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Abstract

Background In vivo imaging of the human retina using adaptive optics optical coherence
tomography (AO-OCT) has transformed medical imaging by enabling visualization of 3D
retinal structures at cellular-scale resolution, including the retinal pigment epithelial (RPE)
cells,whichare essential formaintaining visual function.However, becausenoise inherent to
the imaging process (e.g., speckle) makes it difficult to visualize RPE cells from a single
volume acquisition, a large number of 3D volumes are typically averaged to improve
contrast, substantially increasing the acquisition duration and reducing the overall imaging
throughput.
Methods Here, we introduce parallel discriminator generative adversarial network (P-GAN),
an artificial intelligence (AI) method designed to recover speckle-obscured cellular features
from a single AO-OCT volume, circumventing the need for acquiring a large number of
volumes for averaging. The combination of two parallel discriminators in P-GAN provides
additional feedback to the generator to more faithfully recover both local and global cellular
structures. Imaging data from 8 eyes of 7 participants were used in this study.
Results We show that P-GAN not only improves RPE cell contrast by 3.5-fold, but also
improves the end-to-end time required to visualize RPE cells by 99-fold, thereby enabling
large-scale imaging of cells in the living human eye. RPE cell spacing measured across a
large set of AI recovered images from 3 participants were in agreement with expected
normative ranges.
Conclusions The results demonstrate the potential of AI assisted imaging in overcoming a
key limitation of RPE imaging and making it more accessible in a routine clinical setting.

High-resolution in vivo ophthalmic imaging enables visualization and
quantification of cells1, offering the possibility of revealing the status of
individual cells inhealth anddisease. Formanyoptical imaging instruments,
noise inherent in the imaging processes reduces contrast. The most direct
way to suppress noise is the incoherent averaging of a large number of
volumes2–4. However, this lengthens the overall acquisition time, not only
due to the additional volumes required, but also, because of the possibility

for artifacts or registration errors across the sequentially acquired volumes
due to constant involuntary eye movements that translate and distort the
cellular visualization obtained from the microscopic imaging field of view
(FOV) (~0.5 mm× 0.5mm) that is commonly used in adaptive optics (AO)
retinal imaging1,5,6.

Adaptive optics optical coherence tomography (AO-OCT) is an
emerging ophthalmic imaging tool that relies on the detection of interfered
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Plain language summary

The retinal pigment epithelium (RPE) is a
single layer of cells within the eye that is
crucial for vision. These cells are unhealthy in
many eye diseases, and this can result in
visionproblems, includingblindness. Imaging
RPE cells in living human eyes is time
consuming and difficult with the current
technology.Ourmethodsubstantially speeds
up the process of RPE imaging by
incorporating artificial intelligence. This
enables larger areas of the eye to be imaged
more efficiently. Ourmethod could potentially
be used in the future during routine eye tests.
This could lead to earlier detection and
treatmentof eye diseases, and the prevention
of some causes of blindness.
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light to enable 3D visualization of the retina at single cell level resolution,
directly in the living human eye1,7–9. However, AO-OCT volumes are
inherently susceptible to speckle noise contamination, which arises due to
the interference between light scattered from multiple points within the
cells10. This high contrast, complex intensity distribution of speckle noise
canmask cells and limit the visibility of cellular structures. In particular, the
retinal pigment epithelial (RPE) cells, which are essential for maintaining
visual function11 have low intrinsic contrast compared to speckle noise and
therefore are challenging to image directly12. To overcome the low intrinsic
contrast, a large number of AO-OCT volumes need to be averaged (e.g., 120
volumes) in order to visualize the cells13. These volumes, obtained by
repeatedly imaging the same retinal patch,must be acquired at a sufficiently
spaced time interval (about 5 s) to allow for the speckle to decorrelate across
volumes14. Not only does this strategy substantially increase the total
acquisition time, but it also introduces the potential for eye motion artifacts
and patient fatigue, both of which can degrade image quality. For some
applications, hardware modifications have been proposed to allow for the
repeated volume acquisitions to be obtained more quickly, based on
shortening the speckle decorrelation time15,16 or by producing uncorrelated
speckle patterns via frequency17, angular18, or polarization compounding19.
However, the capability to visualize cellular details from only a single
acquisition alone, rather than from the multiple acquisitions that are still
needed even with these hardware modifications, could substantially reduce
the timeneeded to visualize theRPEcells andwouldbe a transformative step
towards making AO-OCT a more efficient clinical imaging tool.

