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Abstract

Background Digital health technologies show promise for improving the measurement of
Parkinson’s disease in clinical research and trials. However, it is not clear whether digital
measures demonstrate enhanced sensitivity to diseaseprogression compared to traditional
measurement approaches.
Methods To this end, we develop a wearable sensor-based digital algorithm for deriving
features of upper and lower-body bradykinesia and evaluate the sensitivity of digital
measures to 1-year longitudinal progression using data from the WATCH-PD study, a
multicenter, observational digital assessment study in participants with early, untreated
Parkinson’s disease. In total, 82 early, untreated Parkinson’s disease participants and 50
age-matched controls were recruited and took part in a variety of motor tasks over the
course of a 12-month period while wearing body-worn inertial sensors.We establish clinical
validity of sensor-based digital measures by investigating convergent validity with
appropriate clinical constructs, known groups validity by distinguishing patients from
healthy volunteers, and test-retest reliability by comparing measurements between visits.
Results We demonstrate clinical validity of the digital measures, and importantly, superior
sensitivity of digitalmeasures for distinguishing 1-year longitudinal change in early-stagePD
relative to corresponding clinical constructs.
ConclusionsOur results demonstrate the potential of digital health technologies to enhance
sensitivity to disease progression relative to existing measurement standards and may
constitute the basis for use as drug development tools in clinical research.

Given the slow evolution of progressive neurological disorders there is a
need to improve the longitudinal measurement of signs and symptoms to
allow for more effective patient selection andmonitoring in clinical trials of
novel therapies. This is especially true in Parkinson’s disease (PD), where
few objective biomarkers for diagnosis, progression, and disease severity
currently exist1. There is increasing focus on the development of disease-
modifying treatments designed to slow or stop progression of disability, and
intervening at the earliest stages of disease may enable prevention of long-

term, irreversible neural damage2. However, measuring changes in subtle
signs and symptoms early in the course of PD is challenging with existing
instruments such as the Movement Disorder Society Unified Parkinson’s
Disease Rating Scale (MDS-UPDRS) due to inter- and intrarater variability
as well as low temporal resolution3–5.

PD serves as a potent test-case for evaluating the promise and utility of
digital health technologies (DHTs) for longitudinal monitoring given that
early cardinal motor signsmay be detected using inertial measurement unit
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Plain language summary

Parkinson’s disease can impact a person’s
ability to move, which can result in slow or
rigid movements. Wearable sensors can be
used to measure these symptoms and could
be particularly useful to detect changes early
in the course of the disease when symptoms
may be subtle. We developed a wearable
sensor-basedmethod tomeasuremovement
in people with early Parkinson’s disease that
useswrist and foot-worn sensors.Our results
demonstrate that our sensor-based mea-
surements can accurately quantify pro-
gressive changes in movement function.
Such measurements may allow researchers
to more accurately evaluate how well treat-
ments designed to slow the course of Par-
kinson’s disease are working in the future.
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(IMU)-based wearable sensors6. DHTs provide a unique opportunity to
derive objective, high resolution, and less variable endpoints for therapeutic
trials in early PD, painting a fuller and more meaningful picture of disease
burden7. Ultimately, this may lead to more sensitive measures of functional
impairment and response to treatment enhancing the efficiency of long-
itudinal clinical research and trials.

Research using wearable sensors to measure motor symptoms in PD
has expanded considerably in recent years, especially as commercial devices
including IMUs have become more widely available8. Various studies have
demonstrated validity ofDHTs inmeasuring the signs and symptomsof PD
compared to ground truth systems and clinical constructs, as well as mea-
suring response to symptomatic therapies9–11. For example, Lipsmeier et al.12

demonstrated adherence, reliability, and construct validity of a smartphone-
and smartwatch-based DHT that measures symptoms across a variety of
domains, including bradykinesia, bradyphrenia and speech, tremor, gait
and balance in early PD12. Similarly, Burq et al.13 demonstrated adherence,
reliability, convergent validity, and sensitivity to treatment for a
smartwatch-based virtual exam to measure severity of upper-extremity
bradykinesia, rest tremor, and gait13. However, there has been limited focus
on the sensitivity of DHT-based measures to changes in function over
time14,15, a critical component of adequate clinical validation especially in
progressive disorders16–19. Moreover, few studies have examined compar-
isons between digital measures and standard clinical measures in their
ability to detect changes in PD motor signs in the earliest stages of disease.

