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Proteomeprofilingofhome-sampleddried
bloodspots revealsproteinsofSARS-CoV-
2 infections
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Abstract

Background Self-sampling of dried blood spots (DBS) offers new routes to gather valuable
health-related information from the general population. Yet, the utility of using deep
proteome profiling from home-sampled DBS to obtain clinically relevant insights about
SARS-CoV-2 infections remains largely unexplored.
MethodsOur study involved 228 individuals from the general Swedish populationwho used
a volumetric DBS sampling device and completed questionnaires at home during spring
2020 and summer 2021.Usingmulti-analyteCOVID-19 serology,we stratified the donors by
their responsephenotypes, divided them into three study sets, and analyzed276proteins by
proximity extension assays (PEA). After normalizing the data to account for variances in
layman-collected samples,we investigated theassociationofDBSproteomeswith serology
and self-reported information.
Results Our three studies display highly consistent variance of protein levels and share
associations of proteinswith sex (e.g.,MMP3) andage (e.g., GDF-15). Studying seropositive
(IgG+) and seronegative (IgG-) donors from the first pandemic wave reveals a network of
proteins reflecting immunity, inflammation, coagulation, and stress response. A comparison
of the early-infection phase (IgM+IgG-) with the post-infection phase (IgM-IgG+) indicates
several proteins from the respiratory system. In DBS from the later pandemic wave, we find
that levels of a virus receptor on B-cells differ between seropositive (IgG+) and seronegative
(IgG-) donors.
Conclusions Proteome analysis of volumetric self-sampled DBS facilitates precise analysis
of clinically relevant proteins, including those secreted into the circulation or found on blood
cells, augmenting previousCOVID-19 reports with clinical blood collections. Our population
surveys support the usefulnessofDBS, underscoring the role of timing the sample collection
to complement clinical and precision health monitoring initiatives.
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Plain language summary

The COVID-19 pandemic has posed multiple
challenges to healthcare systems. A sig-
nificant gap that remains is a lack of under-
standing of the impact of SARS-CoV-2 on
individuals who did not seek or require hos-
pitalization. To address this, we distribute
self-sampling devices to random citizens,
aiming toanalyzehowbloodprotein levelsare
affected in people who have had COVID-19
but had no or mild symptoms. Conducting
multiple molecular measurements in dried
blood, our study confirms clinically known
markers and their relationship to infection
stages, even if the donors themselves collect
the sample. Our work highlights the potential
of combining self-sampling with laboratory
methods to provide useful information on
human health. This convenient patient-
centric samplingapproachmaypotentially be
useful when studying other diseases.
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More than four years since the start of the COVID-19 pandemic, withmore
than 750 million confirmed cases and nearly seven million deaths, there is
still much to learn about a coronavirus infection resulting in a wide range of
clinical manifestations. Initially considered a respiratory system disease, the
symptoms observed in COVID-19 patients have grown over time, revealing
damage to all significant physiological functions, including the cardiovas-
cular, digestive, and nervous systems1. A critical factor in COVID-19
pathogenesis is the hyperactivation of the innate immune response with
consequent cytokine storm2–5.

In the first months of the pandemic emergency, the focus was to
understand and treat severe conditions, identify effective therapies, and
reduce mortality. Indeed, significant progress has been made in under-
standing themolecularmechanismbehind the severe disease in the critically
ill and vaccine development; however, little is known about the long-term
effects in those withmild or asymptomatic forms of COVID-19. Symptoms
such as severe fatigue, memory lapses, and cardiovascular problems have
been found inmildly affectedpatients, especiallywhen symptoms last longer
and hinder recovery6. It has also been shown that even asymptomatic and
mild symptomatic infection may be associated with subclinical lung
abnormalities7,8. Population-based studies to better understand the het-
erogeneous phenotypes and genetic and environmental factors associated
with disease risk and mortality, long-term effects on an individual’s well-
being, and to identify therapies that address the molecular diversity are
consequently needed9,10. Large-scale population studies have been initiated,
but an inclusion bias may hamper the generalization of the results. The
practical challenge involves including a general population of undiagnosed
or non-hospitalized individuals (affected by mild or no symptoms).

One possibility of including a more comprehensive range of pheno-
types is using home-sampled dried blood spots (DBS). This strategy can
facilitate sample collection across hard-to-reach population groups and
reduce the risk of bias in the study design11. DBS sample collection has been
used since the ’60 s, such as for newborn screening, and DBS has been
studied with different proteomics techniques12–15. Advantages of DBS col-
lection compared to traditional blood sampling include (i) not requiring
direct contact and expertise of healthcare personnel, (ii) avoiding traveling
and visiting a healthcare center; (iii) representing a convenient format for
storage and transportation, and (iv) reduced cost both from a societal and
healthcare perspective16. The hematocrit bias and imprecision of the col-
lected blood volumes have been issues that hindered even broader use of
DBS in medical practice. However, new microfluidic-based DBS devices
have recently overcome these two drawbacks to load precise volumes of
blood17–21. Such volumetric DBS sampling devices can reduce differences in
sample quality. This enables profiling and time-resolved monitoring of
diseasemarkers collected at an individual’s home.Eventually, such tools can
allow an accurate and rapid assessment of patients during specific times of
the day, at the onset or peak of symptoms, or when seasonal exposures are
expected to influence a person’s health.

We recently observed an accumulated seroprevalence of 10% in our
previous COVID-19 DBS study22. Together with available questionnaire
data, the study prompted whether it is possible to define additional mole-
cular features of seropositive status in DBS samples. In clinical plasma and
serum samples, in-depth proteomic analysis has already delivered valuable
insights into the pathology and pathogenesis of COVID-1923–25. Our DBS
study aimed to demonstrate the utility of self-sampling and identify circu-
lating proteins associated with SARS-CoV-2 infections by considering the
serological phenotypes.

With DBS samples collected from random households in the general
population in Sweden, we compared seropositive with seronegative subjects
(study 1) and donors classified into the early or post-infection phases (study
2) from the first wave of the pandemic. We also studied seropositive and
seronegative subjects from the third wave of the pandemic who were not
vaccinated at sampling (study 3). For each study, we chose individuals
reporting congruent self-reporting symptoms and profiled 276 circulating
proteins involved in cardiovascular disease andmetabolismusingproximity
extensionassays (PEA).By studying infection-associatedprofiles inDBS,we
confirmed known infection-associated proteins and showed that multiple
biological processes are linked with different clinical manifestations of
SARS-CoV-2 infections. Analyzing samples collected in a random popu-
lation will strengthen our understanding of the molecular effects of viral
infections and health-related consequences.

Methods
Samples and sampling
Per the supplier’s instructions, capillary blood samples were obtained by
finger-pricking and applying blood droplets onto a quantitative DBS sam-
pling card (qDBS, Capitainer AB, Stockholm, Sweden). The qDBS cards
were stored at room temperature until heat treatment before extracting the
blood-filled discs.