Data-driven artificial intelligence (AI)methodshaveofferedpromising
solutions to generativemodeling tasks such as denoising ofOCT images20,21,
high-resolution reconstruction of OCT angiograms22,23, and data augmen-
tation inAO images24.Here,we explore thepotential ofAI for recovering the
complete cellular structure from only a single noisy AO-OCT acquisition.
The deep learning-based generative adversarial network (GAN) provides a
powerful framework for synthesizing realistic-looking images from random
noise through a competition between discriminator and generator
networks25,26, and has been successfully applied for image enhancement
applications in which a low signal-to-noise ratio (SNR) image is used as
input to generate a high SNR counterpart21,26–28. Following earlier applica-
tions of GAN for improving image quality and training stability29–31, con-
ditional GAN (C-GAN)30 was introduced to better control the quality of the
synthesized images by supplying the discriminator with image and ground
truth pairs instead of images alone, as used in the original GAN. However,
supervised training of C-GAN with paired images can sometimes be
restrictive. Thus, CycleGAN31 overcame this requirement by usingmultiple
generator and discriminator networks along with specialized loss functions
from unpaired images. Although these strategies have greatly improved
image synthesis and style transfer, control over image characteristics have
mostly focused on global image features with little or no control over fine
local object details, such as individual cells within images. In the case of AO-
OCTRPE imageswhicharemasked by anoverwhelming amount of speckle
noise, it is difficult to visualize cellular structure in a single, unaveraged
image, making the cell recovery process extremely challenging.

Building upon the various GANs that have been developed, we
hypothesize that the generator can better recover cellular structure if the
discriminator is enhanced to specifically evaluate similarities in local
structural details between the generated and the ground truth averaged
images. We describe developing and evaluating a custom GAN framework
that contains a generator, a Siamese twin discriminator, as well as a con-
volutional neural network (CNN) discriminator to recover the RPE cellular
structures from single, unaveraged, and noisyAO-OCT images. As both the
discriminators work in parallel towards providing strong feedback to the
generator network to synthesize perceptually similar images to the ground
truth (averaged images),we call theproposednetworkparalleldiscriminator
GAN (P-GAN).We show that after training, the generator can be applied to
recover the cellular morphology from only a single speckled RPE image.
This, in turn, enables wide-scale visualization of the RPEmosaic from AO-
OCT images acquired across multiple contiguous retinal locations, as the

overall time required for RPE visualization at a single location is sub-
stantially reduced by eliminating the need for multiple volume acquisition
and averaging. The incorporation of AI into the overall image acquisition
strategy has the potential to transform the current state-of-the-art oph-
thalmic imaging with an estimated improvement of 99-fold in the overall
throughput.

Methods
Adaptive optics imaging
Participants with no history or signs of ocular disease were recruited for this
study between the years 2019 to 2022. All participants underwent a com-
prehensive ophthalmic assessment. In total, eight eyes from seven healthy
participants (aged: 29.1 ± 9.1 years) from the National Eye Institute Eye
Clinic (National Institutes of Health, Bethesda, Maryland, USA) were
imaged using a custom-built AO-OCT retinal imager13. Eyes were dilated
with 2.5% phenylephrine hydrochloride (Akorn Inc.) and 1% tropicamide
(Sandoz, ANovartis Division). This studywas approvedby the Institutional
Review Board of the National Institutes of Health (NCT02317328).
Research procedures adhered to the tenets of the Declaration of Helsinki.
Written, informed consent was obtained from all participants after the
nature of the research and possible consequences of the study were
explained.

Experimental design
Data for trainingandvalidatingAImodels. AO-OCTvolumes fromfive
eyes of five participants were acquired at a rate of 147 kHz (300 × 300
pixels at a rate of 1.6 volumes per second) fromup to four retinal locations
ranging from0–3 mm temporal to the foveawith a FOVof 1.5 degrees. At
each location, 120 speckled volumes were acquired. Following image
acquisition, volumes were digitally flattened based on the outer retinal
layers, corrected for eye motion after manual selection of reference
frames for registration, and then averaged to generate ground truth
averaged RPE en face images13 (Fig. 1a and Supplementary Fig. 1). Due to
a scanner artifact (distortion arising from the turnaround of the scanner
from one line to the next), 50 pixels from the left and right sides of the
image were cropped off to yield a final image of 300 × 200 pixels. The
reference frames (speckled images) and the ground truth averaged images
are used as training data for the AI model in a supervised manner.

Experimental data for RPE assessment from the recovered images.
For the large-scale assessment of the RPE cells, speckled volumes from 63
overlapping locations spanning a1mm× 3mmregionof the retina fromthe
fovea extending in the temporal direction were acquired from three parti-
cipants (Supplementary Table 1). To ensure that the algorithmperformance
was assessed on never-seen images, three eyes that were not used in the
training and validation of the AI model were selected for this purpose. To
facilitate image acquisition and to allow for brief breaks in between acqui-
sitions, a total of 10 volumes were acquired at each location, fromwhich the
one with the least distortion (subjectively determined minimal motion
artifacts and no eye blinks) was selected as input to the P-GAN for cellular
recovery. To validate the accuracy of RPE recovery on the experimental data,
additional volumes (120 volumes) were acquired from four retinal locations
of the three participants. The ground truth averaged images were created by
averaging 120 speckled volumes for objective image recovery comparison.