In the current work, we focus on one cardinal motor symptom of PD,
bradykinesia, to investigate the sensitivity of digital measurement relative to
traditional clinical assessment in measuring longitudinal changes in early-
stage PD patients. For bradykinesia symptomatology, several wearable-
based methods have been proposed and validated for at-home20–27 and
assessment-based28–31 measurement. However, few are openly available for
researchers to validate or improve using external datasets, and none have
been used to investigate sensitivity to longitudinal disease progression32,33.
To this end, we describe and make available heuristic algorithms for
extracting clinical features of upper and lower extremity bradykinesia
during pronation-supination and toe-tapping tasks using an IMU-based
device worn on the wrist or foot, respectively. We demonstrate clinical
validity of this approach by verifying relationships with appropriate clinical
constructs. Importantly, we demonstrate enhanced sensitivity of digital
measures relative to corresponding MDS-UPDRS items and sub-scores to
distinguish change over a 1-year period in early-stage PD patients. Our
results provide preliminary evidence to support enhanced sensitivity of
digital measurements in their ability to detect changes in PD motor signs
over time compared to traditional clinic-based assessment.

Methods
Participants and procedure
Themulticenter, observationalWATCH-PD (Wearable Assessment in The
Clinic and at Home in PD) (NCT03681015) study recruited 82 early,
untreated PD patients and 50 age-matched non-PD participants over the
age of 30 to take part in a variety of gait, bradykinesia, and tremor related
tasks both in-clinic and at home over the course of a 12-month period (see
Adams et al.11). Participants were recruited from clinics, study interest
registries, and social media and enrolled at 17 Parkinson Study Group
research sites. A limitation of the study population is that participants were
largely white and well-educated, however the demographic profile of par-
ticipants mirrored that of larger, similar observational studies in PD on
which the current study was modeled34. Principal inclusion criteria for
participants with PD were age 30 or greater at diagnosis, disease duration
less than 2 years, and Hoehn and Yahr stage two or less. Exclusion criteria
included baseline use of dopaminergic or other PD medications and an
alternative parkinsonian diagnosis. The studywas powered to detect amean
change in MDS-UPDRS Part III of 6.9 over 12 months and yield 30 parti-
cipants completing the study off medication, accounting for up to half of
participants to begin dopaminergic therapy and 15% drop out.

In-clinic assessments were performed at baseline and 1, 3, 6, 9, and
12 months. Participants were instrumented with 5 APDM Opal wearable
sensor devices (Clario, Inc.), placedonboth feet andwrists, and on the lower
back35. Investigators completed and scored all components of the MDS-
UPDRS while devices contemporaneously collected triaxial accelerometer,
gyroscope, and magnetometer data with a sampling rate of 128Hz. The
analysis presented was limited to data from pronation-supination and toe-
tapping bradykinesia assessments from part III of the MDS-UPDRS, given
that thesewere the only tests that could be reasonably expected to generate a
robust signal with foot andwrist mounted sensors. Total bradykinesia score
was calculated by summing MDS-UPDRS items 3.4–3.9 and 3.13–3.14.

Following removal of participant assessments with missing clinical
scores, technical problems with data capture, or less than a threshold of 5
movements detected, data from 76 PD participants (age = 64.1 ± 9.4 years,
32 F, body mass index (BMI) = 27.1 ± 4.7) and 40 non-PD participants
(age = 60.8 ± 10.1 years, 23 F, BMI = 27.0 ± 8.0) were included in the
pronation-supination analysis at baseline.At thefinal 12-month visit, due to
the reasons mentioned above as well as participant drop out, data from 52
PD and 35 non-PD participants were available for analysis. For the toe-
tapping analysis, data from78PDpatients and39non-PDparticipantswere
available at baseline for analysis. At the final 12-month visit, data from 56
PD patients and 35 non-PD participants were available for analysis.

Ethics
The WCGTM Institutional Review Board approved (IRB Tracking #:
20183288) the procedures used in the study, and there was full compliance
with human experimentation guidelines. All participants provided written
informed consent before study participation.

Feature extraction
Device orientation data (Euler angles) from sensors placed on the wrist and
foot on themost affected side during pronation-supination and toe-tapping
tasks, respectively, were used to derive digital features from PD patients. In
non-PD participants, sensor data from the dominant hand was used for the
analysis, as determined by the Edinburgh Handedness Inventory.