To compare DBS and EDTA plasma, venous and capillary blood
sampleswere collected fromvolunteers (N = 12) at a healthcare center in the
Stockholm region, as previously described22. In short, venous blood was
collected through venipuncture into EDTA blood collection tubes (K2E
K2EDTAVacuette tube, #454410, Lot#A19104MX,Greiner Bio-One). The
tube was centrifuged, and the blood plasma was collected and stored at
–20 °C until further use.

In the population studies, capillary blood samples from the general
population were obtained by mailing home-sampling kits (MM20-009-01,
Capitainer AB, Sweden) to the participants. In April 2020, as previously
described22, kits and a questionnaire were sent to 2000 randomly selected
individuals (20-74 years old) in metropolitan Stockholm (Tables 1, 2). In
May 2021, kits and a questionnaire were sent to 2000 randomly selected
individuals (18–70 years old) in metropolitan Stockholm and Gothenburg

Table 1 | Demographics of seropositive and seronegative
subjects collected in 2020 (study 1)

Seropositive
(IgM+IgG+)

Seronegative
(IgM−IgG−)

P-value

Sample numbers 44 37

Sex

Female 25 (56.8%) 20 (54.1%) 0.826

Male 19 (43.2%) 17 (45.9%)

Age groups

20–29 14 (31.8%) 13 (35.1%) 1

30–39 8 (18.2%) 7 (18.9%)

40–49 8 (18.2%) 6 (16.2%)

50–59 5 (11.4%) 4 (10.8%)

60–69 8 (18.2%) 6 (16.2%)

70–74 1 (2.3%) 1 (2.7%)

Flu-like symptoms

No 4 (9.1%) 2 (5.4%) 0.417

Yes, fever 19 (43.2%) 19 (51.4%)

Yes, mild 12 (27.3%) 13 (35.1%)

Yes, severe 3 (6.8%) 0 (0%)

Missing 6 (13.6%) 3 (8.1%)

Respiratory symptoms

No 27 (61.4%) 20 (54.1%) 0.918

Yes 4 (9.1%) 5 (13.5%)

Coughing 5 (11.4%) 4 (10.8%)

Difficulty breathing 5 (11.4%) 4 (10.8%)

Both 3 (6.8%) 4 (10.8%)

Missing 0 (%) 0 (%)
*As confirmed by Fisher’s exact test result.
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(Table 3). Individuals who volunteered to participate in the study were
asked to perform self-sampling according to the instructions and return
the filled sampling card, questionnaire, and consent form by regular
mail. All cards were barcoded and stored at room temperature until
use or as stated otherwise. A longitudinal analysis included a volunteer
with a PCR-confirmed SARS-CoV-2 infection who collected DBS on
five occasions during weeks 2 to 5 after symptom onset in the early recov-
ery phase.

All blood donors gave informed documented consent. The studies
were approved by the regional ethical board (EPN Stockholm, Dnr 2015/
867-31/1) and the Swedish Ethical Review Authority (EPM, Dnr 2020-
01500 and 2021-01106).

Sample preparation
DBSeluateswereprepared to initially determineSARS-CoV-2 serostatus via
multiple antigens as previously described22. In short, the blood sampling
cards were inactivated in an oven (UN55m, Memmert GmbH) at 56 °C for
60min before ejecting the discs into separate wells of a flat bottom 96-well
plate (#734-2327, VWR). The content of the discs was eluted using 100 µl of
PBS with 0.05% Tween20 (#97062-332, VWR) and protease inhibitor
cocktail (#04693116001, Roche) followed by gentle shaking (170 rpm) for
onehour at room temperature. The plateswere then centrifuged for 3min at
3000 rpm (2095 rcf, Allegra X-12R, Beckman Coulter Inc.), and 70 µl
supernatant was transferred into a PCR plate (#732-4828, VWR). Sample
eluates were stored at −20 °C until analysis.

Multi-analyte serology
The serology assays followed a previously described protocol22 in which
proteins were covalently attached tomagnetic color-coded beads (MagPlex,
Luminex Corp.) using NHS/EDC chemistry. The individual bead popula-
tions were then combined into one antigen bead array. Eluates from DBS
were diluted by a factor of 2.5 in the assay buffer. The diluted samples (35 µl)
were thenmixedwith 5 µl of the antigen bead array, incubated for 60min at
23 °C, followed bywashing of the beads. The bead-boundhuman antibodies
were then detected using anti-human IgG-R-PE or anti-human IgM-R-PE.
The beadswere analyzedusing a FlexMap instrument (LuminexCorp). The
binding data was presented as median fluorescence intensity (MFI) values
per antigen and sample, with at least 32 events per bead ID collected for each
data point. The MFI data was then processed using a linear model that
accounts for unspecific binding.

Serological classification of subjects in studies 1 and 2was conducted as
part of a previous investigation22. The subjects for study 1were identified by
multi-analyte classification of anti-S and anti-N titers for IgG and IgM by
applying UniformManifold Approximation and Projection for Dimension
Reduction (UMAP). For study 2, a threshold was set at 6x SD over the peak
of the population density to deem a donor seropositive based on anti-S
antibody titers for IgG and IgM. For study 3, the 6x SD threshold was used
for anti-S and anti-N antibody titers for IgG to classify donors as ser-
opositive or seronegative.

Affinity proteomics assays
After serology, the residual volumes were used to perform PEAs at the
SciLifeLab Affinity Proteomics Unit in Stockholm using Olink panels
Cardiovascular III (Product No 95611, Lot No B01116), Metabolism
(Product # 95340, Lot # B01109), and Cardiometabolic (ProductNo 95360,
Lot No B02504) according to manufacturer’s instructions (Olink Pro-
teomics AB). In brief, EDTA plasma samples were diluted according to the
manufacturer’s instructions, depending on the panel, 1:100, 1:20, or 1:2025.
Based on the assumption that 10 µl of whole blood contains 50–60% fluid,
meaning 5–6 µl of plasma, and that we prepared eluates from a starting
volume of 100 µl elution buffer, we estimated that our eluates correspond to
a plasma sample diluted 1:20. Eluates were diluted at 1:5, 1:1, or 1:101,
respectively. For each Olink panel, samples were incubated with 92 pairs of
oligonucleotide-labeled antibodies simultaneously. Upon target

Table 3 | Demographics of seropositive and seronegative
(vaccination-naïve) subjects collected in 2021 (study 3)

Seropositive IgG+ Seronegative IgG− P-value

Samples 37 40

Sex

Female 20 (54.1%) 22 (55.0%) 1

Male 17 (45.9%) 18 (45.0%)

Age groups

18–29 8 (21.6%) 17 (42.5%) 0.071

30–39 8 (21.6%) 12 (30.0%)

40–49 12 (32.4%) 4 (10.0%)

50–59 7 (18.9%) 5 (12.5%)

60–69 2 (5.4%) 2 (5.0%)

Sensing symptoms

None 13 (35.1%) 35 (87.5%) <0.001

Loss of smell 6 (16.2%) 0 (0%)

Loss of taste 3 (8.1%) 1 (2.5%)

Loss of both 15 (40.5%) 4 (10.0%)

Missing 0 (%) 0 (%)

*As confirmed by Fisher’s exact test result.

