ± 0.24 93.17 ± 0.09 91.89 ± 0.11 95.43 ± 0.02 94.14 ± 0.03 89.54 ± 0.03 1

Average (Avg.) rank of each method is reported in the last column, which is averaged over the six columns of performance. The best and comparable results (according to the pairwise t-test with 95%
confidence) are highlighted in bold, and the second-best results are underlined. ∣⋅∣ counts the number of elements in a set. V is the set of drug nodes, E is the set of fact triplets, andR is the set of
relation types.
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We implement the baselines using public codes of the respective
authors, except TransE34 which is implemented by us.

Overall performance. Table 1 shows the results obtained on two
benchmark DDI datasets. Overall, we can see that GNN-based methods
(w/ external KG) generally perform the best and traditional two-stage
methods generally perform the worst. Comparing with traditional two-
stage methods, GNN-based methods (w/o external KG) can better pro-
pagate information among connected nodes (i.e., drugs) bymodeling the
fact triplets integrally as a graph and jointly learning allmodel parameters
w.r.t. the objective in an end-to-end manner. However, due to the lack of
DDI fact triplets and the over-parameterization of GNN, they may not
consistently be better than traditional two-stage methods. This can be
supported by the observation that DeepWalk and KG-DDI perform
better than the deep GAT.

Next, GNN-based methods ((w/ external KG)) leverage rich biome-
dical knowledge to alleviate the data scarcity problem. Among these
methods, KGNN performs the worst. In contrast to pure GNN, KGNN
uniformly samples N nodes as neighbors of each node during message
passing to reduce computational overhead. DDKG improves KGNN by
assigning attention weights to the N nodes during message passing, where
the attention weights are obtained by calculating the similarity between
initial node embeddings constructed from SMILES. In the end, each drug
obtains its representation without considering which drug to interact in
KGNN and DDKG. While GraIL, SumGNN, LaGAT and our KnowDDI
merge the DDI graph with an external KG as a large combined network,
then learn to encode more local semantic information from the combined
network by extracting subgraphs w.r.t. drug-pairs. A drug can be repre-
sented differently in different subgraphs. Thus, these methods can obtain
drug-pair-aware representations that can be beneficial to predict DDI types.
In particular, GraIL directly propagates messages on the extracted sub-
graphs, LaGAT aggregatesmessageswith attentionweights calculatedusing
node embeddings, and SumGNNonly prunes edges based on node features
that are randomly initialized or pretrained on other tasks and then fixes the
subgraphs. They all cannot adaptively adjust the structure of subgraphs
during learning.

Finally, KnowDDI learns to remove irrelevant edges and add new edge
of type “resemble" based on learned node embeddings. Upon the purified
subgraph (i.e., knowledge subgraph) of target drug-pair, KnowDDI trans-
forms generic node embeddings to be more predictive of DDI types. The
performance gain of KnowDDI over existing methods validates its
effectiveness.

Relation-wise performance. Next, we take a closer look at the perfor-
mance gain w.r.t. different relations grouped by frequency. Figure 2a
shows the relation-wise F1 score (%) grouped into bins according to the
number of fact triplets associated with the relation. We compare the
proposed KnowDDI with SkipGNN which performs the best among
GNN-based methods (w/o external KG), and SumGNN which obtains
the second-best among GNN-based methods (w/ external KG). In
addition, we compare with KnowDDI (w/o resemble), a variant of
KnowDDI which does not add new edges of type “resemble" between
nodes with highly similar node embeddings.

As shown, by comparing the performance of SkipGNN and the other
methods, we can see that external KG plays an important role. In general,
KnowDDI and KnowDDI (w/o resemble) consistently obtain better per-
formance than SumGNN, and the performance gap is larger on relations
with fewer known fact triplets. This shows that enriched drug representa-
tions and adjusted subgraphs can be helpful to compensate for the lack of
knownDDI fact triplets. KnowDDI performs the best, which further shows
the contribution of learning to propagate resembling relationships between
highly similar nodes. Additionally, Supplementary Fig. 3 shows statistics of
relation frequency and Supplementary Fig. 4 shows relation-wise perfor-
mance improvement of KnowDDI over SumGNN on DrugBank, TWO-
SIDES and a larger version of TWOSIDES with more relations. We also
examine the performance of KnowDDI and the second-best method
SumGNN obtained on some important and commonly studied adverse
drug reactions (ADRs) in Supplementary Table 3. Results consistently show
that KnowDDI obtains better performance. An extended discussion is
provided in Supplementary Note 4.