In order to mirror the key attributes scored by clinicians during the
MDS-UPDRS Part 3 clinician ratings, signal processing-based feature
extraction focused on the domains of speed, amplitude, rhythm, slowing of
movement, and decrementing amplitude (Fig. 1). Specifically, amplitude,
frequency, and max velocity were derived for each pronation-supination
and toe-tapping movement, and summarized across each task using med-
ian, variability, and slope statistics (Fig. 1). Eachmovement was detected by
band pass filtering (0.3–20Hz second-order Butterworth filter) raw Euler
angle data, spline interpolating, and implementing a peak detection algo-
rithm, similar to the method previously described by Martinez-Manzanera
et al.29. Pseudocode is available in the Supplementary Data.

Statistics and reproducibility
Composite digital scores for pronation-supination and toe-tapping tasks
were derived using unweighted z-score summation. Specifically, three
summary metrics (median, standard deviation, and slope) were used to
summarize each of three individual movement features (frequency,
amplitude, and max velocity) across each assessment. Normalized z-scores
are calculated for each of the resulting 9 features per assessment (Supple-
mentary Table 1).Z-scores are estimated by normalizing each feature by the
corresponding feature in non-PD controls from the baseline visit (Eq. (1)).
For example, in the case of slope frequency, slope frequency for each
assessment is subtracted by the mean of the slope frequency in non-PD
controls at baseline and the resulting value is divided by the standard
deviation of slope frequency in non-PD controls at baseline:

Z score ¼ðfeature�meanðfeature in nonPDat baselineÞÞ=
sdðfeature in nonPD at baselineÞ ð1Þ
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Next, for each assessment, z-scores for slope and mean features are
multiplied by−1 to produce the opposite value and ensure that all z-score
features increase based on increasing impairment, analogous to MDS-
UPDRS ratings. Lastly, the nine z-score values are summated for each
assessment into a single digital composite score per participant/visit. Of
note, the digital composite score is unweighted, in that individual z-scores
are not weighted or optimized toward enhanced sensitivity in any way prior
to summation.

Comparisons of digitalmeasuresbetweenbaseline and12-monthvisits
were made using paired two-sided Wilcoxon rank-sum tests, Cohen’s d
standardized effect size, and the proportion of participants whose score
increased from baseline to month 12. Spearman correlation and the
Kruskal–Wallis test were used to compare digital measures with MDS-
UPDRS clinical scores. Unpaired two-sidedWilcoxon rank-sum tests were
used for comparisons between discrete clinical scores and for evaluating
known groups validity. Test-retest reliability was assessed using intraclass
correlation coefficients (ICC) (two-way random effects, absolute agree-
ment) and Pearson correlations between concurrent visits. Test-retest
reliability between visits was assessed according to criteria suggested by
Cichetti et al.36. Statistical analysis was performed using R v4.2.137.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Digital composites demonstrate enhanced sensitivity to disease
progression compared to corresponding clinical measurements
In order to investigate how individual digital features contribute to long-
itudinal disease sensitivity, we compared digital features between baseline
and 12months using pairedWilcoxon signed rank tests in both healthy and
PD participants. Out of 9 individual digital features, only slope amplitude
and slope maximum velocity demonstrated significant differences between

baseline and 12 months for pronation-supination assessments, though
several trended toward significance (Supplementary Table 1). For toe-
tapping assessments, only slope frequency demonstrated significant change
between baseline and 12 months. In order to combine component features
into a single generalized score, we performed unweighted z-score summa-
tion to derive a pronation-supination digital composite score and a toe-
tapping digital composite score. Interestingly, although few individual
digital features demonstrate strong sensitivity to longitudinal change, both
pronation-supination (Wilcoxon p = 0.018, V = 429, CI: −2.76–−0.27,
effect size = 0.45, proportion = 0.62) and toe-tapping (Wilcoxon p = 0.011,
V = 485, CI: −1.83–−0.23, effect size = 0.30, proportion = 0.66) composite
scoresdemonstrated significant differences betweenbaseline and12months
(Fig. 2a, c). Thus, composite summarization of features may better capture
the heterogeneous manifestation of bradykinesia, leading to an additive
effect of individual features that increases sensitivity to change.