Table 2 | Demographics of early-phase and post-phase sub-
jects (study 2)

Early phase,
IgM+IgG−

Late phase,
IgM−IgG+

P-value

Sample numbers 27 43

Sex

Female 14 (51.9%) 28 (65.1%) 0.782

Male 8 (29.6%) 13 (30.2%)

Missing 5 (18.5%) 2 (4.7%)

Age groups

20–29 3 (11.1%) 6 (14.0%) 0.432

30–39 6 (22.2%) 3 (7.0%)

40–49 5 (18.5%) 9 (20.9%)

50–59 3 (11.1%) 10 (23.3%)

60–69 4 (14.8%) 10 (23.3%)

70–74 1 (3.7%) 3 (7.0%)

Missing 5 (18.5%) 2 (4.7%)

Flu-like symptoms

No 9 (33.3%) 12 (27.9%) 0.279

Yes, fever 1 (3.7%) 6 (14.0%)

Yes, mild 6 (22.2%) 14 (32.6%)

Yes, severe 1 (3.7%) 0 (0%)

Missing 10 (37.0%) 11 (25.6%)

Respiratory symptoms

No 15 (55.6%) 28 (65.1%) 0.842

Yes 5 (18.5%) 7 (16.3%)

Coughing 1 (3.7%) 2 (4.7%)

Difficulty breathing 0 (0%) 2 (4.7%)

Both 0 (0%) 2 (4.7%)

Missing 6 (22.2%) 2 (4.7%)

*As confirmed by Fisher’s exact test result.
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recognition, the oligonucleotides in the antibody pairs are brought in
proximity allowing for hybridization and DNA polymerization. Reporter
sequences were quantified using a microfluidic real-time PCR instrument
(Biomark HD, Fluidigm), and data were processed using the software NPX
Manager (v.2.1.0.224 and v2.2.0.288, Olink Proteomics AB). The protein
levels are reported as semi-quantitative Normalized Protein eXpression
(NPX) values. NPX values are calculated from the RT-PCRs Ct values and
normalized using the Olink NPXmanager software to minimize intra- and
inter-assay variation. Reproducibility was judged using samples from two
individuals, and technical triplicates of each sample were assayed. These
were merged into a single sample per individual by taking the mean across
triplicates for each protein measurement. The NPX values are presented as
arbitrary units (AU) in the log2 scale.

Statistics and reproducibility
All data analyses and visualizations were performed using R version 3.6.026.
For comparing plasma andDBS, paired two-tailed t-testswere usedwith the
t.test function from the stats R package (v3.6.0). The p.adjust function from
the same R package was used to calculate the FDR values. For the global
analyses, 264/276 proteins delivereddata above the detection limit for >50%
of all samples in each study set.

For the population studies, the data were processed as follows: NPX
data fromtwoexperiments (studies 1 and2)werebridge-normalized.Bridge
normalization was conducted by: (i). Calculate the difference between each
protein per paired bridge sample; (ii) For each protein, take the median of
these differences across the bridge samples; (iii) Adjust eachproteinwith the
median in one of the experimental batches. Each data set was normalized
per protein panel using AbsPQN to reduce sample-to-sample variation27.
Outliers were detected as any sample that in any of theOlink protein panels
had a median or IQR± 3 standard deviations from the mean of each vari-
able. The samples were excluded from the analysis.

Heatmapswere generated using protein-protein correlation values and
the ComplexHeatmap package (version 2.2.0). The heatmaps represent
hierarchical clusters of correlation distances.We used the Gap statistic with
50 bootstrap samples to select the optimal number of protein clusters.
Cluster stability was evaluated by calculating the mean Jaccard index (MJI)
by bootstrapping proteins of the protein-protein correlation matrices
50 times.

Associations with age and sex were tested using ordinal logistic
regression (since ages were coded as age groups in the questionnaire) and
logistic regression, respectively, using the glm function of the stats package
(version 3.6.0). To account for protein associations with age and sex, linear
regressionwas used to adjust the data. The residuals of the linearmodels for
each protein were then used to perform the association tests. All P-values
were FDR adjusted for multiple testing corrections using the Benjamini-
Hochberg method and combined using Fisher’s method. Tests for

associations between serostatus and self-reported questionnaire variables
(sex, age group, and symptoms) used Fisher’s exact test (fisher.test function
of the stats package). Unless specified otherwise, the correlation analysis
used Spearman’s rs (rho) statistic. Correlations between the determined
protein levels and IgGor IgMantibody levels detected against S, RBD, andN
antigens were determine in each of the three population sample sets using
the corr.test function of the psych R package (version 1.9.12.31). Two-tailed
P-values were adjusted for multiple corrections using the Benjamini-
Hochberg method. To compare the variance between groups, Levene’s test
was conducted using the leveneTest function of the car R package using
median-centered data. Comparative analysis with least absolute shrinkage
and selection operator (LASSO) regression used the R package glmnet
(version 4.1) for penalized logistic regression on scaled and centered data to
find informative features for serostatus in each data set. The regression was
performed 10 times for each data set, and the intersection of the chosen
features across the 10 regressions was selected as the informative features.
The STRING database version 12 default settings were used to search for
interactions between the multiple protein features28.

To group proteins by temporal trends, SOTA clustering of serology
and proteomics data from longitudinal samples was performed using the
sota function of the clValid package (version 0.7). The data were scaled and
centered prior to clustering.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Usingavolumetricmicrofluidic-basedDBSdevice that collectsprecisely 10 µl
of whole blood, a protocol was tailored to analyze 276 proteins by proximity
extension assays (PEA) (Fig. 1). After benchmarking the procedure in a pilot
study against paired EDTA plasma samples, DBS collected in Stockholm
during the spring of 2020 and in Stockholm and Gothenburg duringMay of
2021 were analyzed for proteins associated with SARS-CoV-2 seropositivity.
The studies revealed proteins relevant to COVID-19 pathogenesis and
immune response.