CompensatingunknownDDIs. Recall that the lack ofDDI fact triplets is
compensated by both enriched drug representations and propagated
drug similarities in KnowDDI. Here, we pay a closer look to the effec-
tiveness of these two designs. To achieve this goal, we examine the per-
formance of proposed KnowDDI and KnowDDI (w/o resemble) with
different amount of fact triplets introduced from external KG to the
combined network.We compare themwith SumGNNwhich obtains the
second-best among GNN-based methods (w/ external KG), and take
SkipGNN from GNN-based methods (w/o external KG) as a reference.
Figure 2b plots the performance changes w.r.t varying portion (%) of fact
triplets sampled from the external KG. First, SumGNN, KnowDDI and
KnowDDI (w/o resemble) all performworse given fewer fact triplets from
the external KG. This is because a sparser external KG means less
information introduced into DDI datasets, which reduces the

a b

Fig. 2 | A closer examination and comparison of KnowDDI with SumGNN,
SkipGNN and KnowDDI (w/o resemble). a F1 (%) obtained for relations with
different number of DDI fact triplets on DrugBank. b F1 (%) obtained with different
portion (%) of fact triplets sampled from the external KG on DrugBank. SkipGNN,

which does not use external KG, is plotted just for reference. This bar plot illustrates
the test performance (%), with each bar’s height representing themean result and the
error bars indicating the standard deviation, both derived from five independent
runs (n = 5).
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information gap between GNN-based methods w/ or w/o external KG.
Then, KnowDDI (w/o resemble) consistently outperforms the other two
methods as it keeps information that is more relevant to predicting DDI
for the drug-pair at hand both during subgraph construction and
learning. Besides, KnowDDI is the best, as it further learns drug simila-
rities by propagating resembling relationships between drugs with highly
similar representations. As a result, KnowDDI suffers the least from a
sparser KG. However, the performance gap between KnowDDI (w/o
resemble) and KnowDDI gets larger with fewer triples. This means
removing irrelevant edges and propagating drug similarities have a larger
influence on compensatingq for the lack of DDIs when drug repre-
sentations are less enriched. Finally, let us pay special attention to the case
of given 0% triples, which means external KG is not used. Still, we can
observe that both KnowDDI (w/o resemble) and SumGNN still out-
perform SkipGNN. This can be attributed to the different subgraph
extraction strategies adopted in these three methods, which will be
carefully examined in Section 6.

Effectiveness of knowledge subgraph
Here, we pay a closer look at knowledge subgraph Sh;t designed in
KnowDDI, and compare it with other choices of subgraphs in terms of
performance and interpretability.

Subgraph extraction strategy. To empirically validate the effectiveness
of the proposed knowledge subgraph, we consider the following sub-
graphs: (i) Random subgraph consists of a fixed-size set of nodes uni-
formly sampled from the neighborhoods of h and t in G, which is adopted
in KGNN21 to reduce the computation overhead; (ii) Enclosing subgraph
is the interaction of K-hop neighborhoods of h and t in G, which is
adopted in GraIL22, and SumGNN23; (iii) Drug-flow subgraph �Sh;t con-
sists of relational paths pointing from h to t inGwith length at least P; and
(iv) Knowledge subgraph Sh;t consists of explaining paths from h to t,
which is obtained by iteratively refining the graph structure and node
embeddings of �Sh;t . Apart from them, we further compare with the
knowledge subgraphs obtained byKnowDDI (w/o resemble), and denote
the results as knowledge subgraph (w/o resemble).

