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Abstract

Background Type 1 diabetes (T1D) simulators, crucial for advancing diabetes treatments,
often fall short of capturing the entire complexity of the glucose-insulin system due to the
imprecise approximation of the physiological models. This study introduces a simulation
approach employing a conditional deep generative model. The aim is to overcome the
limitations of existing T1D simulators by synthesizing virtual patients that more accurately
represent the entire glucose-insulin system physiology.
Methods Our methodology utilizes a sequence-to-sequence generative adversarial
network to simulate virtual T1D patients causally. Causality is embedded in the model by
introducing shifted input-output pairs during training, with a 90-min shift capturing the
impact of input insulin and carbohydrates on blood glucose. To validate our approach, we
train and evaluate themodel using three distinct datasets, each consisting of 27, 12, and 10
T1D patients, respectively. In addition, we subject the trained model to further validation for
closed-loop therapy, employing a state-of-the-art controller.
Results The generated patients display statistical similarity to real patients when evaluated
on the time-in-range results for each of the standard blood glucose ranges in T1D
management along with means and variability outcomes. When tested for causality,
authentic causal links are identified between the insulin, carbohydrates, and blood glucose
levels of the virtual patients. The trained generativemodel demonstrates behaviours that are
closer to reality compared to conventional T1D simulators when subjected to closed-loop
insulin therapy using a state-of-the-art controller.
Conclusions These results highlight our approach’s capability to accurately capture
physiological dynamics and establish genuine causal relationships, holding promise for
enhancing the development and evaluation of therapies in diabetes.

The terms modelling and simulation (M&S) go hand in hand. Although
defined differently by different researchers dependingmostly on the field of
study, themajority of these definitions are some variant of the interpretation
presented byKaizer et al.1, which states that amodel is a “representation of a
system, entity, phenomenon, or process”, whereas a simulation is “the
imitation of a behaviour of a system, entity, phenomenon or process
through the exercise or use of a model”. The purpose of M&S is the emu-
lation and approximation of physical phenomena that cannot be directly
observed for the purpose of better understanding. It is the process of

explaining how an object of interest behaves in an environment. Biomedical
simulation tasks may employ some model(s) of a biological system to
emulate the physics underlying biological organs in coordination with
certain other mechanisms to form a complete simulation environment.

Themajority of biomedical simulators usemathematical physiological
or pharmacokinetic models to simulate biological phenomena2. Such
simulators are important for the development and testing of new treatments
and therapeutic strategies for different diseases because they offer an inex-
pensive alternative to patient and animal testing both in terms of time and
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Plain language summary

New therapies and treatments for type 1
diabetes (T1D) are often first tested on
specialized computer programs called
simulators before being tried on actual
patients. Traditionally, these simulators rely
on mathematical equations to mimic real-life
patients, but they sometimes fail to provide
reliable results because they do not consider
everything that affects individuals with dia-
betes, such as lifestyle, eating habits, time of
day, andweather. In our research,wesuggest
using computer programs based on artificial
intelligence that can directly learn all these
factors from real patient data. We tested our
programs using information from different
groups of patients and found that they were
much better at predictingwhatwould happen
with a patient’s diabetes. These new pro-
grams can understand how insulin, food, and
blood sugar levels interact in the body, which
makes them valuable for developing thera-
pies for T1D.
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money. Moreover, they can quickly help identify parts of the device design
that may not be effective and prevent the development of adverse circum-
stances because they are easy to interpret3. Although efficient to some extent
in the task of approximating phenomena resulting from biological organs,
the physiological models do not capture the entirety of a biological process
because of various elements that are simply not possible to model4. These
elements may include certain unmeasured variables affecting the outcomes
of a process or external influencing factors such as a patient’s lifestyle
choices, routine habits, and environmental factors5. Consequently, an
intrinsic error is induced in the approximation of physiological models in
the form of nonrandom grey noise that compromises the effectiveness of
these models in an unavoidable fashion. Since a model is a combination of
various parts or compartments, failure to approximate a real scenarios is
often unexplained in terms of error-inducing components6. Similarly, in the
case of an accurate approximation, the reason for success may not be
measured deterministically.