A comparison of plasma and DBS supports the suitability for
deep proteome analysis
To assess the suitability of the DBS preparation for proteomics analyses,
protein profiles of 92 circulating proteins related to cardiovascular diseases
were investigated (Fig. 2a–c). The levels, correlations, and interquartile
range (IQR) between proteins were compared between EDTA plasma
collectedby venousblooddrawandcorrespondingDBSsamples collectedat
the same visit by finger-pricking from12 donors (SupplementaryData 1). It
was found that 91 out of 92 proteins were detected in > 90% of the sample

Fig. 1 | Proteomic profiling of population-based dried blood spot samples.
Home-sampling devices were mailed to random individuals in metropolitan
Stockholm and Gothenburg. Dried blood spots (DBS) were collected by finger
pricking andmailed back to our laboratory for analysis.We eluted proteins from the
DBS discs to first determine antibodies against SARS-CoV-2. Three studies were
designed with donors stratified by serostatus and matched on self-reported
information: Study 1 from 2020 compared antibody-negative (IgM−IgG−) with

antibody-positive subjects (IgM+IgG+); Study 2 from 2020 compared IgM-positive
(IgM+IgG−) with IgG-positive donors (IgM−IgG+); Study 3 from 2021 investigated
vaccination-naïve donors who were either antibody-negative (IgG−) or antibody-
positive (IgG+). Proximity extension assays (PEA)were applied tomeasure the levels
of 276 proteins and evaluate their association with the different immune response
groups.
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types, respectively, the investigated proteins could be measured in DBS and
paired plasma samples.

As shown in Fig. 2a, paired t-tests showed that proteins with elevated
NPX abundance levels inDBS (FDRP < 0.01) were the platelet glycoprotein
VI (GP6, expressed in skin or macrophages), the bleomycin hydrolase
(BLMH, expressed in skin keratinocytes), azurocidin 1 (AZU1, expressed in
neutrophils), as well as caspase 3 (CASP3, expressed in granulocytes).
Likewise, collagen type I alpha 1 chain (COL1A1, expressed in fibroblasts)
was more abundant in the plasma samples (Supplementary Data 1). The
examples suggest that finger-prick DBS samples can offer improved
detectability for skin and blood cell-related proteins for the PEA and pos-
sibly other assays.

We also correlated the protein profiles to compare the ranking of the
paired samples (rs = 0.67 [−0.61, 0.99]); see Fig. 2b. In general, 62% (57/92)
of the protein profiles correlate between plasma and DBS (rs > 0.7). Profiles
of cellular proteins such as previously mentioned CASP3, proteinase 3
(PRTN3, expressed in neutrophils), F11 receptor (JAMA, expressed in
epithelial cells), and selectin P (SELP, expressed on fibroblasts), were the
mostdiscordant (rs < 0).On theotherhand, secretedproteins suchasNPPB,
IGFBP1, CD163, CPB1, and proteins known to leak into blood, such as
EPCAM, LDLR, and SELE, were highly concordant (rs > 0.95). Profiles of
proteins elevated in plasma agreed with DBS profiles (rs = 0.81 [0.45, 0.99]).
The observed discordance between the two specimens was primarily found
for proteinswithhigher levels inDBS samples. In addition,we examined the
IQRs of the 92 proteins in the paired DBS and plasma. The IQR of the
endothelial coagulation protein VWF was noticeably higher in plasma
(alongside AZU1 and CASP3). The proteins MCP1 and RETN, both
secreted byhematopoietic blood cells, revealedhigher IQRs inDBS (Fig. 2c).
Considering all targets, the protein IQRs were not significantly different
between DBS and plasma (P = 0.44). Testing how the different ranges of
detected proteins varied within a given sample type showed that the sample
IQRs for DBS were significantly larger than those for plasma IQRs
(P < 1.8 × 10−8).

Finally, we investigated the sample types concerning the blood cell
expression and protein secretion using differences in NPX (ΔNPX) and
correlation (rs) values. With data from the Human Protein Atlas, we
annotated the 92 proteins for their RNA expression in tissue29 and blood
cells30 and the locationsof protein secretion31; see SupplementaryData 1.We
found that 30% of the proteins were not expressed in blood cells. The levels
of these proteins were similar between DBS and plasma (ΔNPX = 0.0) and
correlated well (rs = 0.80); see Supplementary Table 1. The remaining 70%
containedproteins expressed by different blood cell types. TheNPX levels of

these proteins were generally higher in DBS than in plasma (ΔNPX = 1.1
[0.4, 2.0]), and the correlationwas lower (rs = 0.59 [0.45, 0.72]). As shown in
Supplementary Table 2, the proteins secreted primarily into blood were
more similar betweenDBS and plasma (ΔNPX= 0.3; rs = 0.71;N = 20) than
proteins secreted to other locations (ΔNPX = 1.3; rs = 0.61; N = 20), or the
cellular proteins (ΔNPX = 0.8; rs = 0.61;N = 20). This analysis suggests that
protein leakage from blood cells contributed to the differences between the
two sample types. Proteins secreted into the circulationbyother organs than
blood were more similar between the sample types.

The comparative analysis of paired DBS and plasma samples, exem-
plified here by 92 proteins, revealed differences and commonalities between
the sample types. This points to the opportunity to uncover novel associa-
tionswithDBSand suggests being cautiouswhenaiming to validatefindings
with the other sample type.

Population-derived DBS samples for proteome analysis
In April 2020, we sent 2000 home sampling kits to the Stockholm
population to measure antibodies against SARS-CoV-2 in dried blood22.
The levels of IgM or IgG were determined using multiplexed bead-based
assays that included multiple proteins representing the viral antigens. A
population-based density cut-off of the antibody levels detected for the
coronavirus spike and nucleocapsid proteins was used to classify the
serostatus of each sample. Since not all individuals were diagnosed by
PCR or experienced symptoms from the infection, we had only self-
reported information about a diagnosed infection in one of the studies.
For the other, we used only IgM and IgG to group participants into
phases post-infection, as suggested by others32. In May 2021, a few
months after vaccines against COVID-19 became available, we repeated
the sample collection by sending a second set of 2000 home-sampling
kits to populations in Stockholm and Gothenburg to determine the
serostatus during the second year of the pandemic. Using their ser-
ostatuses, we selected representative subsets from our collections
(N = 228) to perform protein profiling by PEA.

The first study (study 1) from April 2020 was collected during the
pandemic’s first wave. It consisted of 83 DBS donors, among which 44
participants were selected based on their serological immune response
(IgM+IgG+). These seropositive participants presented the peak of the
immune response, which we determined by detecting IgG and IgM against
multiple SARS-CoV-2 antigens. The group was matched with 37 ser-
onegative individuals (IgM−IgG−) based on demographic traits and
reported symptoms. There were no significant differences in self-reported
symptoms, and only three subjects in the seropositive group reported severe

BLMH

AZU1

GP6
CASP3

COL1A1

0

5

10

15

� NPX (DBS-plasma)

a

0

10

Correlation [rho]

C
ou

nt
 [N

]

b

-5 0 5 -0.5 0 0.5-1 1

vWF

MCP1

�
 IQ

R
 (P

la
sm

a-
D

B
S)

0

0.5

1.0

1.5

-0.5 RETN

AZU1
CASP3

Proteins

c

20

30
-lo

g1
0(

FD
R

)

Fig. 2 | Comparison of dried blood spot and plasma samples. a The volcano plot
displays the difference in relative protein levels between dried blood spot (DBS) and
EDTA plasma obtained from 12 donors. The differences in the abundance of 92
proteins, reported as normalized protein expression (NPX), are categorized by
FDR < 0.01 (horizontal dotted line) and ΔNPX of ± 1 (vertical dotted lines). Blue
dots represent proteins with themost significant differences, orange dots show those

with noticeable differences, and green dots represent proteins for which no differ-
ences were observed. b Frequency of Spearman correlation coefficients for the 92
proteins. The vertical dotted line indicates rs = 0. c Differences in protein IQR
between DBS and plasma. The vertical dotted lines have been added for orientation
at ΔIQR = 0 and of ±0.5.
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symptoms (Table 1). The seropositive subjects of study 1 had only been
exposed to the wild-type variant.