Next, we compared digital composite scores for both pronation-
supination and toe-tapping to relevant scores from the MDS-UPDRS. As
stated previously, digital composite scores significantly distinguished
between baseline and 12 months in PD patients (Fig. 2a, c). In contrast,
neither MDS-UPDRS pronation-supination score (Wilcoxon p = 0.919,
V = 193.5,CI:−1.00–0.50, effect size = 0.00, proportion = 0.29), toe-tapping
score (Wilcoxon p = 0.622, V = 254.5, CI: −1.00–0.00, effect size = 0.08,
proportion = 0.36), or total bradykinesia score (Wilcoxon p = 0.178,
V = 398,CI:−2.50–0.50, effect size = 0.10, proportion = 0.62)demonstrated
significant differences between baseline and 12 months in PD or healthy
comparison participants (Fig. 2b, d and Supplementary Fig. 1b). MDS-
UPDRS total part 3 score trended toward significance (Wilcoxon p = 0.087,
V = 501, CI: −4.00–0.50, effect size = 0.15, proportion = 0.63) and sig-
nificant differences between baseline and 12 months were seen with MDS-
UPDRS total score (Wilcoxon p = 0.036, V = 420, CI: −6.50–0.50, effect
size = 0.21, proportion = 0.62) (Supplementary Fig. 1d).

In healthy participants, the digital pronation-supination composite
score did not demonstrate significant change (Wilcoxon p = 0.904,V = 307,

Fig. 1 | Digital feature derivation from a pronation-supination assessment.
aEuler angle and gyroscope data derived from a sensor-fusion based approach43 over
several seconds is presented during a pronation-supination assessment. b Sensor
axes in the direction of movement for pronation-supination and toe-tapping
assessments were used for data processing. c Euler angle data from the appropriate
axis for each assessment was algorithmically processed to identify start and end

timings of each pronation-supination or toe-tapping movement. Frequency,
amplitude, and velocity were derived for each movement and summarized across
each task using median, variability, and slope, producing a total of 9 digital features
per assessment. Finally, unweighted z-score summation was performed to derive a
single digital composite score per assessment.
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CI: −0.96–0.93, effect size = 0.00, proportion = 0.54) between baseline and
12 months (Fig. 2a). However, surprisingly, the digital toe-tapping com-
posite did significantly distinguish between baseline and 12 months (Wil-
coxon p = 0.011, V = 468, CI: 0.29–2.10, effect size = 0.43,
proportion = 0.26), albeit, in the opposite direction as PD patients (Fig. 2c),
suggesting improved performance over the course of 12 months in healthy
relative to PD participants. It may be the case that the improved perfor-
mance in healthy participants between baseline and 1-year visits demon-
strates a learning effect, which is plausible given healthy volunteers generally
lack previous experience conducting bradykinesia-related assessments
whereas PD patients may have completed these assessments as part of
clinical care or participation in research studies. Our results demonstrate
that bradykinetic symptomprogressionmeasuredvia pronation-supination
and toe-tapping movements is detectable over 1 year in early PD using
digital composite scores whereas such progression is not observed onMDS-
UPDRS Part 3 total bradykinesia or item scores.

To evaluate how much time is needed to measure a change in brady-
kinesia severity, we evaluated whether digital composites or MDS-UPDRS
scoreswere able todistinguish between timepoints less than 12months. The
pronation-supination (Wilcoxon p = 0.060, V = 545, CI:−2.08–0.04, effect
size = 0.27, proportion = 0.60) and toe-tapping (Wilcoxon p = 0.239,
V = 653, CI: −1.48–0.39, effect size = 0.19, proportion = 0.57) digital com-
posites trend to some extent toward distinguishing between baseline and
9 months. Pronation-supination (Wilcoxon p = 0.962, V = 277.5, CI:
−0.50–0.50, effect size = 0.02, proportion = 0.33) and toe-tapping (Wil-
coxon p = 0.403, V = 251.5, CI: −1.00–0.00, effect size = 0.11, propor-
tion = 0.34) MDS-UPDRS scores do not distinguish between baseline and
9months. Neither digital composites norMDS-UPDRS scores demonstrate
significant changes between baseline and 6 months or baseline and
3 months. Based on our results, a minimum of 12 months was required to
measure strong change in bradykinesia severity using digital composites in
our study population.