Existing type1diabetes (T1D) simulators employphysiologicalmodels
of the glucose-insulin system for the purpose of synthesizing glycaemic
scenarios emulating real-life T1D patients7–9. Integration of such physio-
logical models with open-loop or closed-loop control methodologies
enables the creation of simulation environments that imitate the glucose-
insulin relationship of T1D patients. These simulators have made the
development and testing of several treatment methodologies possible for
T1D patients10. However, previously as discussed, the physiological
descriptions of the glucose-insulin system are far from perfect, and the T1D
simulators based on these models suffer from the induced inaccuracies of
the mathematical descriptions. Having no provision regarding patients’ life
choices and habits or other life disturbances such as menstruation,
depression, and medication, these simulators often fail in scenarios that
require higher understanding of the real-life factors affecting diabetics.
Therefore, the exploration of approximation techniques that can fully
consider all of the factors affecting the glycaemic trends of a T1D patient is
necessary. Such an approximation technique needs to consider external
factors suchas exercise, illness,menstrual cycles, sleepdisorders, depression,
and medication. Furthermore, the existing T1D simulators have little sup-
port for patient behaviour, such as eating habits, alcohol consumption, and
lifestyle choices. These factors have a substantial effect on the glycaemic
profile of a person, and including these disturbances in a simulator will
ensure the high accuracy of the simulation scenario. It is understood that
modelling each one of these disturbances individually is an impossible task;
however, the effect of these disturbances can be approximated from gen-
erated data. The proposedmethodology leverages the concept of modelling
from data using generic function approximators.

Generic function approximators have been proven to learn complex
nonlinear relationships from data. According to the universal approxima-
tion theorem, an artificial neural network (ANN) with a hidden layer is
capable of learning almost any function given that it is sufficiently wide11,12.
This means that a neural network designed to learn the probability dis-
tribution of data may learn any complex distribution provided that the
network is apt enough and a sufficient amount of data is available. More-
over, with a sufficient amount of data, deep neural networks (DNNs) are
capable of surpassing mathematical models to better approximate
systems13,14. Deep generative models are DNNs that are capable of learning
the underlying probability distribution of data and then generating novel
samples from the learned distribution. The effectiveness of deep generative
models in approximatingdistributions accuratelyhas beendemonstratedby
several recent studies in various areas of research, including biomedical
applications15–18.

With reference to probability theory, deep learning models are often
divided into the following categories: generative models, discriminative
models, and composite models19. Discriminative models learn the condi-
tional probability distribution from data, whereas generative models learn
the joint probability distribution from data by learning a probability density
function over all the samples present in a dataset. Compositemodels, on the
other hand, are a combination of discriminative models and generative

models. Deep generative models may either be generative or composite.
Evidently, the data obtained from human glucose-insulin systems depict a
complex underlying probability distribution, and deep generative models
are one of the most suitable methodologies for learning this type of dis-
tribution. Thefield of deep generativemodels has evolved considerably over
the last few years20,21. The performance quality of these models is context-
dependent such that none could be deemed superior to the other and vice
versa. Some of themost popular deep generativemodels include variational
autoencoders, generative adversarial networks (GANs), normalizing flows,
diffusion models, and autoregressive models. In this work, we employ a
GAN for the task of conditional BGgeneration.AGAN is chosen over other
types of deep generative models because it is specifically set up to optimize
generation tasks and generate high-quality data. Other deep generative
models, such as variational autoencoders, flow-basedmodels, and diffusion
models, all model the latent variable and are not used here because of the
problems related to latent variable approximation22,23.Moreover, other deep
generative models such as deep autoregressive models do not contain an
explicit latent space.