Figure 3a shows the results obtained by KnowDDI on DrugBank with
different subgraphs and different percentages of fact triplets from external
KG. Enlarged enclosing subgraphs are provided in Supplementary Fig. 5. As
shown, leveraging subgraphs consistently leads to performance gain,
regardless of the subgraph type. This shows the necessity of modeling local
contexts of target drug-pairs. Among these subgraphs, learning with
knowledge subgraph obtains the best performance. As random subgraph
consists of uniformly sampled nodes without considering the node
importance, the selected nodes may not contribute to recognize the rela-
tionships between head and tail drugs. Enclosing subgraph keeps the local
neighborhood of head and tail drugs intact, thus it does not lose informa-
tion. However, directly learning on these subgraphs may lead to bad per-
formance, if irrelevant edges exist. In contrast, drug-flow subgraph focuses
on relational paths pointing from head drug to tail drug, and knowledge
subgraph further only keeps explaining paths. They all remove irrelevant
nodes which do not appear in any paths. Besides, by comparing the per-
formance of drug-flow subgraph and knowledge subgraph under different
percentages of fact triplets, we can see that both enriched drug repre-
sentations and propagated drug similarities contribute to the performance
improvements. However, the performance gain is larger when fewer fact
triplets are used. This means removing irrelevant edges and propagating
drug similarities play a stronger influence on compensating for the lack of
DDIs when drug representations are less enriched. In summary, learning
knowledge subgraph is effective.

Interpretability. As discussed, being able to understand theDDI between
drug-pairs helps drug discovery. Here, we show that KnowDDI can
explain why two drugs associate with each other by leveraging explaining
paths in knowledge subgraphs Sh;t . Figure 3 shows the subgraphs of four

drug-pairs. Random subgraphs are not plotted, as they naturally loses
semantic information. As can be observed, drug-flow subgraphs contain
fewer nodes in comparison to the enclosing subgraphs. Particularly, as we
take Hetionet as the external KG, where only drugs have incoming edges
with drugs and the relation type is “Compound-resembles-Compound",
drug-flow subgraphs only contain drugs. Knowledge subgraphs further
adjust the graph structure. In particular, KnowDDI assigns a connection
strength between each node-pair from both direction. It represents the
importance of a given edge between two connected nodes in the drug-
flow subgraph or similarity between two nodes whose interactions are
unknown. Even if two nodes are connected in the �Sh;t , KnowDDI can
delete an existing edge if the estimated connection strength is too small,
such as the edge pointing from 575 to 284 in Fig. 3d. Likewise, two
originally disconnected nodes can be connected after learning, if the
estimated connection strength is large. This reveals that KnowDDI thinks
the connected drugs are highly similar and can contribute to explaining
the DDI type between two drugs, such as the edge pointing from 121 to
622 in Fig. 3c. Supplementary Fig. 6 shows the node-pair whose con-
nection strength is the largest on each of knowledge graph, including
their molecular graphs and drug efficacy.

Further, Table 2 shows the explaining paths with the largest average
connection strengths assigned by KnowDDI (see Section 6) for the four
drug-pairs in Fig. 3. We use Hetionet KG and DrugBank database to help
interpret these explaining paths. As can be seen, these explaining paths
indeed discover reasonable explanations.Moreover, note that in the second
drug-pair, without the newly added edge of relation type “resemble"
pointing from 121 to 622, the discovered explaining path no longer exists.
This validates the necessity of learning with knowledge subgraphs.

Embeddingvisualization. Finally, wewish to show thatKnowDDI helps
better shape the embeddings of drug-pairs and relations to be more
predictive of DDI types between target drug-pairs. From theDDI dataset,
we randomly sample ten DDI relations, then randomly sample fifty fact
triplets per relation. Given a drug-pair (h, t), it is represented as the
concatenation of drug embeddings which correspond to the node
embeddings of h and t. For methods operating on subgraphs, the drug-
pair embedding is obtained by concatenating drug embeddings with
subgraph embedding which is obtained by mean pooling over node
embeddings of all nodes in the subgraph22,23. In this way, local context of
target drug-pair is leveraged to obtain better prediction results. We
compare KnowDDI with SumGNN and KnowDDI (w/o resemble). In
addition, we also show the drug-pair embeddings obtained by simply
learning generic node embeddings without refining them on subgraphs.
Figure 4 shows the t-SNE visualization54 obtained onDrugBank. First, we
can see from generic embeddings in Fig. 4b, to KnowDDI (w/o resemble)
in Fig. 4c, to KnowDDI in Fig. 4d, drug-pair with the same relation type
are getting closer while drug-pair with different relation types aremoving
farther apart. Also, as can be seen, the clusters are more obvious in
KnowDDI (Fig. 4c, d) than that of SumGNN (Fig. 4a). This means that
learning knowledge subgraphs is beneficial to obtain more distinctive
drug-pair embeddings.