Model details. The proposed framework (P-GAN) contains a generator
(G), a siamese twin discriminator (D1), as well as a CNN discriminator
(D2) (Fig. 1c and Supplementary Fig. 2). G takes the specked image as
input and creates an image of the RPE using a series of CNN-based
encoder and decoder network components (Supplementary Fig. 2 and
P-GAN network architecture in Supplementary Methods). D1 is
designed to use Siamese twin neural network32, which has a specialized
architecture (Supplementary Fig. 2) to naturally rank similarity between
the generator created and averaged RPE images in a representative fea-
ture space using L1 norm33. We found through experimentation that
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fusing features from two intermediate layers with the last convolutional
layer of the twin networkwith appropriate weights ensured better cellular
recovery (Supplementary Tables 2, 3). We introduced a weighted feature
fusion (WFF) block that concatenated features from three layers of the
twin network to estimate the similarity (Supplementary Fig. 2 and
P-GAN network architecture in Supplementary Methods). Additionally,
D2 also helped the cell recovery process by determining if the images
recovered by G were closer to the statistical distribution of the averaged
ground truth images. G, D1, and D2 were simultaneously trained using

two adversarial and content loss functions (Objective loss functions in
Supplementary Methods).

The dataset to train the model was created from the acquired volumes
fromfiveparticipants.The trainingdatasetwas augmentedby leveraging the
natural eye motion of the participants during imaging by selecting multiple
(up to 50) reference (speckled) frames to create a set of ground truth
averaged images that were each slightly shifted with respect to each other
(Supplementary Fig. 3). In addition, due to the combination of simulta-
neously occurring eye motion and point-scanning nature of image

Fig. 1 | Overview of artificial intelligence (AI) enhanced retinal pigment epi-
thelial (RPE) cell imaging strategy. a Adaptive optics optical coherence tomo-
graphy (AO-OCT) imaging based on multiple acquisitions (120 volumes) at
sufficiently spaced time intervals (about 5 s)13,14. The en face images of the RPE cells
(obtained by segmenting the 2D image of the RPE layer from the 3D volume) have a
speckled appearance in a single acquisition but can be averaged across multiple
acquisitions to reveal the individual RPE cells appearing as the dark cell centers with
bright cell surroundings in the averaged en face image. b AO-OCT imaging
enhanced with AI can recover the cellular features from only a single speckled AO-
OCT acquisition, thereby eliminating the need for multiple volume acquisition for
averaging and substantially reducing the imaging duration. c Parallel discriminator
generative adversarial network (P-GAN), the proposed AI model, is comprised of
three networks: a generator (G) to recover the cellular structures from the speckled
images of the RPE cells, a twin discriminator (D1) with two identical twin

convolutional neural networks (CNNs) to perform a one-to-one feature compar-
ison of the recovered images from the generator and the averaged (ground truth)
images yielding a similarity score, and a CNNdiscriminator (D2) that assigns a label
of fake/real to the recovered images. The adversarial learning of the three networks
facilitates the faithful recovery of both local structural details as well as the global
mosaic of the RPE cells.Matched speckled and averaged image pairs are used to train
P-GAN. Details about the network architecture are presented in Supplementary
Fig. 2. After training, the trained generator can be deployed to reveal the cellular
details from speckled images obtained from a single AO-OCT acquisition.
dApplying the trained generator to predict the cellular structures of the RPE cells of
two participants (S1 and S2) from the corresponding speckled images. The ground
truth averaged images (average of 120 acquired AO-OCT volumes) are shown for
comparison. Scale bar: 25 µm.
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acquisition, each of the averaged images also contained unique intravolume
distortions, which served as a further means for natural data augmentation.
This resulted in a total of 5968 image patches (150 × 150 pixels) extracted
from the speckled and averaged image pairs used for training. P-GAN was
trained for 100 epochswith a batch size of 8 using anAdamoptimizerwith a
learning rate of 0.0002, and exponential decay rates of 0.5 for the first
moment and0.9 for the secondmoment. FourNVIDIATITANVgraphical
processing units (GPU) were used to accelerate the training process. After
training is complete, the discriminators were no longer needed, and the
generator could be used to recover the RPE structure from the speckled
images (Fig. 1d).

To evaluate the performance, a leave-one-participant-out validation
protocolwas used.A total of fortypaired images at different retinal locations
from the five participants were used for validation of the method. Four
objective image quality assessment metrics (Validation metrics in Supple-
mentary Methods): perceptual image error assessment through pairwise
preference (PieAPP)34, learned perceptual image patch similarity (LPIPS)35,
deep image structure and texture similarity (DISTS)36, and Fréchet Incep-
tion Distance (FID)37 were used to validate the performance.