The second study (study 2), also collected in April 2020, included 66
participants representing the different phases of the serological immune
response against the viral infection. The stratification was based on anti-
bodies detected against the S proteins of SARS-CoV-2. We selected 26
individuals with signs of an acute immune response against the virus by
being IgM seropositive only (IgM+IgG−). This groupwas comparedwith 40
individuals without detectable IgM levels but being seropositive for IgG
(IgM−IgG+). The IgG+ group, annotated as having already passed the acute
phase,was slightly older, but otherwise, therewere no significant differences
between the demographics and the reported symptoms (Table 2). The
subjects in study 2 had only been exposed to the wild-type variant.

The third study (study 3) was conducted in late spring 2021 and
included 80 unvaccinated participants who donated DBS samples more
than a year into the pandemic. We stratified these as seropositive (IgG+) or
negative (IgG−) based on antibodies detected against the S andNproteins of
SARS-CoV-2. On average, the 37 seropositive individuals reported being
infected five months before DBS sampling. Compared to the previous
studies conducted during the dominance of the wild-type variant, study 3
represents a set of individuals with much longer possible exposure to dif-
ferent viral strains before the Omicron wave. The groups were matched for
sex and age. There was a slight difference in age distribution between the
groups, with the seropositive slightly older. The frequency of self-reported
symptoms differed, with about a third of asymptomatic seropositive donors
(Table 3). The infections of seropositive participants in study 3 could have
been caused by different SARS-CoV-2 variants.

Evaluation of proteomicdata inpopulation-derivedDBSsamples
In the following, we provide a general overview of the data and then discuss
the details and analyses conducted for the three studies. We first evaluated
the data globally, searched for possible outliers, and studied the variance of
the circulating protein levels in each set to judge the quality and similarity
between the data sets.We then determined the common associations of the
DBS proteomes with the self-reported traits of age and sex. Lastly, we
applied multivariate analysis to identify combinations of proteins to dif-
ferentiate the serostatus groups, andunivariate analysis for associationswith
symptoms, serostatus, and antibody levels. In each study set, we profiled 276
proteins associated with cardiovascular and metabolic processes such as
angiogenesis, blood vesselmorphogenesis, inflammation, and cell adhesion.

To beginwith, we investigated the general properties of the proteomics
data without considering the serostatus categories. Our analysis of the DBS
eluates revealed that 260 proteins (94.2%) could be detected in > 90% of the
samples from all three study sets. For the downstream analysis, we included
264proteins (95.6%) above thedetection limit for at least 50%of the samples

in all three study sets. Replicated analysis offive uniqueDBS eluates revealed
a high reproducibility of the protein measurements, with > 90% of the
proteins reporting a coefficient of variation (CV) < 10% (Supplementary
Data 2). Global and unsupervised data analyses were performed to deter-
mine the integrity of the data and identify any patterns or biases due to
seropositivity. ThemedianNPX and IQR valueswere used to systematically
identify possible outliers by setting the threshold to ± 3 SDs from the mean
for each variable. We considered it unlikely that age, sex, symptoms, or
serostatuswould alter the protein content of samples for the analyzed targets
to the degree that identifying a sample as an outlier would have a physio-
logical reason. To account for non-biological differences between DBS
samples provided by untrained individuals, we apply the antibody-specific
probabilistic quotient normalization (AbsPQN), which we previously
developed for affinity proteomic studies of plasma samples27. Applying
AbsPQN to the three panels used in the three study sets decreased the
percent variance explained by the first principal component (PC1) from
40.8% ±15.8% to 15.0% ±1.2%. AbsPQN reduced the differences in the
average and distribution of NPX levels. Consequently, AbsPQN-processed
data was used to reidentify outliers and for all the downstream analyses.We
found eight samples that deviated (Supplementary Fig. 1), thus resulting in
their exclusion from the summary tables (Tables 1–3). Out of 236 donors,
the proteomics data from228 samples (97%) qualified for the investigations.

Next, we evaluated the general variation in protein levels to identify
stable andhighly variable ones. As illustrated in Fig. 3, all data sets presented
a similar distribution of IQR values. There was a very good agreement of the
IQR values between the three sets (rs > 0.86, CV = 15%; see Supplementary
Data 2). Tohighlight a few, themost dispersed levels (IQR > 1.5)were found
for primarily secreted proteins IGFBP1, MBL2, MEP1B, and SSC4D.
Interestingly, MBL2, a protein involved in complement activation, has been
previously associated with COVID-19 severity and mortality in intensive
care patients25,33,34. Among the least variable proteins (IQR< 0.15) were the
intracellular proteins CRKL, SOD1, and BLMH, all expressed by various
organs. BLMH, a protein highly expressed by the skin tissue29 and one of the
proteins most differentially abundant when comparing DBS with plasma
(see above). The observed concordance in IQR values of independent
sample sets supported the quality and utility of the data for further detailed
analyses of the COVID-19-related phenotypes.

To learn more about the general structure of the data, we conducted
unsupervised correlation analyses of 264 protein levels within each of the
four serostatus groups. As depicted in the heatmaps presented in the
Fig. 4a–c, the overall relationships between the protein correlations differed
between the serostatus groups. The distributions of the correlation values
centered around zero (Supplementary Fig. 2). A stability analysis of the
clusters was performed to prioritize the most stable clusters and choose
representative protein correlations across all groups. Cluster #4 of the IgG+
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Fig. 3 | Interquartile ranges of protein levels.Distribution of protein level variance
across dried blood spot (DBS) samples from the population (a) study 1 (N = 81), (b)
study 2 (N = 63) and (c) study 3 (N = 77). Each dot represents the interquartile

ranges (IQR) of one protein, ranked by the dispersion of normalized protein
expression (NPX) values. Proteins with narrow distributions are ranked to the left,
and proteins with varying levels are ranked on the right.
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Fig. 4 | Landscape of protein-protein correlations in phases of the immune
response. The heat maps reveal the inter-protein correlations obtained from hier-
archical clustering for the four serostatus groups from (a) study 1, (b) study 2, and (c)

study 3. The green circles indicate the clusters containing twelve proteins that
grouped together in all sample sets. The number of branches was selected based on
Gap statistics.
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in study 3 was deemed the most stable cluster with a mean Jaccard index
(MJI) = 0.54. The cluster contained 20 proteins originating from different
PEA panels. Twelve of the 20 proteins (60%) also clustered in the other five
sample sets, and the includedANXA1,PGLYRP1, ITGAM,PLAUR,RETN,
TNFRSF10C, NADK, CHI3L1, LCN2, S100P, DEFA1, and PAG1. Inter-
estingly, these twelve proteins originated from the hematopoietic system,
including the bone marrow, neutrophils, eosinophils, monocytes, or lym-
phoid tissue. Despite belonging to different PEA panels, proteins such as
LCN2, S100P, PAG1, and PLAUR were shown to correlate highly (rs > 0.8)
in all six sample sets. Further details about cluster assignment and protein-
protein corrections across study sets can be found in SupplementaryData 3.
The cluster analysis suggests that proteome profiling of DBS samples can
provide insights into coordinated cellular regulations of the humoral and
inflammatory immune response.