Discussion
In this study, we are motivated to develop an effective solution to accu-
rately construct a DDI predictor from the rare DDI fact triplets. The
proposed KnowDDI achieves the goal by taking advantage of rich
knowledge in biomedicine and healthcare and the plasticity of deep
learning approaches. In KnowDDI, the enriched drug representations
and propagated drug similarities together implicitly compensate for the
lack of known DDIs. We first combine the provided DDI graph and an
external KG into a combined network, and manage to encode the rich
knowledge recorded in KG into the generic node representations. Then,
we extract a drug-flow subgraph for each drug-pair from the combined
network, and learn a knowledge subgraph from generic representations
and the drug-flow subgraph. During learning, the knowledge subgraph is
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optimized, where irrelevant edges are removed and new edges are added
if two disconnected nodes have highly similar node representations.
Finally, the representations of drugs are transformed to be more pre-
dictive of the DDI types between the target drug-pair while knowledge

subgraph contains explaining paths to interpret the prediction result. The
performance gap between KnowDDI and other approaches gets larger
for relation types given a smaller number of known DDI fact triplets,
which validates the effectiveness of KnowDDI.
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Drug-flow Subgraph

F1 w/o Subgraph Random
Subgraph

Enclosing
Subgraph

Drug-flow
Subgraph

Knowledge
Subgraph

100% 86.74± 0.48 89.49± 0.59 90.03± 0.28 90.63± 0.20 91.53± 0.24

5% 80.77± 1.19 84.82± 0.92 85.06± 0.50 85.32± 0.63 87.92± 0.50

0% 72.71± 0.92 75.88± 1.16 77.74± 0.25 78.99± 0.43 81.91± 0.94

Fig. 3 | Comparing different subgraphs extraction strategy. aF1 (%) obtainedwith
different portion (%) of fact triplets sampled from the external KG on DrugBank.
b–e four exemplar drug-pairs (h, t)s in DrugBank and their enclosing subgraphs
(first column), drug-flow subgraphs (second column), knowledge subgraphs with-
out propagating resembling relationships (third column), and knowledge subgraphs
(fourth column). Drugs fromDDI graph are colored in blue, drugs from external KG
are colored in gray, while the other entities are colored in green. In particular, we

draw a red dashed circle encompassing the target drug-pair, andmark the head drug
h by filled plus and the tail drug t by star. We mark edges from DDI graph and
external KG in solid blue lines and solid gray lines respectively. We specially use
undirected edges to represent relation type"resemble" as the semantics of resemble
are not directive, and plot new edges of relation type"resemble" estimated by
KnowDDI with dotted gray lines. The thickness of an edge is used to reveal the
magnitude of the connection strength learned by KnowDDI.