Quantification of cellular spacing and contrast. Cell spacing and
contrast were quantified to assess the efficacy of P-GAN for RPE
recovery. Cell spacingwas estimated using the circumferentially averaged
power spectrum38 of each image region of interest (200 × 200 pixels). The
peak spatial frequency of the spectrum (i.e., the RPE fundamental fre-
quency) was an estimate of cell spacing. To convert from pixels to µm, a
paraxial ray trace on a three-surfaced simplified model eye39 was used
after replacing the axial length, corneal curvature, and anterior chamber
depth with measurements of these values obtained from each participant
(IOL Master, Carl Zeiss Meditec)40.

Voronoi neighborhoods were generated from the manually identified
cell centers on selected images to analyze the packing properties of the RPE
cells. At least two expert graders sequentially marked each image and then
interactively re-reviewed images until full consensus on the markings were
achieved. The cellular contrast of the P-GAN-created images and the
averaged images were compared using a peak distinctiveness measure,
defined as the height of the peak in the circumferentially averaged power
spectrumcomputed as the difference between the log power spectral density
(PSD) between the peak and the local minima to the left of the peak.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
P-GAN enables visualization of cellular structure from a single
speckled image
The overall goal was to learn a mapping between the single speckled and
averaged images (Fig. 1b) using a paired training dataset. Inspired by the
ability of traditional GAN networks to recover aspects of the cellular
structure (Supplementary Fig. 4), we sought to further improve upon these
networkswith P-GAN. In our network architecture (Supplementary Fig. 2),
the twin and the CNN discriminators were designed to ensure that the
generator faithfully recovered both the local structural details of the indi-
vidual cells as well as the overall global mosaic of the RPE cells. In addition,
we incorporated aWFF strategy to the twin discriminator that concatenated
features from different layers of the twin CNN with appropriate weights,
facilitating effective comparisons and learning of the complex cellular
structures and global patterns of the images.

P-GANwas successful in recovering the retinal cellular structure from
the speckled images (Fig. 1d and Supplementary Movie 1). Toggling
between the averagedRPE images (obtained by averaging 120 acquiredAO-
OCT volumes) and the P-GAN recovered images showed similarity in the
cellular structure (Supplementary Movie 2). Qualitatively, P-GAN showed
better cell recovery capability than other competitive deep learning

networks (U-Net41, GAN25, Pix2Pix30, CycleGAN31, medical image trans-
lation using GAN (MedGAN)42, and uncertainty guided progressive GAN
(UP-GAN)43) (additional details about network architectures and training
are shown in Other network architectures section in Supplementary
Methods and Supplementary Table 4, respectively) with clearer visualiza-
tion of the dark cell centers and bright cell surroundings of the RPE cells
(e.g.,magenta arrows in Supplementary Fig. 4 and SupplementaryMovie 3),
possibly due to the twin discriminator’s similarity assessment. Notably,
CycleGANwas able to generate some cells that were perceptually similar to
the averaged images, but in certain areas, undesirable artifacts were intro-
duced (e.g., the yellow circle in Supplementary Fig. 4).

Quantitative comparison between P-GAN and the off-the-shelf net-
works (U-Net41, GAN25, Pix2Pix30, CycleGAN31, MedGAN42, and UP-
GAN43) using objective performance metrics (PieAPP34, LPIPS35, DISTS36,
andFID37) further corroborated ourfindings on the performanceof P-GAN
(Supplementary Table 5). There was an average reduction of at least 16.8%
in PieAPP and 7.3% in LPIPS for P-GAN compared to the other networks,
indicating improved perceptual similarity of P-GAN recovered images with
the averaged images. Likewise, P-GAN also achieved the best DISTS and
FID scores among all networks, demonstrating better structural and textural
correlations between the recovered and the ground truth averaged images.
Overall, these results indicated that P-GANoutperformed existingAI-based
methods and could be used to successfully recover cellular structure from
speckled images.

Twin discriminator improves cell recovery performance
Our preliminary explorations of the off-the-shelf GAN frameworks showed
that these methods have the potential for recovering cellular structure and
contrast but alone are insufficient to recover the fine local cellular details in
extremely noisy conditions (Supplementary Fig. 4). To further reveal and
validate the contribution of the twin discriminator, we trained a series of
intermediatemodels and observed the cell recovery outcomes.We began by
training a conventional GAN, comprising of the generator, G, and the CNN
discriminator, D2. Although GAN (G+D2) showed promising RPE
visualization (Fig. 2c) relative to the speckled images (Fig. 2a), the individual
cells were hard to discern in certain areas (yellow and orange arrows in
Fig. 2c). To improve the cellular visualization, we replaced D2with the twin
discriminator, D1. Indeed, a 7.7% reduction in DISTS was observed with
clear improvements in the visualization of some of the cells (orange arrows
in Fig. 2c, d).