The advent of artificial intelligence (AI) has increased the number of
biomedical tools based on AI models/techniques, such as machine learning
(ML), deep learning (DL), and reinforcement learning (RL)24,25. A similar
increasing trend is observed in the literature regarding the use of these
techniques in diabetes healthcare. Although, in diabetes healthcare, sub-
stantial literary evidence exists of the use of these techniques for various
purposes such as diagnosis, therapy optimization, recommendation, and
education, they are predominantly being used for the prediction of BG
values or adverse glycaemic events26–28. Apart from prediction, AI-based
methodologies have also been extensively used for therapy optimization in
diabetes healthcare29,30. However, the majority of these applications use
discriminative models that are optimized to learn the conditional bound-
aries in a dataset. In contrast to conditional models, generative models are
continually preferred by researchers for data synthesis because of their
ability to generate realistic new samples. Studies have shown that for the task
of data generation, generativemodels outperformdiscriminativemodels31,32.
Moreover, generative deep learning has been applied in various fields where
the need for synthetic data is considerable. Although these applications are
inclined towards perceptual data generation, such as images and music, an
increasing number of studies have been using these models for applications
in medicine and healthcare33–35.

In diabetes healthcare, deep generative models have mostly been used
in comorbidity studies, such as studies on diabetic retinopathy, which is
diagnosed using image scans36–39, or for conditions that could be assessed
visually, such as diabetic foot conditions40. Recently, several studies have
used deep generative models, including GANs, to generate other types of
diabetes-related data, such as BG time series41,42, tabular data43, and elec-
tronic health record data44. The use of synthetic data generated through
GANs has been approached differently by different studies. While some
studies used synthetic data to trainMLmodels directly, othershaveused it to
augment datasets to improve the performance ofML/DLmodels45,46. There
have also been some research studies that have usedGANs to predict future
BG values47. However, the principles of probability theory and evidence in
the literature oppose the use of deep generative models for time series
predictions48.

This research proposes a strategy of utilizing deep generative models
for the task of simulating T1D patient profiles by learning glycaemic trends
in the form of glucose-insulin and glucose-carbohydrate relationships from
the data. It takes inspiration from two of our prior works in this line42,45. The
first work provided evidence for the feasibility of using deep generative
models for the synthesis of diabetes-related data45, and the second work
provides a basis for the conditional generation of BG values42. In the first
work, a conventional vanilla GAN was employed for the synthesis of BG
values for T1D patients to augment individual patient datasets and train a
nocturnal hypoglycaemia prediction model. The results showed that data
augmentation through the GAN improved the results of the prediction
model. The second study employs an instantiation of a pixel-to-pixel (P2P)
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GAN to demonstrate the proof of concept for the generation of conditioned
values. Since theP2PGANarchitecture is designed for image data, the study
contributed with novel translation mechanisms for translating time series
data of BG and insulin into images and vice versa. The models were vali-
dated by generating time series of BG values conditioned by insulin doses
that mimicked real patients, followed by a comparison of different glycemic
metricsbetween real andvirtual cohorts. It is important tomentionhere that
after an extensive literature search, no evidence of a deep generative model-
based T1D simulator was found. Although GluGAN by Zhu et al. comes
closest to the proposed work in terms of the desired aim, its scope is more
relevant to our prior works mentioned above49. However, the idea of using
deep generativemodels formodelling in simulation environments has been
exploited in other fields, such as astronomy50, particle physics51, spectral
analysis52, protein folding53, and smoke sequence simulators54.

The idea of conditional generation of BG values is leveraged by the
simulator proposed in this article. The proposed methodology employs a
conditional generative adversarial network (CGAN) for the generation of
BG values conditioned on the plasma insulin approximation (PI) and the
carbohydrate rate of appearance (RA) of T1D patients. The proposal
introduces a tailored CGAN methodology using a sequence-to-sequence
(S2S) architecture. This study also contributes to the introduction of shifted
input-output pairs in training, which facilitates the integration of causality
within the proposed simulator. This enables the generated BG values to
depict the input insulin and carbohydrates that impact the glycaemic profile
over time. Furthermore, the inherent quality of causality guaranteed the
compatibility of the proposedmodel with a closed-loop controller, enabling
validation within the context of closed-loop insulin therapy. Consequently,
this paved the path for the creation of the simulation environment outlined
in this research article. We have demonstrated through a multitherapeutic
validation approach that the generated BG values exhibit a dependency on
the input PI and RA values, which is consistent with the glycaemic rela-
tionships of real T1D patients.