Of the 52 PD participants in the pronation-supination analysis and 56
PD participants in the toe-tapping analysis, 14 matriculated to a symptom
managing medication at some point over the course of the 12-month study
period. To evaluate the sensitivity of the digital composites in absence of
symptomatic medications, change from baseline to the 12-month visit was
investigated following removal of 14 patients who commenced medication
at any point during the study. Distinguishability between baseline and
12 months increased for both pronation-supination (Wilcoxon p = 0.006,
V = 161, CI: −3.55–−0.57, effect size = 0.62, proportion = 0.67) and toe
tapping (Wilcoxon p = 0.007, V = 186, CI: −2.28–−0.44, effect size = 0.35,
proportion = 0.66) digital composites as well as pronation-supination
(Wilcoxon p = 0.488, V = 78.5, CI: −1.00–0.50, effect size = 0.12, propor-
tion = 0.33) and toe-tapping (Wilcoxon p = 0.046, V = 94, CI: −1.00–0.00,
effect size = 0.34, proportion = 0.5) MDS-UPDRS sub-scores.

The overall increase in sensitivity of digital and clinical measures
suggest that bradykinesia symptoms are to some degree masked in the
presence of a symptomatic treatment, which is consistent with previous
work using standard clinicalmeasures14,38. It is noteworthy, in the context of
real-world settings where patients may begin or continue to take symptom
managing medication in parallel with interventions that may slow the
course of PD, that digital measurement tools are sensitive to change in
function even in the presence of symptomatic treatments. To this end, in a
typical care setting it is important to understand progressive changes in
function even when symptoms appear to be controlled by standard of care
symptomatic treatments such as carbidopa/levodopa.

Digital composites demonstrate convergent validity with MDS-
UPDRS item scores and subscores
To evaluate the validity of pronation-supination and toe-tapping digital
composite scores in relation to the same constructs measured via the
MDS-UPDRS, we investigated the relationship between digital composites
and corresponding MDS-UPDRS items and sub-scores. The digital

Fig. 2 | Enhanced sensitivity of digital composites to 1-year longitudinal pro-
gression compared to UPDRS pronation-supination score. a Digital pronation-
supination composite scores significantly distinguished between baseline and
12-month visits in PD patients (n = 52), whereas no difference was seen in healthy
participants (n = 35). b In contrast, MDS-UPDRS pronation-supination scores
demonstrated no difference between baseline and 12-month visits in healthy or PD

participants. c Similarly, digital toe-tapping composite scores significantly dis-
tinguished between baseline and 12-month visits in PD patients (n = 56), suggesting
worsening performance, and significantly distinguished healthy participants
(n = 35) in the opposite direction, suggesting improved performance. d MDS-
UPDRS toe-tapping scores demonstrated no difference between baseline and
12-month visits in healthy or PD participants.
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pronation-supination composite score demonstrated a significant rela-
tionship with MDS-UPDRS pronation-supination item score (item 3.6;
Kruskal–Wallis p = 0.028; Spearman’s rho = 0.31, p = 0.007) (Fig. 3a). The
digital pronation-supination composite score significantly distinguished
between scores of 0 and 1 (Wilcoxon p = 0.02), but not between scores of 1
and2, or 2 and3. Similarly, thedigital toe-tapping composite score showed a
significant relationshipwithMDS-UPDRS toe-tapping item score (item3.7;
Kruskal–Wallis p = 0.001; Spearman’s rho = 0.38, p < 0.001) (Fig. 3b). The
digital toe-tapping composite score significantly distinguished between
scores of 0 and 1 (Wilcoxon p < 0.001), but not between scores of 1 and 2, or
2 and 3. Our results demonstrate evidence to support a good relationship
between digital composite scores and their corresponding clinical
constructs.

Digital composites demonstrate known groups validity
To further investigate the validity of digital composites for pronation-
supination and toe-tapping assessments, we evaluate the ability of these

measures to differentiate between PD and healthy comparison
participants at Baseline. Both pronation-supination (Wilcoxon p < 0.001,
W = 757, CI: −4.86–−1.96) and toe-tapping (Wilcoxon p = 0.029,
W = 1143, CI: −2.23–−0.13) digital composites demonstrate significant
differences between PD and non-PDparticipants (Fig. 4a, c). Likewise, both
MDS-UPDRS pronation-supination (Wilcoxon p < 0.001, W = 278,
CI: −1.00–−1.00) and toe-tapping (Wilcoxon p < 0.001, W = 510, CI:
−1.00–−1.00) sub-scores significantly distinguished between PD and non-
PDparticipants (Fig. 4b, d). In addition todigital composites, themajority of
individual digital features significantly distinguished between PD and non-
PDparticipants for bothpronation-supination and toe-tapping assessments
(Supplementary Table 2).