Having shown theoutcomesof trainingD1andD2 independentlywith
G,we showed that combining bothD1 andD2withG (P-GAN)boosted the
performance even further, evident in the improved values (lower scores
implying better perceptual similarity) of the perceptualmeasures (Fig. 2g–i).
For this combination of D1 and D2, we replaced the WFF block, which
concatenated features from different layers of the twin CNN with appro-
priate weights, with global average pooling of the last convolutional layer
(G+D2+D1-WFF). Without the WFF, the model did not adequately
extract powerful discriminative features for similarity assessment and hence
resulted in poor cell recovery performance. This was observed both quali-
tatively (yellow and orange arrows in Fig. 2e, f) as well as quantitatively with
the higher objective scores (indicating lowperceptual similaritywith ground
truth averaged images) for G+D2+D1-WFF compared to P-GAN
(Fig. 2g–i).

Taken together, this established that the CNN discriminator (D2)
helped to ensure that recovered images were closer to the statistical dis-
tributionof the averaged images,while the twindiscriminator (D1),working
in conjunction with D2, ensured structural similarity of local cellular details
between the recovered and the averaged images. The adversarial learning of
G with D1 and D2 ensured that the recovered images not only have global
similarity to the averaged images but also share nearly identical local
features.

Finally, experimentation using different weighting configurations in
WFF revealed that the fusion of the intermediate layers with weights of 0.2
with the last convolutional layer proved complementary in extracting shape
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and texture information for improved performance (Supplementary
Tables 2, 3). These ablation experiments indicated that the global perceptual
closeness (offered byD2) and the local feature similarity (offered byD1 and
WFF) were both important for faithful cell recovery.

Leveraging eye motion for data augmentation
Given the relatively recent demonstration of RPE imaging using AO-OCT
in 201612, and the long durations needed to generate these images, currently,
there are no publicly available datasets for image analysis. Therefore, we
acquired a small dataset using our custom-built AO-OCT imager13 con-
sisting of seventeen retinal locations obtained by imaging up to four dif-
ferent retinal locations for each of the five participants (Supplementary
Table 1). To obtain this dataset, a total of 84 h was needed (~2 h for image
acquisition followed by 82 hours of data processing which included con-
version of raw data to 3D volumes and correction for eye motion-induced
artifacts). After performing traditional augmentation (horizontal flipping),
this resulted in an initial dataset of only 136 speckled and averaged image
pairs. However, considering that this and all other existing AO-OCT
datasets that we are aware of are insufficient in size compared to the training
datasets available for other imagingmodalities44,45, it was not surprising that
P-GAN trained on this initial dataset yielded very low objective perceptual
similarity (indicatedby thehigh scores ofDISTS, PieAPP, LPIPS, andFID in
Supplementary Table 6) between the recovered and the averaged images.

Toovercome this limitation,we leveraged thenatural eyemotionof the
participants to augment the initial training dataset. The involuntary fixa-
tional eye movements, which are typically faster than the imaging speed of
our AO-OCT system (1.6 volumes/s), resulted in two types of motion-
induced artifacts. First, due to bulk tissue motion, a displacement of up to
hundreds of cells between acquired volumes could be observed. This
enabledus to create averaged images of different retinal locations containing
slightly different cells within each image. Second, due to the point-scanning
nature of the AO-OCT system compounded by the presence of continually
occurring eye motion, each volume contained unique intra-frame distor-
tions. The unique pattern of the shifts in the volumes was desirable for
creating slightly different averaged images, without losing the fidelity of the
cellular information (Supplementary Fig. 3). By selecting a large number of
distinct reference volumes onto which the remaining volumes were regis-
tered, we were able to create a dataset containing 2984 image pairs (22-fold
augmentation compared to the initial limited dataset) which was further
augmentedby an additional factor of twousinghorizontalflipping, resulting

in a final training dataset of 5996 image pairs for P-GAN (also described in
Data for training and validating AI models in Methods). Using the aug-
mented dataset for training P-GANyieldedhigh perceptual similarity of the
recovered and the ground truth averaged images which was further cor-
roborated by improved quantitative metrics (Supplementary Table 6). By
leveraging eye motion for data augmentation, we were able to obtain a
sufficiently large training dataset from a recently introduced imaging
technology to enable P-GAN to generalize well for never-seen experimental
data (Supplementary Table 1 and Experimental data for RPE assessment
from the recovered images in Methods).

Objective assessment of the cellular contrast offered by AI
In addition to the structural and perceptual similarity that we demonstrated
between P-GAN recovered and averaged images, here, we objectively
assessed the degree to which cellular contrast was enhanced by P-GAN
compared to averaged images and other AI methods. As expected, exam-
ination of the 2D power spectra of the images revealed a bright ring in the
power spectra (indicative of the fundamental spatial frequency present
within the healthy RPEmosaic arising from the regularly repeating pattern
of individual RPE cells) for the recovered and averaged images (insets in
Fig. 3b–i).

Interestingly, although this ring was not readily apparent on the
speckled single image (inset in Fig. 3a), it was present in all the recovered
images, reinforcing our observation of the potential of AI to decipher the
true pattern of the RPEmosaic from the speckled images. Furthermore, the
radius of the ring, representative of the approximate cell spacing (computed
from the peak frequency of the circumferentially averaged PSD) (Quanti-
fication of cell spacing and contrast in Methods), showed consistency
among the different methods (shown by the black vertical line along the
peakof the circumferentially averagedPSD inFig. 3j andTable 1), indicating
high fidelity of recovered cells in comparison to the averaged images.