The primary contributions of this study include: firstly, the develop-
ment of an artificial intelligence-drivenT1D simulator featuring both open-
loop and closed-loop insulin therapies; secondly, the causal generation of
BG values using GANs; and thirdly, the generation of realistic T1D patient
profiles, conditioned on insulin and carbohydrate values. We tried to
include as many details as possible about the tools and datasets used in the
study, problem formulation, and results based on the benchmarks of
robustness for AI in healthcare proposed by Diana Mincu and Subhrajit
Roy55. The rest of the paper is focused on explaining the methodology to
generate causal data using CGANs; the results containing the statistical
similarity tests, causality analysis, and distribution comparison; and the
discussion about the limitations and possibilities of this work.

Methods
This section considers the approaches, techniques, and models required to
devise the proposed methodology. The section starts by first explaining the
proposed GAN model that constitutes the major portion of the proposed
methodology and then describes the training of this model for the task of
learning causal relationships between BG, insulin, and carbohydrate data of
T1D patients. The conditional generation of BG data for the synthesis of
virtual T1D patients using the trainedmodels is demonstrated at the end of
the section.

Sequence-to-sequence generative adversarial network
This study proposes the use of a CGAN, which is a type of GAN, for the
generation of BG samples56. A CGAN conditions the generated samples on
some other type of input. The conditions are provided as labels to the GAN.
This formulation could also be described as a translationalmodel where one
form of data (labels) is translated into another form of data (generated
samples). When slightly altered, such a model can be transformed into a
sequence-to-sequence (S2S) or a pixel-to-pixel (P2P) model57. For an S2S
model, the CGAN is required to translate an input vector into an output
vector. For a P2P model, the CGAN deals with image pixel data. The

proposedmethodology uses the S2S approach to condition the output array
of BG values on the input arrays of insulin and carbohydrates. Figure 1
shows the S2S GAN architecture utilized in the proposed methodology for
the generation of T1D patients.

Asmentioned above, aGAN is a hybrid deep architecture composed of
two DNNs working in a zero-sum game to achieve optimization. These
DNNs are the discriminator (D)model and the generator (G)model. TheD
model in our proposed architecture is presented in Supplementary Fig. 1.As
the name suggests, theDmodel discriminates between two sets of samples,
suchas the real andgenerated samples.Thismodel is trainedon real samples
from the dataset and fake samples generated by the generator.Ourproposed
S2S GAN uses the Wasserstein loss in the Dmodel to determine whether a
given sample is real. For classification purposes, the real samples are labelled
as ‘−1’, whereas the fake samples are labelled as ‘1’. As seen in Supple-
mentary Fig. 1, the Dmodel is composed of five 1D convolutional layers of
different sizes. 1D convolutional layers are chosen to learn the temporal
characteristics of the time-dependent data. The input to the D model is a
concatenated signal of one sample of PI, one sample of RA, and 18 samples
of BG. This combination of signals serves as the input/output configuration
required for the S2S GAN. The PI and RA are the input pair, whereas BG is
the output. The task of the D model is to distinguish between the real and
synthetic configurations of these three signals. On the other hand, the G
model tries to learn the underlying probability of the real dataset based on
the feedback it receives from the Dmodel and the L2 distance of its output
from the ground truth. Supplementary Fig. 2 displays the architecture of the
Gmodel in our S2SGAN. It takes a three-signal formationof PI, RA, and the
latent space (Z) samples as input that are passed throughadense layer before
being reshaped and concatenated. Z is chosen to be a normal distribution.
The G model is composed of a total of four 1D transpose convolutional
layers. For the G model, PI and RA are obtained from the real data and
condition the transformation of Z into BG values. BothD andG are trained
using theWasserstein loss scheme, which is given in Eq. (1).W(Pr, Pg) is the
Wasserstein distance between the real data distributionPr and the generated
data distribution Pg. inf denotes the infimum, which is the greatest lower
bound. γ is a joint probability distribution on the product space of Pr and Pg
such that γ∈Π(Pr, Pg); that is, Pr and Pg are its marginals. Eðx;yÞ∼ γ½k
x � y k� represents the expected value of the distance between pairs of
points (x, y) drawn from the joint distribution γ. However, calculating the
Wasserstein distance in this way is computationally intractable. Therefore,
the Kantorovich-Rubinstein duality theorem is used, which transforms the
Wassersteindistance (an infimum) into the supremumof a class of Lipschitz
functions. This expression is given in Eq. (2).