Circulating proteins associated with age and sex
The current knowledge about DBS-derived protein-trait associations is still
sparse. Before investigating the relationships between protein levels and
SARS-CoV-2 infections, we studied their association with age and sex. The
two basic demographic parameters are tested for in nearly all biomedical
studies, are known to influence the circulating protein levels in serum or
plasma samples, and were collected from all participants in our studies.
Consequently, replicating the protein-age and protein-sex associations in
three study sets would indicate the data’s utility. As we have shown when
comparing plasma and DBS, however, the differences between the sample
types could influence the outcome of the association comparison. We also
note that the age distribution of the three sample sets was slightly different,
see Tables 1–3. Using a linear model, we determined the protein-trait
associations and performed a meta-analysis to rank the proteins by the
combined p-values (Supplementary Data 4). Several proteins were asso-
ciated with age or sex in all three studies with concordant directions of
association (Supplementary Fig. 3). This included the well-known sex-
specific protein MMP3 (combined P = 3.2 × 10−11), a protease involved in
collagen degeneration. MMP3 has been associated with coronary heart
disease and acute respiratory distress syndrome35 and was studied in
COVID-1925. In addition (combined P < 10−5), sex influences the proteins
ALCAM and SSC4D, expressed by the parathyroid glands; CNTN1, found
in the brain and sex-specific organs; and IGFBP6, a protein highly expressed
in the female sex organs. RNA expression studies support the observed
associations with sex29. For age, we found strong associations with GDF-15
(combined P = 1 × 10−17), a frequently discussed biomarker for aging36,
across all three studies. In addition (combined P < 10−10), meta-analysis
identified age-associated proteins in all datasets for the secreted neuronal
proteinMEPE, the lymphoid protein SELL, the endothelial proteins t-PAor
the B-cell receptor CR2. The consistency of age and sex associations across
all study sets confirms the data quality and supports its utility in analyzing
these in the context of COVID-19.

Proteins associated with SARS-CoV-2 infections
In the following, we highlight the outcomes of investigating changes in
protein levels related to SARS-CoV-2 infections. A LASSO regression
analysis was used to identify a combination of proteins that differ between
the serostatus groups in eachof the three studies. Summary statistics and the
group-specific protein values (z-scores) can be found in Supplemen-
tary Data 4.

For study 1 (Fig. 5a), 19 proteins were selected, of which 17 (90%) had
higher levels in the seropositive group. Ranked by their importance score
(Fig. 5b), annexin A11 (ANXA11), found in muscle cells and granulocytes,
and the low-affinity immunoglobulin gamma Fc region receptor II-a
(FCGR2A), also known as CD32A or FcγRII, were most informative. Both
proteins had a reduced abundance in the COVID-19 seropositive group.
Interestingly, FCGR2A has been described to trigger a cellular response
against pathogens and is involved in phagocytosis, and a recent report
suggested that these receptors can mediate the infection of monocytes with
the virus37. Detecting lower levels of FCGR2A could either indicate an

increased SARS-CoV-2-induced clearing of immune cells or reflect reduced
access to the receptor’s epitopes while internalizing antibody-bound
pathogens. In addition, significant differences were observed for the pre-
viously introduced MBL2 and MMP3 and proteins related to different
physiological mechanisms. These included proteins secreted by the liver
during the stress response and angiogenesis (ANG), a brain- and B-cell-
derived neurogenic protein (CHL1), a protease secreted by the pancreas
(CPB1), a platelet-derived glycoprotein involved in coagulation (GP1BA) as
well as a cytokine receptor related to T-cell immunity (IL2RA). These
processes have also been described in studies using venous blood draws23,38.
SDC4, a cell adhesion protein found in the extracellular matrix of the liver,
lung, kidney, and T-cells, has been suggested to act like ACE2 and linked to
the cellular uptake of the SARS-CoV-2 virus39 and revealed anti-
inflammatory functions in patients with acute pneumonia40. As shown in
the network in Fig. 5c, physiological relationships between some of the
proteins have been suggested for acute phase processes and innate immu-
nity, platelet activation, coagulation, and cellular adhesion. Correlation
analysis of protein and IgG or IgM levels revealed only moderate relation-
ships (rs < 0.5, P < 0.001; see Supplementary Fig. 4). We observed the
strongest correlation between circulating CHL1 and IgM levels reported for
anti-RBD (rs = 0.46; P = 0.00002) and anti-S (rs = 0.38; P = 0.001). Note-
worthy were the negative correlations of FCGR2A with anti-RBD
(rs =−0.38; P = 0.0005) and S (rs =−0.32; P = 0.004). This is supported
by studies suggesting that FCGRsmediate theuptake of the antibody-coated
virus into monocytes, causing the cells to undergo lytic programmed cell
death and reduce levels of circulating FCGR2A37. MMP3 and IgG levels
correlated with anti-S (rs = 0.37; P = 0.0006) and anti-RBD (rs = 0.35;
P = 0.003) in the opposite direction. Similar trends and relationships were
determined for MBL2, VWF, GP1BA, and ANG. Univariate logistic
regression for serostatus ranked MBL2, ANG, and FCGR2A on top
(P < 0.01). Finally, we compared the variances of protein levels between the
two groups and found that the distribution of SELL levels (P = 0.009) was
unequal.

For study 2, LASSO selected five proteins, of which LILBR1 and
FAM3C were elevated in the group representing the early phase of the
infection (Fig. 5d, e). STRING analysis revealed no known interactions
between the proteins; however, syndecan 4 (SDC4) overlapped with the
proteins selected in study 1. Elevated levels of SDC4were found for the later
phase groupand seropositive in study1.WithLILRB1, an immunoglobulin-
like receptor found on monocytes, the metabolism-regulating protein
FAM3C, the coagulation factor 11 (F11), and the lung protein cathepsin H
(CTSH), a variety of biological processes were represented. Interestingly,
SDC4, LILRB1, and CTSH share expression in lung tissues. Correlation
analysis revealed negative coefficients between IgM levels detected for the S
antigen and the levels of the proteins CTSH and SDC4 (rs > 0.37;P < 0.003).
Using univariate logistic regression, the five proteins were weakly sig-
nificantly associated with serostatus (P < 0.03). When comparing the var-
iance of protein levels in each group, the levels ofCCL5weremost unequally
distributed (P = 0.001).