The height of the local peak of the circumferentially averaged power
spectra (whichwe defined as peak distinctiveness) provided an opportunity
to objectively quantify the degree to which cellular contrast was enhanced.
Among the different AI methods, the peak distinctiveness achieved by
P-GANwas closest to the averaged images with aminimal absolute error of
0.08 compared to ~0.16 for the other methods (Table 1), which agrees with
our earlier results indicating the improved performance of P-GAN. In
particular, P-GAN achieved a contrast enhancement of 3.54-fold over the
speckled images (0.46 for P-GAN compared with 0.13 for the speckled

Fig. 2 | Effect of parallel discriminator generative adversarial network (P-GAN)
components on the recovery of retinal pigment epithelial (RPE) cells. a Single
speckled image compared to images of the RPE obtained via b average of 120
volumes (ground truth), c generator with the convolutional neural network (CNN)
discriminator (G+D2), d generator with the twin discriminator (G+D1),
e generator with CNN and twin discriminators without the weighted feature fusion
(WFF) module (G+D2+D1-WFF), and f P-GAN. The yellow and orange arrows

indicate cells that are better visualized using P-GAN compared to the intermediate
models. g–i Comparison of the recovery performance using deep image structure
and texture similarity (DISTS), perceptual image error assessment through pairwise
preference (PieAPP), and learned perceptual image patch similarity (LPIPS)metrics.
The bar graphs indicate the average values of the metrics across sample size, n = 5
healthy participants (shown in circles) for different methods. The error bars denote
the standard deviation. Scale bar: 50 µm.
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images). These observations demonstrateP-GAN’s effectiveness in boosting
cellular contrast in addition to structural and perceptual similarity.

AIenablesefficient visualizationof theRPEmosaicacross retinal
locations
Having demonstrated the efficacy and reliability of P-GAN on test data, we
wanted to evaluate the performance of P-GAN on experimental data from

never-seen human eyes across an experimental dataset (Supplementary
Table 1), which to the best of our knowledge, covered the largest extent of
AO-OCT imaged RPE cells reported (63 overlapping locations per eye).
This feat was made possible using the AI-enhanced AO-OCT approach
developed and validated in this paper. Using the P-GAN approach, in our
hands, it took 30min of time (including time needed for rest breaks) to
acquire single volume acquisitions from 63 separate retinal locations
compared to only 4 non-overlapping locations imagedwith nearly the same
durationusing the repeated averagingprocess (15.8-fold increase innumber
of locations). Scaling up the averaging approach from 4 to 63 locations
would have required nearly 6 h to acquire the same amount of RPE data
(note that this does not include any data processing time), which is not
readily achievable in clinical practice. This fundamental limitation explains
whyAO-OCTRPE imaging is currently performed only on a small number
of retinal locations12,13.

Leveraging P-GAN’s ability to successfully recover cellular structures
from never-seen experimental data, we stitched together overlapping
recovered RPE images to construct montages of the RPEmosaic (Fig. 4 and
Supplementary Fig. 5). To further validate the accuracy of the recovered
RPE images, we also created ground truth averaged images by acquiring 120
volumes from four of these locations per eye (12 locations total) (Experi-
mental data for RPE assessment from the recovered images in Methods).
The AI-enhanced and averaged images for the experimental data at the 12
locations were similar in appearance (Supplementary Fig. 6). Objective
assessment using PieAPP, DISTS, LPIPS, and FID also showed good
agreementwith the averaged images (shownby comparable objective scores
for experimental data in Supplementary Table 7 and test data in Supple-
mentary Table 5) at these locations, confirming our previous results and

Fig. 3 | Using power spectra analysis to estimate the cellular contrast achieved
using artificial intelligence (AI). a Example specked image acquired from parti-
cipant S1. Recovered images using bU-Net, c generative adversarial network (GAN),
d Pix2Pix, e CycleGAN, f medical image translation using GAN (MedGAN),
g uncertainty guided progressive GAN (UP-GAN), h parallel discriminator GAN
(P-GAN). iGround truth averaged image (obtained by averaging 120 adaptive optics
optical coherence tomography (AO-OCT) volumes). Insets in (a–i) show the cor-
responding 2D power spectra of the images. A bright ring representing the funda-
mental spatial frequency of the retinal pigment epithelial (RPE) cells can be observed

in U-Net, GAN, Pix2Pix, CycleGAN, MedGAN, UP-GAN, P-GAN, and averaged
images power spectrumcorresponds to the cell spacing. jCircumferentially averaged
power spectral density (PSD) for each of the images. A visible peak corresponding to
the RPE cell spacing was observed for U-Net, GAN, Pix2Pix, CycleGAN,MedGAN,
UP-GAN, P-GAN, and averaged images. The vertical line indicates the approximate
location of the fundamental spatial frequency associated with the RPE cell spacing.
The height of the peak (defined as peak distinctiveness (PD)) indicates the RPE
cellular contrast measured as the difference in the log PSD between the peak and the
local minima to the left of the peak (inset in (j)). Scale bar: 50 µm.