https://doi.org/10.1038/s43856-024-00486-y Article

Communications Medicine |            (2024) 4:59 8



Due to the popularity ofGNN for learning fromgraphs, existingworks
have applied it to solve link predictionproblem. Earlyworks, likeGAT44 and
R-GCN55, usually obtain the representation for each node by running
message passing on the whole graph, then feed the representation of two
target nodes into a predictor to estimate the existence of a link between two
target nodes. Decagon10, SkipGNN11, KGNN21 and DDKG50 compared in
Table 1 also follow this routine. In particular, KGNN uniformly samples a
fixed number of nodes as neighbors of each node duringmessage passing to
reduce the computation overhead. DDKG improves the message passing
part of KGNN by assigning attention weights to the uniformly sampled
neighboring nodes, where the attention weights are obtained by calculating
the similarities between initial node embeddings constructed from SMILES.
These works treat all nodes equally and ignore pair-wise information when
propagating messages. Each drug will get a representation without con-
sideringwhichdrug to interact. Thus, theperformanceof thesemethods can
be worse than classical hand-designed heuristics, which count common
neighbors or connectedpathsbetweenanode-pair56.As a result, recentwork
GraIL22 proposes a pipeline to learn with subgraphs, i.e., first extracting a
subgraph containing the two target nodes, then obtaining the node repre-
sentation from the subgraph, finally estimating the link between two target
nodes using the node-pair representation which consists of the node
embeddings of two target nodes and the subgraph embedding. KnowDDI,
SumGNN23 and LaGAT24 compared in Table 1 follow this pipeline. They
adopt different strategies to learn with subgraphs. In particular, LaGAT
extracts a subgraph consisting of a fixed number of nodes around the head
and tail drugs, updates node embeddings by aggregating neighboring nodes
based on attention weights calculated using node embeddings, and leaves
the subgraph unchanged. While SumGNN extracts the enclosing subgraph
of each drug-pair, then prunes edges based on the node features. By
encoding local context within subgraphs, these methods obtain node-pair-
aware representations, i.e., a drug canbe represented different depending on

whichdrug to interact.OurKnowDDI also learnswith subgraphs,while two
major design differences makes it obtain better and more interpretable
results. The first difference is that KnowDDI learns generic node embed-
dings on the combined network to enrich the drug representations, then
transforms them on knowledge subgraphs to incorporate with the local
context of drug-pairs. The second difference is the adjustment of subgraphs
where existing edges can be dropped if their estimated importance are low,
and new edges of type “resemble" can be addedbetweendisconnectednodes
if their node embeddings are highly similar. This allows KnowDDI to
capture explaining paths pointing from head drug to tail drug. While
SumGNN directly learns drug-pair-aware representations from the
extracted subgraphs. With the two differences, KnowDDI achieves the
balance of generic information and drug-pair-aware local context during
learning.

The architecture of KnowDDI can be further improved. For instance,
pretraining GNN from other large datasets which may provide better
initializedparameters and therefore reduce the training time. Besides, we do
not use any molecular features of drugs in order to test the ability of
KnowDDI learning solely from the combination of external KG and DDI
fact triplets. Taking these predefined node features may improve the pre-
dictive performance of KnowDDI in the future. Although we implement
KnowDDI to handle DDI prediction in this paper, KnowDDI is a general
approach which can be applied to other relevant applications, to help detect
possible protein-protein interactions, drug-target interactions, and disease-
gene interactions. Relevant practitioners can easily leverage the rich bio-
medical knowledge existing in large KGs to obtain good and explainable
prediction results. We believe our open-source KnowDDI can act as an
original algorithm and unique deep learning tool to promote the develop-
ment of biomedicine andhealthcare. For example, it canhelp detect possible
interactions of newdrugs, accelerating the speed of drug design. Given drug
profiles of patients, KnowDDI can be used to identify possible adverse

Table 2 | Explaining pathswith the largest average connection strengths assigned byKnowDDI for four drug-pairs in DrugBank

Drug-Pair (309,610)

DDI Type The metabolism of Atomoxetine (610) can be decreased when combined with Reboxetine (309).

Explaining Path 309 �!resembles
16879 �!resembles

610

Explanation Reboxetine (309) resembles Diphenylpyraline (16879), while Diphenylpyraline (16879) resembles Atomoxetine (610). We can deduce that Reboxetine
(309) resembles Atomoxetine (610). When taking two similar drugs, the body may absorb less of the Atomoxetine (610).

Drug-Pair (103,1127)

DDI Type The serum concentration of Betamethasone (103) can be increased if combined with Estriol (1127).