We also conducted an ROC-AUC sensitivity analysis to investigate the
ability of digital composites and MDS-UPDRS scores to differentiate PD
fromnon-PDpatients at baseline (Supplementary Fig. 2). Digital composite
scores distinguished between PD and non-PD participants for both
pronation-supination (AUC= 0.751) and toe-tapping (AUC= 0.624), as

Fig. 3 | Convergent validity of digital composites. Digital composite scores vary
significantly with MDS-UPDRS pronation-supination (Kruskal–Wallis p = 0.028,
n = 76) and toe-tapping (Kruskal–Wallis p = 0.001, n = 78) scores at the baseline
visit. Both (a) pronation-supination (Wilcoxon p = 0.02) and (b) toe tapping

(Wilcoxon p < 0.001) digital composite scores significantly distinguished between
scores of 0 and 1, though, did not differentiate between scores of 1 and 2, or 2 and 3
(sample sizes and summary metrics for each individual clinical score is available
in Supplementary Data).

Fig. 4 | Known groups validity of digital composites. Both (a, b) digital composite
scores (Wilcoxon p < 0.001) and MDS-UPDRS pronation-supination scores (Wil-
coxon p < 0.001) significantly distinguished between healthy (n = 40) and PD

(n = 76) participants. Likewise, both (c, d) digital composite scores (Wilcoxon
p = 0.029) and MDS-UPDRS toe-tapping scores (Wilcoxon p < 0.001) significantly
distinguished between healthy (n = 39) and PD (n = 78) participants.
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did MDS-UPDRS pronation-supination (AUC= 0.910) and toe-tapping
(AUC = 0.832) scores. Based on our results, whereas digital composites
showed increased sensitivity to change in function over time,MDS-UPDRS
item scores showed better ability to differentiate PD from non-PD partici-
pants at baseline. One explanation that MDS-UPDRS bradykinesia scores
demonstrate strong distinguishability between PD and non-PDmay be that
bradykinesia is a cardinal motor sign and part of primary differential
diagnostic criteria (alongside resting tremor and rigidity) according to UK
Brain Bank standards. Thus, since PD participants in this study had a
confirmed diagnosis of PD and may have been up to 2 years past initial
diagnosis, it would be expected that bradykinesia scores on the MDS-
UPDRS, whichmay also be used during diagnosis, showed enhanced ability
to differentiate between the two groups in this study. However, given that
bradykinesiamay emerge up to a decade prior to a formal diagnosis of PD39,
and our results showing increased sensitivity of digital bradykinesia mea-
sures to progression, these digitalmeasuresmay similarly provide enhanced
sensitivity to the initial detection of PD-related bradykinesia prior to clinical
diagnosis. Further research should be conducted to investigate digital
measure capability in a diagnostic capacity.

Digital composites demonstrate moderate test-retest reliability
In order to evaluate test-retest reliability of digital features, PearsonR values
and intraclass correlation coefficients were calculated between baseline and
1-month visits in both healthy and PD participants. Follow-up visits at 1
month were chosen to both decrease repeat testing burden within a single
clinic visit and to alignmore closelywith previousmultisite studies designed
to examine test-retest reliability of the MDS-UPDRS in early PD patients40.
In healthy participants, digital composite scores for both pronation-
supination (Pearson R = 0.42, p = 0.016; ICC = 0.40) and toe-tapping
(Pearson R = 0.51, p = 0.004; ICC = 0.5) demonstrated moderate test-
retest reliability between baseline and 1-month visits (Fig. 5a, b and Sup-
plementary Table 3). In PD participants, digital composite scores for
pronation-supination (Pearson R = 0.54, p < 0.001; ICC = 0.52) and toe-
tapping (Pearson R = 0.32, p = 0.013; ICC = 0.31) demonstrated moderate
and poor test-retest reliability, respectively, between baseline and 1-month

visits (Fig. 5c, d and Supplementary Table 4). As indicated by the linear
regression line (in black) relative to a slope of 1 (in blue), across both healthy
and PD participants, poorer performance at baseline resulted in relative
improvement at 1 month, and better performance at baseline resulted in
relative worsening at 1 month (Fig. 5).

Interestingly, pronation-supination digital composite test-retest relia-
bility improved for both healthy and PD participants during later assess-
ments when comparing between 9-month and 12-month visits,
demonstrating excellent reliability in healthy participants (ICC = 0.75), and
good reliability in PD participants (ICC = 0.69) (Supplementary
Tables 3 and 4). Improved pronation-supination test-retest reliability later
in the study may have been due to participants increased familiarity with
performance of the assessment over the length of the study. However, this
was not consistently the case for toe-tapping, as digital composite test-retest
reliability between 9-month and 12-month visits improved from poor to
moderate (ICC = 0.5) in PD participants but worsened from moderate to
poor in healthy participants (ICC = 0.3) (Supplementary Tables 3 and 4).