Table1 |Comparisonof cellular contrast andcell spacingerror
across the different networks

Image/Network Peak distinctiveness (a.u.) Cell spacing
error (µm)

Speckled image 0.13 ± 0.06 -

U-Net 0.36 ± 0.09 −0.9 ± 1.4

GAN 0.39 ± 0.06 −1.0 ± 1.3

Pix2Pix 0.39 ± 0.08 −1.0 ± 1.3

CycleGAN 0.40 ± 0.08 −0.5 ± 1.1

MedGAN 0.34 ± 0.07 −1.1 ± 1.4

UP-GAN 0.45 ± 0.08 −0.9 ± 1.2

P-GAN (ours) 0.46 ± 0.07 −0.9 ± 1.3

Averaged image 0.54 ± 0.09 -

The cell spacing error for specked images is not shown, as there is no visible peak in the power
spectral density from which to compute the spacing. The cell spacing errors for the AI methods are
computed with respect to the averaged (ground truth) images. All values are expressed as
mean ± SD.
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illustrating the reliability of performing RPE recovery for other non-seen
locations as well (P-GAN was trained using images obtained from up to 4
retinal locations across all participants). The cell spacing estimated using the
circumferentially averaged PSD between the recovered and the averaged

images (Supplementary Fig. 7 and Supplementary Table 8) at the 12 loca-
tions showed an error of 0.6 ± 1.1 µm (mean ± SD). We further compared
theRPE cell spacing from themontages of the recoveredRPE from the three
participants (S2, S6, and S7) with the previously published in vivo studies
(obtained using different imaging modalities) and histological values
(Fig. 5)12,46–51. Considering the range of values in Fig. 5, the metric exhibited
inter-participant variability, with cell spacing varying up to 0.5 µm across
participants at any given retinal location. Nevertheless, overall our mea-
surements were within the expected range compared to the published
normative data12,46–51. Finally, peak distinctiveness computed at 12 retinal
locations of the montages demonstrated similar or better performance of
P-GANcompared to the averaged images in improving the cellular contrast
(Supplementary Table 8).

Voronoi analysis performed on P-GAN and averaged images at 12
locations (Supplementary Fig. 8) resulted in similar shapes and sizes of the
Voronoi neighborhoods. Cell spacing computed from the Voronoi analysis
(Supplementary Table 9) fell within the expected ranges and showed an
average error of 0.5 ± 0.9 µm. These experimental results demonstrate the
possibility of using AI to transform the way in which AO-OCT is used to
visualize and quantitatively assess the contiguous RPE mosaic across dif-
ferent retinal locations directly in the living human eye.

Discussion
We demonstrated that P-GAN can effectively recover the cellular structure
from speckle-obscured AO-OCT images of the RPE. The key feature of our
approach is that cellular contrast can be improved using only a single
speckled acquisition, completely bypassing the need for sequential volume
averaging currently being used for AO-OCT RPE imaging12,13. This is an
important step towards more routine clinical application of AO-OCT
imaging for probing the health of the retinal tissue at the cellular level,
especially for the task of morphometric measurements of cell structure
across different retinal locations (Figs. 4, 5 and Supplementary Fig. 5).

The success of cellular recovery using P-GAN can be attributed to the
Siamese network-inspired twin discriminator that provided local structural
cues of feature similarity (between the recovered and the ground truth
averaged images) to the generator. The improvement of P-GAN over U-
Net, traditional GAN, Pix2Pix, CycleGAN, MedGAN, and UPGAN (Sup-
plementary Fig. 4 and Supplementary Table 5) was unsurprising given that

Fig. 5 | Comparison of cell spacing of the parallel discriminator generative
adversarial network (P-GAN) recovered images with previously published data
across retinal locations (eccentricities) temporal to the fovea. Symbols in black
indicate cell spacing estimated from P-GAN recovered images for three participants
(S2, S6, and S7) at different retinal locations. For comparison, data in gray denote the
mean and standard deviation values from previously published studies (adaptive
optics infrared autofluorescence (AO-IRAF)48, adaptive optics optical coherence
tomography (AO-OCT)12, adaptive optics with short-wavelength autofluorescence
(AO-SWAF)49, and histology46,51).