WðPr; PgÞ ¼ inf
γ2ΠðPr ;Pg Þ

Eðx;yÞ∼ γ½k x � y k� ð1Þ

WðPr; PθÞ ¼ sup
kf kL ≤K

Ex∼Pr
½ f ðxÞ� �Ex∼Pθ

½ f ðxÞ� ð2Þ

The GAN objective using the Wasserstein distance is given in Eq. (3).
TheGmodel tries tominimize it by generating samples that are more likely
to be classified as real by theDmodel. The Dmodel tries to maximize it by
correctly classifying real data samples (x) as real and generated samples
(G(z, y)) as fake. This encourages the discriminator to be a good critic of the
generated samples.

LðθG; θDÞ ¼ min
θG

max
θD

Eðx;yÞ∼ pdata
½Dðx; yÞ� �Ez∼ pz

½DðGðz; yÞ; yÞ�
h i

ð3Þ

To ensure that the Dmodel obeys the Lipschitz constraint to obtain a
maximumgradient, the weights of themodels are clipped. TheG loss is also
mixed with an L2 distance to enable G to not only fool the D but also to be
closer to the real output. Equation (4) represents the L2distance between the
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generated output G(z, y) and the ground truth x.

L2 distance : Eðx;yÞ∼ pdata;z∼ pz
k Gðz; yÞ � xk22
� �

ð4Þ

The final objective of our S2S GAN is shown by Eq. (5). λ is a hyper-
parameter that controls the importance of the L2 loss term relative to the
adversarial loss terms. The losses for bothD andG are averaged over amini-
batch of data. The complete S2Smodel is trained using paired data with one
PI and one RA value mapped to 18 BG values in each pair.

GAN objective : LðθG; θDÞ þ λ � L2 distance ð5Þ

Experimental datasets. We used data from three different cohorts,
namely, the Hospital Clínic de Barcelona T1D dataset58, the Hypomin
dataset59, and the Ohio dataset60, with 27, 10, and 12 patients, respectively.
The Hospital Clínic de Barcelona T1D dataset consists of data from 57.7%
female participants and the remaining data are frommale participants. The
average age, weight, and height of the participants were 46.12 years, 71.28
kg, and 166.80 cm, respectively; the average length of time a patient had
diabetes was 31.42 years, and the HbA1C was 7.11. No demographic
information could be obtained for the Hypomin dataset; however, the
inclusion criteria of the clinical trials consist of patients older than 18 years
with T1D on multiple daily insulin (MDI) therapy, a disease duration
greater than 5 years, andHbA1C in the range of 6.5–9.5%. In the process of
collecting and analysing these datasets, ethical approval and consent were
not specifically sought for this study, as they were acquired as part of larger

clinical trials conducted by the Hospital Clínic de Barcelona. These trials
have already undergone rigorous ethical review processes, and the datasets
used in this study were derived from anonymized patient data collected
during these clinical trials, where participants provided informed consent
for their data to be used for research purposes. Ethical approval for our use
of Hospital Clinic de Barcelona T1D dataset and the Hypomin dataset was
not required because prior ethical approval allows the use of these datasets
as per Spanish law. The Ohio T1DM dataset consists of 41.7% female
participants, and the remainingparticipantsweremale. The average agewas
in the range of 36.66–56.66%. The patients in this cohort were on insulin
pump therapy. The data used in our implementation contained the BG
profiles of each patient along with the insulin and carbohydrate informa-
tion. Basal and bolus insulin values were first converted into the patient’s PI
approximation using Hovorka’s insulin pharmacokinetic model7. On the
other hand, carbohydrate values that were given in grams in the original
dataset were depicted as the RA values using the mixed meal libraries from
Ernesto et al.61. RA values of meals that fit meal descriptions based on the
time of the day the meal were considered, and the number of grams of the
meal was chosen to represent a particular meal. In the end, the time series
obtained fromcarbohydrateswas a combinationof the carbohydrateRAsof
all the meals consumed by the patient in a particular time frame.