For study 3 (Fig. 5f), only one protein was selected by LASSO: the
complement C3d receptor 2 (CR2), also known as CD21. Found primarily
in the lymphatic system and on B-cells, elevated levels of CR2 were asso-
ciated with prior infection with SARS-CoV-2. Interestingly, CR2 has been
described as a human receptor for the Epstein-Barr virus (EBV), repre-
senting an additional element of innate immunity and host-virus
interactions41. There was a positive correlation between levels of CR2 and
anti-S antibodies (rs = 0.38; P = 0.0006), and when using univariate logistic
regression, a more significant association with serostatus than for the
markers shortlisted above (P = 0.0004). It is worth noting that, compared to
study1, infectionsof the seropositiveparticipants in study3werenot limited
to the fewmonths at the start of the pandemic.When comparing the protein
level variances, the macrophage protein of CCL24 was most unequally
distributed (P = 0.009).

Finally, we used common health-related information to perform a
meta-analysis of the self-reported symptoms. As shown in Tables 1–3, we
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Fig. 5 | Proteins related to SARS-CoV-2 infection. a Least absolute shrinkage and
selection operator (LASSO) analysis shortlisted proteins differentiating seropositive
(N = 37) and seronegative (N = 44) subjects in study 1. The y-axis represents the
centered and scaled data provided as normalized protein expression (NPX) values.
b Ranked importance score of selected proteins. c Using the STRING database, we
identified interactions between the selected features and obtained a network cen-
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coagulation, and cellular adhesion. d LASSO selected proteins from study 2 com-
paring donors representing the early (N = 22) and late infection phases (N = 41), and
(e) corresponding importance scores. f LASSO selected proteins from study 3,
comparing seropositive (N = 40) and seronegative donors (N = 37). The boxplots
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asked the participants in all three studies for COVID-related symptoms
such as fever, breathing difficulties, or loss of taste and smell. Top-ranked
(combined P < 0.01) were two previously described age-associated proteins
(GDF15, SELL) andCOL18A1, an extracellular adhesion collagen expressed
primarily by the liver and involved in endothelial cell migration, as well as
C1QTNF1, a secreted multifunctional adipokine found in smooth muscles
and adipose tissue. These associations were less significant and overlapped
with those observed for age or sex.No interactions have yet been reported in
STRING to suggest a direct connection between their physiological
function.

In subjects representing twowaves of the pandemic and pre- and post-
infection phases, profiling proteins related to cardiometabolic processes in
DBS samples revealed insights observed in studies performed in serum or
plasma collected in the clinic. Our investigation confirmed coordinated co-
regulations of protein levels in immune response, cell adhesion, and cellular
virus entry processes.

Discussion
Circulating proteins are essential sentinels for specific pathway activation
and organ status. They allow monitoring disease progression and response
to therapy in severe COVID-19 hospitalized cases and investigating the
causes behind long-term symptoms experienced by mild COVID-19
patients4. Despitemost individuals with COVID-19 experiencing onlymild
to moderate symptoms, others may develop pneumonia, acute respiratory
distress syndrome, and, in general, a multi-pathologic and complex clinical
picture. The most well-known pathologic features include cytokine release
syndrome or “cytokine storm”, lung, cardiovascular, and kidney dysfunc-
tion, increased thrombotic risk, and down-regulation of adaptive cellular
immunity2–5. Furthermore, high levels of cardiac biomarkers such as Tro-
ponin, BNP, andMBL2were identified as strong predictors ofmortality25,35.

The COVID-19 pandemic highlighted the need for fast and effective
strategies for population health surveillance, monitoring infectious diseases
spreading, and investigating the short- and long-term consequences on a
heterogeneous population9. Thus, new and precise analytical capabilities
linked to patient-centric sampling at home, such as dried blood spots (DBS),
will become an important contribution42. We applied volumetric DBS
sampling in the general population in two metropolitan areas in Sweden,
and based on serological analysis, we selected 228 individuals representing
different serostatuses.We thenchose to investigate>250 circulatingproteins
to capture the effects of a SARS-CoV-2 infection on the proteome level.

First, we benchmarked the approach by comparing finger-prick DBS
with plasma from venous blood draws. As predicted, proteins with a higher
abundance inDBSsamples originated fromthe skin, intracellular, andblood
cells (e.g., GP6, AZU1, CASP3), suggesting cell lysis as the main reason.
Variability analysis revealed that cellular proteins such as BLMHand SOD1
are among the least variable proteins (IQR < 0.15). This indicates compar-
able counts of blood cells trapped in thediscs acrossdonors.Weconsider the
presence of blood cells in the DBS sample an inherent advantage for
expanded whole-blood profiling. Examples of these observations are the
group of twelve proteins that cluster together across all study sets and our
ability to detect disease-relevant proteins expressed by circulating mono-
cytes, such as FCGR2AorLILRB130.As reported recently,monocytes can be
infected by SARS-CoV-2, leading to cell death37. Consequently, proteins
expressed by monocytes will be cleared from the circulation and would be
detected at lower levels.

Our investigation also describes a streamlined procedure to assess the
data quality, to account for variance in sample collection by a laymandonor,
and to identify anomalies in the data. We introduce antibody-specific
probabilistic quotient normalization (AbsPQN), a tool previously used to
successfully counterbalance technical factors in other affinity proteomics
measurements27. AbsPQN reduced the variance of the first principal com-
ponent (Supplementary Fig. 1) and centered the correlation between
(random) pairs of proteins obtained from different PEA panels near zero
(Supplementary Fig. 2). Additionally, the variance of protein levels across
different data sets was highly concordant (Fig. 3). When testing the

associations of proteinswith sex and age, two variables common for all three
studies, we observed a clear concordance in the direction of the trends
(Supplementary Fig. 3). Thesefindings suggest thatAbsPQN is an impactful
data processing tool, especially useful for home sampling studies where
dried blood is collected remotely and shipped to a central lab.