Fig. 4 | Parallel discriminator generative adversarial network (P-GAN) enabled
wide-scale visualization of the retinal pigment epithelial (RPE) cellular mosaic.
The image shows the visualization of the RPE mosaic using the P-GAN recovered
images (this montage was manually constructed from up to 63 overlapping
recovered RPE images from the left eye of participant S2). The white squares (a–e)

indicate regions that are further magnified for better visualization at retinal loca-
tions a 0.3 mm, b 0.8 mm, c 1.3 mm, d 1.7 mm, and e 2.4 mm temporal to the fovea,
respectively. Additional examples of montages from two additional participants are
shown in Supplementary Fig. 5.
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these other networks were not intended to handle highly speckled noisy
environments in which the cellular structures were not readily apparent.
Our ablation studies indicated the synergistic improvement realized
through the WFF combination to the twin discriminator (D1) for the
recovery of the fine local structural details and the traditional CNN-based
discriminator (D2) for global feature recovery (Fig. 2). In terms of com-
putational complexity, it should also be noted that the network architecture
of P-GAN has much fewer number of parameters (8.8-fold) compared to
CycleGAN (Supplementary Table 10).

Substantial time saving was realized using our P-GAN-inspired
approach, allowing us to covermore than 15-foldmore imaging locations in
nearly the same amount of imaging time. Without accounting for the
possibility of participant fatigue, we estimate that it would have required at
least 6 h to acquire the sameamount ofRPEdata (12-fold reductionusingP-
GAN), illustrating how the integration of AI into the overall image acqui-
sition pipeline can enable novel experimental design of imaging sequences
(so as not to relegate AI to only the post-processing regime). On top of the
time spent on image acquisition, it must be noted that data handling after
image acquisition is an order of magnitude more costly than the image
acquisition itself. In our current AO-OCT imager13, which acquires streams
of raw data at a rate of 640 MB/s (expected to increase substantially with
technological advancements), a typical scanning session quickly adds up to
terabytes of data for a single participant because of the requirements of
averaging (Supplementary Table 11).With P-GAN enabling recovery of the
cellular features from a single acquired AO-OCT volume, a 12-fold
reduction (2.8 TB for averaging compared to 0.23 TB using P-GAN) in the
size of the raw data was achieved. Post-processing of this data to correct for
eyemotion andother artifacts requires intense computational resources and
the processing time for a typical scanning session (four locations with
averaging) is on the order of one day or more. The post-processing for 63
locations imaged with repeated averaging would have taken an estimated
13days as opposed toonly 2.7 husing the strategyof cellular recovery froma
single acquired volume using P-GAN (116-fold reduction). Overall, con-
sidering both the image acquisition time as well as post-processing time, the
generation of a 63 location montage was achieved with a substantial time
savings of 99-fold.

This paper contributes to the growing trend of using AI for improving
spatial or temporal resolutionandenhancingSNR in thefields of biomedical
imaging20,52,53 and biologicalmicroscopy54–56, especially in the area of speckle
noise. Unlike other sources of noise, speckle noise is particularly trouble-
some to handle due to its complex nature, non-Gaussian distribution, and
multiplicative nature57 (as opposed to additive noise). Consequently,
althoughpromising, traditional approaches suitable for the removal ofmore
classical types of noise did not perform aswell as P-GAN. In the case of RPE
imaging, therewas no visible evidence of cellular structure in single volumes
due to the overwhelming presence of speckle noise.Givenour demonstrated
success in applying P-GAN to this problem, we anticipate the possibility of
applying AI to other applications affected by speckle noise in which aver-
aging of sequentially acquired volumes is essential, such as AO-OCT ima-
ging of the transparent inner retinal cells (e.g., ganglion cells)58 and optical
coherence tomography angiography (OCTA)59–62.

Future application of our approach to diseased eyes will first require
consensus on image interpretation of diseased RPE which can have sub-
stantial differences in contrast, appearance, and size when compared to
healthy RPE cells63. Also, images of diseased RPE cells will need to be
captured in an appropriately sized training dataset. As it is generally more
challenging to obtain high-quality images from patients with disease, due in
part to the limited amount of clinic time that may be available for assess-
ment, we are hopeful that future improvements using AI-assisted AO
imagingwill be transformative.Nonetheless, establishing a larger normative
database of healthy RPE images is a critical step for comparison with
diseased eyes.

In conclusion, we introduced an AI-assisted strategy to enhance the
visualization of the cellular details from a single speckle-obscured AO-OCT
image that can potentially transform the way in which imaging data is

acquired.Not only does this strategy enable thewide-scale visualization and
noninvasive assessment of cellular structure in the living human eye, but
also, it substantially reduces the time andburdenof data handling associated
with obtaining data. These advances help to make AO imaging more
accessible for routine clinical application and are critical steps towards
clarifying our understanding of the structure, function, and pathophysiol-
ogy of blinding retinal diseases.

Data availability
Datasets used for training and validation are not publicly available due to
their containing information that could compromise the privacy of research
participants. Requests to access the training and validation datasets should
be directed to the corresponding author. It may be possible to make data
available as part of a future academic collaboration through institutional
collaboration agreements and additional IRB approval.

Code availability
A TensorFlow implementation of P-GAN is publicly available in the
Zenodo repository (https://doi.org/10.5281/zenodo.10455740).
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