The inputs and outputs were introduced as pairs to the GAN model.
This essentiallymeans that for one input pair, there were a total of 18 values
of output BG. The shift was achievedusing the ‘roll’ function in Python. The
training data were normalized before being subjected to training, whichwas
achieved usingMinMaxScaler in scikit-learn. These shifted normalized pair
data were then used to train the S2S GAN model.

Fig. 1 | S2Smodel used for the generation of blood glucose values conditioned on
insulin and carbohydrates.The plasma insulin and carbohydrate rate of appearance
values are the conditional inputs for the blood glucose values. These conditional

inputs are paired up with both the real and generated blood glucose values during
training (PI: plasma insulin approximation, RA: carbohydrate rate of appearance,
BG: blood glucose, Z: latent space).
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Training with recurring data
Our proposed S2S model was trained on PI, RA, and BG values from a T1D
patient cohort. To introduce causality between the inputs and the outputs, a
shift of 90 min was introduced between the PI/RA pair and BG values. This
was done to completely capture the impact of insulin and carbohydrates on
the BG profile of a T1D patient. Since the sampling rate of the signals was
5min, to introducea shift of 90min, the shiftedpairswere formedbymapping
one PI/RApair value to 18 future BG values. The recurring pairs of data acted
as snapshots of the cause-and-effect relationship between them. The entire
dataset was first converted into groups of 1 PI/RA pair and 18 BG values. A
visualization of the shifted pairs of insulin, carbohydrates, and BG can be seen
in Supplementary Fig. 3. The batch size was kept at 1 to introduce more
diversity in the samples by enabling the model to learn the minute intricate
relationships from each individual pair without generalizing toomuch over a
large batch of data. Moreover, smaller batch sizes are associated with training
stability and lower generalization error. This enabled the model to learn the
causal relationships among the data trickling through each recurrent sample
of data. The S2S GANmodel was then trained with the shifted samples for a
total of 50 epochs because empirical testing suggested this as the optimal value
for all themodels to achieve convergence. By following the recommendations
of the authors of the Wasserstein GAN (WGAN), the discriminator was
trained 5 timesmore than the generator. Since the batch sizewas chosen to be
1, it considerably slowed the training process, as the time taken in training for
one epoch directly depended on the total number of samples included in the
training data. A leave-one-out scheme was used to train the S2S GAN for the
entire cohort. In this scheme, amodelwas trainedby removing thedata of one
patient from the training dataset each time and then used to generate data for
the patient not included in the training dataset.

Synthesis of virtual T1D patients
The trained models were then used to generate novel BG samples when
provided with unseen PI and RA values from T1D patients. During

generation, 1 sample of input PI and RA produced 18 samples of BG. For a
series of insulin and carbohydrate values, the outputs were shifted by one
sample for every inputpair and thenaveraged to computea recurrent output
that depicted a causal relationship between the input and the output. The
rationale behind this generation process came from the continuity of the
latent space, which essentially means that samples that lie closer to each
other in the latent space will generate outputs that are similar to each other.
This phenomenon can be understood by looking at Fig. 2. With the help of
this generation technique, a virtual patient was generated for every real
patient, utilizing the real patient’s PI and RA information.

Latent spaceexploration. Sincewe know from the generation operation
of a GAN that a latent space sample is transformed into the value of
choice, the latent space is a very important parameter. Here, it is
important to concede that latent space exploration is not presented as a
unique result of this research work; however, the potential of latent space
exploration is discussed for the interest of readers and as a possible future
research direction in this line of research. The choice of latent space was a
normal distribution in our implementation. As evident from the litera-
ture, the quality of generated data of a GAN depends on the dimensions
of the latent space62,63. Even though there are no standards for latent space
dimensions, a size of 100 or 512 is preferred in image generation tasks.
For our application, it was observed that latent dimensions notably
smaller than 100 produced plausible results.Moreover, the exploration of
the latent space was performed during the inference phase when novel
BG profiles were generated for each patient. Latent space exploration was
performed using vector arithmetic. Along with generating realistic
samples, varying effects of latent space exploration were observed. It was
observed during this exploration that the variability of the generated BG
profile could be controlled by changing the magnitude of the random
samples acquired from the latent space. Larger magnitudes tended to
produce outputs with a higher coefficients of variation (CVs) and vice