Discussion
Development of objective clinical measurements to assess the longitudinal
status of disease is important for clinical research and therapeutic devel-
opment, especially in PD where few objective biochemical, genetic, or
imaging biomarkers exist. Our results demonstrate that digital composite
measures for upper and lower extremity bradykinesia are more sensitive to
1-year longitudinal disease progression in early PD than corresponding
MDS-UPDRS items (Fig. 2 and Supplementary Fig. 1). This provides pre-
liminary evidence for enhanced sensitivity of digital measures for mon-
itoring change in PDmotor signs over time relative to currentmeasurement
standards. Digital measures were also able to differentiate between PD and
healthy comparison participants and showed convergent validity with
corresponding MDS-UPDRS items and sub-scores. Moderate test-retest
reliabilitywas seen between baseline and 1-month visits. Froma clinical trial
perspective, better measures of progression are needed to optimize trial
designs and decrease the duration needed to detect signals of efficacy in
proof-of-concept trials of novel therapies. The current results represent a

Fig. 5 | A moderate relationship exists between digital composite values derived
between baseline and 1-month visits. Represented with black lines, significant
linear relationships existed (p < 0.016) and Pearson R coefficients varied between

0.32 and 0.54 across (a, b) pronation-supination assessments and (c, d) toe-tapping
assessments in both PD and healthy participants (a: n = 33; b: n = 31; c: n = 55; d:
n = 59). For reference, blue lines demonstrate a slope of 1.
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step toward better long-term characterization of disease course and
response to treatment in PD patients that may ultimately lead to enhanced
therapeutic trials and care.

Our results support the use of digital health technologies in providing a
more sensitive evaluation of bradykinesia than the corresponding MDS-
UPDRS items. The ability of objective IMU-based measures to quantify
more subtle changes in bradykinesia versus clinical examination likely led to
the enhanced sensitivity observed inour study.However, in ouropinion, it is
likely that sensitivity could be improved further. Our study focused on data
collected during periodic in-clinic assessments that may not capture day to
day fluctuation in bradykinesia. One promise of DHTs is the ability to
conduct more frequent remote assessments or passive monitoring in at-
home settings to capture fluctuations and provide amore accurate snapshot
of function at a given point in time. It is likely that sensitivity could be
increased further if measurements were taken more frequently in home
environments, which is feasible given the minimal sensor requirements for
upper and lower extremity bradykinesia measurement presented here.
Furthermore, composite scores developed for this study were unweighted,
and it may be feasible to apply various optimization methodologies to
further enhance sensitivity to changes in bradykinesia over time.

Our results also suggest that composite scoring may be an effective
method to enhance sensitivity to the progression of bradykinesia or other
factors, likely due to heterogeneity in the way bradykinesia may manifest
across individuals during structured tasks. The demonstrated composite
approach attempts to better align sensor-based measures with how brady-
kinesia is clinically assessed, namely by examining multiple features,
including amplitude, speed, and decrement over time of repetitive move-
ments. Interestingly, unweighted z-score digital composites that included all
9 algorithmically derived features demonstrated significant change over 1
year in PD patients, however, the majority of individual digital features for
pronation-supination (7/9) and toe-tapping (8/9) did not demonstrate
significant change over 1 year. Thus, our results provide evidence that
composite scoring may enhance sensitivity to progression by combining
various individual features that donot individually change significantly over
timebut likely trend in a commondirection. It is alsopossible that individual
features have reduced statistical power compared to a composite score given
that characteristics of bradykinesiamaybeheterogenous acrossPDpatients.
For instance, the pathophysiology of bradykinesia encompasses multiple
factors, including muscle weakness, rigidity, tremor, movement variability,
and slowing of thought, and depending on an individual’s unique disease
progression, the characteristics of bradykinesia exhibited may vary41.
Therefore, digital measurement composite scoring methodologies may
enable increased generalizability of motor impairment evaluation in het-
erogenous patient populations, and may be broadly applicable to other
DHT-derived measures in this population.