The studies 1 and 2 presented here focused on understanding the
circulating proteins of non-hospitalized individuals during the early phase
of the first wave when the wild-type variant was dominant, and neither
vaccines nor extensive testing capabilities were available. No participant
reported being diagnosed throughPCR tests or being vaccinated. In study 3,
conducted one year later and between the second and third wave, the Alpha
variant dominated, and the Delta variant was on the rise43. Compared to
studies from the first wave, infections could have occurred during a much
longer period of time. According to reported answers, participants got
infected, on average, approximately five months before sampling (ranging
from 0–12 months). The variants and distribution of infection time points
could have contributed to greater differences in the seropositive group’s
short- or long-term disease activity, thus resulting in fewer significant hits.
According to the questionnaire data (Tables 1–3), most participants were
asymptomatic or only reported mild symptoms. For such random popu-
lation studies, the time elapsed between getting infected and donating a
blood samplemight differ between participants. In studies 1 and 2, the time
between infection and sampling was shorter than for study 3. Besides being
influenced by how long the self-reported symptoms lasted, the use of
medication to counteract the symptoms might have further contributed to
the heterogeneity of the donors combined into a respective group. Because
older citizens received the vaccinesfirst, the selected vaccine-free subjects for
study 3 were generally younger than those for study 1 and 2. Compared to
clinical studies that, ideally, collect samples around a narrow peak of the
infection, our study investigated random samples with a less-coordinated
sample timing; hence, less-distinct significant differences between the
assigned groups were to be expected. As further indicated by testing the
heterogeneity of variance of protein levels between the groups, we found
some discordant distributions for targets expressed by the lymphoid tissues.
This could point at differences in current or previous disease activity levels.

One attractive advantage of collecting DBS through micro-
sampling is obtaining blood repetitively. To test this proof-of-con-
cept, we obtained samples from a single donor, who collected DBS
during the phase recovery (Supplementary Fig. 5). Measured in dupli-
cate, the data hints at longitudinal fluctuations of protein levels during a
time when COVID-induced IgM levels decreased, but IgG levels
remained stable. This small pilot demonstrated that protein levels
change between the time of infection and sampling, as shown for the
proteins mentioned in our DBS-based population surveys. Such long-
itudinal changes can add to the group differences. However, to our
current knowledge, this is still the first proteomics survey conducted in a
general population that uses self-sampling of dried blood spots. The
integrity of the sample type and robustness of the developed workflow
support the use of home sampling to generate high-quality molecular
data from large cohorts.

The comparison in study 1 highlighted some physiological aspects of
COVID-19 pathology. In addition to the proteins highlighted above,MBL2,
aprotein associatedwith ICUmortality forCOVID-19patients25, was found
at high levels in individuals with a seropositive group compared to healthy
seronegative individuals. The same trendwas observed for IL2RA, a protein
involved in leukocyte activation and previously associated with prolonging
illness in severe COVID-19 patients44. Supported by the STRING analysis,
the identified blood protein signatures represented cell-mediated immune
response and tissue damage, mechanisms lying behind severe COVID-
1923,24.We also found SDC4 to be a protein associatedwith the later phase of
the infection. Using single-cell data, expression of SDC4 is noticeably ele-
vated in the alveolar and basal respiratory cells, which could reflect the
effects of the SARS-CoV-2 infection on the lung. Studying subjects from
less-acute phases did not confirm SDC4 but revealed the B-cell receptor
CR2. Also known to bind EBV, CR2 was more abundant in seropositive
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donors collected a year into the pandemic and could reflect prolonged
exposure to the virus.

We successfully used PEA to quantify proteins collected in filter paper-
based DBS samples obtained in clinical or professional settings. The tech-
nology showed convincing capabilities to detect proteins decades after
sampling15, with a good correlation between DBS and samples collected by
venous blood draw45. Our application confirms these observations and
expands the utility of PEAs as a suitablemethod for detecting large numbers
of proteins in DBS. However, it is well known that intra- and inter-
individual variability in hematocrit levels or other blood-cell counts may
affect the dispersion of whole blood on paper-based DBS collection matri-
ces. Using a volumetric sampling device guarantees higher precision in the
downstream analysis. The device implemented here allows the automation
of the extraction procedure, avoids the manual selection of punching areas,
and increases the throughput of the analysis. Our data confirmed the
robustness and reproducibility of protein quantification (CV < 10%) and a
convincing concordancebetweenproteinprofiles inEDTAplasmacollected
by venous blood draw and DBS collected by finger pricking (rs > 0.7). This
also confirmed that the selected dilutions of the DBS samples provided
approximately the same number of proteins detected above the LODas in a
cell-free plasma sample.

An inherent limitation of studying DBS samples is the need for sen-
sitive methods for protein quantification11. This study focused on stable
proteins occurring at medium to high abundance levels in the blood cir-
culation,which canalsobedetected after diluting eluates obtained fromDBS
samples (see Material and Methods). Our subsequent efforts should
improve the elution procedures of DBS samples for PEA-based assays to
quantify proteins of lower abundance, such as inflammatory cytokines.
Others have recently used DBS and other affinity-based methods to detect
the well-known IL6 or TNF alpha proteins46, two cytokines we did not
target. Using PEA is an inherent challenge as the reported values are not
quantitative concentrations; antibody binding may be influenced by off-
target binding, post-translational modifications, protein interactions, and
the overall composition of the sample. Efforts comparing PEA or other
affinity-based assays with mass spectrometry are emerging; however, a
sensitivity gap still reduces the possibility of corroborating each method on
all targets47. An additional challenge arises from the differences when pre-
paring dried blood samples for proteomics analysis: Affinity-basedmethods
prefer detergent-based extraction buffers compared to the detergent-free
samples analyzed by mass spectrometry13. Moreover, since the chosen
method was built on pre-selected panels of proteins, we could have missed
some relevantmetabolic and inflammatorymarkersdescribed in the current
COVID-19 literature48–50. DBS sampling has been tested with other affinity
proteomics methods and targeted MS51. The benefit of PEA includes the
high-multiplex capacity and the excellent sensitivity (low pg/mL); never-
theless, when quantitative monitoring of biomarkers is needed, other
methods such as targeted MS, ELISA, or other quantitative multiplex assay
platforms, such as Luminex, Quanterix or MesoScale, would be preferable.
According to a comparative analysis52, intra and inter-assay precision of
ELISA (CV 2–12%) or targeted MS (CV 5–11%) was comparable with the
values we and others have reported for PEA in DBS samples (CV < 10%;
Supplementary Data 2).

Our population samples were collected anonymously from random
households; thus, no follow-up of the participating donors was possible.
Even though we observed associations between serostatus and proteins,
there could be unknown factors, such as BMI, genetics, medication, travel,
socio-economic, and lifestyle, contributing to the difference in this analysis.
These factorswill be necessary to investigate in future studies that expandon
the presented results. Looking forward-, other recent studies have shown
that the use of longitudinal DBS re-sampling enables the monitoring of
short-term changes even in multi-omics analysis53.

Data availability
The proteomics and serology data supporting the findings in this study are
available at the SciLifeLab Data Repository (https://scilifelab.figshare.com)

under the doi identifiers 10.17044/scilifelab.2505042254 and 10.17044/
scilifelab.1455552055. The datasets are under restricted access because these
represent individual-level humandata.Asdescribed in the repository, access
to the data can be granted for non-commercial validation purposes and
upon reasonable request to the corresponding authors. Source data are
available as Supplementary Data 5.

Code availability
Analysis codes used in the study are available at https://github.com/
Schwenk-Lab/Olink-DBS56.
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