Explaining Path 103 �!resembles
121 �!resemblesðnewedgeÞ

622 �!resembles
1127

Explanation Betamethasone (103) bears resemblance to Desonide (121). Although the interaction between Desonide (121) and Mestranol (622) is not provided, our
search within DrugBank reveals that combining Mestranol (622) with Budesonide can elevate the serum concentration of Budesonide. Furthermore,
Budesonide is similar toDesonide (121), andMestranol (622) is similar to Estriol (1127). Given the tendency for similar drugs to exhibit akin properties, it is
plausible that the serum concentration of Betamethasone (103) could rise when used alongside Estriol (1127).

Drug-Pair (284,882)

DDI Type The therapeutic efficacy of Sulfadiazine (284) can be increased when used in combination with Gatifloxacin (882).

Explaining Path 284 �!therapeuticefficacyincreased
852 �!resembles

882

Explanation ThecombineduseofSulfadiazine (282) andPefloxacin (852) can improve the efficacy.Meanwhile, Pefloxacin (852) resemblesGatifloxacin (882). It canbe
deduced that the therapeutic efficacy of Sulfadiazine (282) can be increased when used in combination with Gatifloxacin (882).

Drug-Pair (47,51)

DDI Type The risk or severity of adverse effects can be increased when Atropine (47) is combined with Scopolamine (51).

Explaining Path 47 �!resembles
16892 �!resembles

51

Explanation Atropine (47) resembles Homatropine methylbromide (16892), while Homatropine methylbromide (16892) resembles Scopolamine (51). We can deduce
that Atropine (47) resembles Scopolamine (51). The similarities between the two drugs can also be seen through the chemical structures of the drugs. As
the twodrugs are similar in structure, the effects of usingbothdrugsat the same time should be similar to the side effects of overdose of either drug,which
can cause serious side effects. Based on DrugBank, Scopolamine (51) overdose may manifest as lethargy, somnolence, coma, confusion, agitation,
hallucinations, convulsion, visual disturbance, dry flushed skin, dry mouth, decreased bowel sounds, urinary retention, tachycardia, hypertension and
supraventricular arrhythmias, while Atropine (47) overdose may cause palpitation, dilated pupils, difficulty swallowing, hot dry skin, thirst, dizziness,
restlessness, tremor, fatigue and ataxia.

Possible explanations are discovered from Hetionet and DrugBank.
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reactions. These results have the potential to serve as a valuable resource for
alerting clinicians and healthcare providers when devising management
plans for polypharmacy, as well as for guiding the inclusion criteria of
participants in clinical trials. Beyond biomedicine and healthcare, similar
approaches can be developed to adaptively leverage domain-specific large
KGs to help solve downstream applications in low-data regimes.

Data availability
All data used in this study are available in supplementary data and public
repositories. Source data underlying Figs. 2–4 can be found in Supple-
mentary Data 1. For the benchmark DDI datasets, DrugBank dataset13 can
be downloaded from https://bitbucket.org/kaistsystemsbiology/deepddi/
src/master/data/32, and TWOSIDES dataset29 can be downloaded from

https://tatonettilab.org/resources/nsides/33. The external KG Hetionet17 is
obtained from https://het.io18. The processed data analyzed in this paper is
available in GitHub repository at https://github.com/LARS-research/
KnowDDI/tree/main/data57.

Code availability
The code implementing KnowDDI is deposited in public available GitHub
repository at https://github.com/LARS-research/KnowDDI58. The version
for this publication is provided inZenodowith the identifier: https://doi.org/
10.5281/zenodo.1028564659.

Received: 8 March 2023; Accepted: 18 March 2024;

Generic Node EmbeddingsSumGNN

KnowDDIKnowDDI (w/o resemble)

2 3 13 19 39 57 59  72 73 75

a b

c d

Fig. 4 | T-SNE visualization of drug-pair embeddings, where the four graphs
share the same relations (n= 10) and drug-pairs (for each relation, n= 50).
a T-SNE of drug-pair embeddings obtained by SumGNN. b T-SNE of drug-pair

embeddings which are composed of concatenated generic node embeddings.
c T-SNE of drug-pair embeddings obtained by KnowDDI (w/o resemble). d T-SNE
of drug-pair embeddings obtained by KnowDDI.
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