Furthermore, signal processing-based approaches and composite
scoring may also facilitate interpretable, generalizable digital measurements
that can be more readily understood in therapeutic trials or care. The algo-
rithm presented in this work derives 9 digital features related to clinical
characteristics of bradykinesia, including speed, amplitude, rhythm, slowing
of movement, and decrementing amplitude, which are described in the
MDS-UPDRS(Fig. 1). Interpretability ofdigital features is important inorder
for clinicians and researchers to comprehend and utilize results derived from
DHTs in a predictable manner42. Our results suggest that a small number of
heuristically derived signal features that parallel thosemeasuredby a clinician
during a routine motor examination can be represented objectively by data
collected via body worn IMUs during the same examination.

A limitation with the digital measures derived in this study was the
moderate to poor test-retest reliability seen with the digital bradykinesia
composite scores between baseline and 1-month visits (Fig. 5 and Supple-
mentary Tables 3 and 4). Despite these results, test-retest reliability of the
digital composites improved by the end of the study in PD patients with
good reliability (ICC = 0.69) for pronation-supination and moderate

reliability (ICC = 0.49) for toe-tapping assessments. Pronation-supination
test-retest reliability also improved to excellent (ICC = 0.75) in healthy
participants, however, worsened to poor for toe-tapping (ICC = 0.3). It is
possible participants felt more comfortable with the assessments toward the
end of the study leading to more stable performance during clinician-led
elicitations, thus reducing variability between assessments. However,
improvements in assessment standardization may further improve test-
retest reliability in future studies. Because recordings were made con-
temporaneously with clinician ratings, the number of movements per
assessment used for analysis varied considerably, from 5 to 25 in the case of
pronation-supination. Future efforts to standardize assessmentsmay lead to
improved test-retest reliability, including tactics such as completing elici-
tations for standardized periods of time (e.g., 5 s), increasing the number of
assessments over shorter periods of time, or more explicitly standardizing
sensor positioning. To this end, more consistent, standardized assessments
conducted in remote settings would seem feasible given the algorithm
presented and minimal sensor requirements. Furthermore, minimizing
time between assessments may help to mitigate any changes in assessment
performance due to disease progression.

Furthermore, a limitation of the digital composites was the inability to
distinguish between MDS-UPDRS scores of 1, 2, and 3. The inability to
distinguish scores of 1, 2, and3maybedue to several potential reasons. First,
clinical ratings are not necessarily an objective ground truth for disease
impairment. For example, clinician ratings are subjective and canvary based
on the experience of the clinician, leading to inter- and intrarater variability.
Second, the nature of comparing an ordinal with a continuous scale is
challenging. For example, aparticipant thatmay fall between a scoreof 1 and
2 on a linear scale, must be grouped into either 1 or 2 in an ordinal scale,
creating discrepancy between the two scales. Lastly, sample sizes of each
individual clinical score (0, 1, 2, and 3) are relatively low in this study.
Specifically, for pronation-supination sample sizes were 9, 38, 17, and 12,
and for toe tapping sample sizes were 15, 33, 19, and 11 for scores of 0, 1, 2
and 3, respectively. Thus, it is difficult tomake strong conclusions related to
the ability of the digital composites to distinguish between clinical scores.
However, future studies with larger sample sizes may help to further opti-
mize the algorithm and evaluate construct validity with greater
statistical power.

Digital health technologies have great potential for improving the
clinical assessment of motor features in early PD, however there is a lack of
data demonstrating thatmeasures derived fromDHTs aremore sensitive to
decline in function over time. Our results suggest that digital measures may
enhance sensitivity to the progression of bradykinesia in early PDcompared
to traditional assessments. Future research should extend our findings by
evaluating the sensitivity of digital measures to disease progression and
treatment effects relative to current clinical assessments across indications
and disease stages.

Data availability
The data that support the findings of this study are not openly available due
to data privacy controls in place as part of the consortium that this work
support, and all data are available to members of the Critical Path for
Parkinson’s Consortium3DT Initiative Stage 2. For thosewho are not a part
of 3DT Stage 2, a proposal may be made to the WATCH-PD Steering
Committee (via the corresponding author) for deidentified baseline data-
sets.Weareunable toprovide the rawnumerical data for Figs. 2–5due to the
requirement that data is restricted to members of the Critical Path for
Parkinson’s Consortium 3DT Initiative Stage 2. The summary statistics
underlying Figs. 2–5 are available in the Supplementary Data.

Code availability
Pseudocode is available within the Supplementary Information (Supple-
mentary Note). Additional code that is specific to our data pipeline is
available from the authors upon request.
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