Fig. 2 | Data generation using the trained model.
The phenomena of recurrence in the generated
blood glucose samples: each output blood glucose
stream is shifted by 1 sample for every input sample
pair (PI: plasma insulin approximation, RA: carbo-
hydrate rate of appearance, BG: blood glucose).
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versa. It is important to mention here that all virtual patients were gen-
erated using the same latent space configuration.

Simulation environment
The simulation environment shown in Fig. 3 was established for the
evaluation of open-loop and closed-loop insulin delivery strategies in
patients with T1D. This also served as the validation phase for the trained
deep generative model. The evaluation was performed by observing the
glycaemic outcomes of the generated virtual patients. These glycaemic
outcomes include time-in-range results for each of the standard blood
glucose ranges (<54mg/dL, 54–69mg/dL, 70–140mg/dL, 70–180mg/dL,
180–250mg/dL, >250mg/dL) in T1Dmanagement along with themeans
and variability outcomes64. In the proposed work, the main reason to opt
for two insulin delivery therapies was to check the practicality of
the proposed methodology and to further validate the approximation of
the trained deep generative model in terms of causality and exactness. In
the future, such therapies could be employed in the proposed simulation
environment for the sole purpose of validating the therapy. The T1D
patients in the cohort used in this study administered insulin to their
bodies using insulin pumps andmultiple daily injections under open-loop
therapy. The insulin values from these patients, when provided as input to
the proposed generative model, produced BG values with outcomes
similar to the real patients.

Afterwards, a closed-loop insulin delivery strategy was adopted. For
this strategy, the generated BG data were subjected to a state-of-the-art
controller to emulate the closed-loop behaviour of a human pancreas. The
controller’s control action focused on increasing the time-in-range of the

generated BG by adjusting the insulin delivery to the generative model.
The closed-loop insulin delivery part of the controller proposed by Beneyto
et al.65 was utilized for this purpose. The feedback control action of the
controller is composed of two loops, i.e., an insulin feedback loop, which is
also referred to as the inner loop, comprising a proportional-derivative (PD)
controller and an outer safety loop with insulin on board constraints and
sliding mode reference conditioning. The total insulin control action is
shown in Eq. (6), where kp is the proportional gain, τd is the derivative time,
12C is the insulin to CHO ratio, CF is the correction factor, Gref is the
reference glucose value, and M is the meal carbohydrate content in grams.
Here, ub is the super bolus that is defined by Eq. (7). Three insulin signals
constitute the inner control loop of the controller: the basal insulin profile of
the patient, the super bolus, and the PD control action. Basal profiles from
actual patients were used in this loop. The outer safety loop is defined to
compute the conditions under which the reference glucose Gref needs to be
changed. This is done to cease insulin infusion to keep the insulin on board
(IOB) bounded, i.e., IOB∈ [0, IOB], where IOB is the maximum allowed
IOB. The correction factor and carbohydrate ratio parameters from the
actual patient cohort were used during patient synthesis under closed-loop
therapy.

ucðtÞ ¼ kp eiðtÞ þ τd
dCGM
dt

� �
þ ubasalðtÞ þ ub ð6Þ

ub ¼
M
12C

þ
R tþ60
t ubasaldt

60
M þ CGMðtÞ � Gref

CF
ð7Þ

Fig. 3 | The simulation environment. Simulation environment to evaluate the
closed-loop and open-loop insulin delivery systems in virtual T1D patients (IOB:
insulin on board, Gref: reference blood glucose, GrefS: adjusted blood glucose, CGM:

continuous glucose monitor, γ: insulin feedback gain parameter, RA: carbohydrate
rate of appearance, PI: plasma insulin approximation).
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Since the generated BG data are conditioned on both insulin and
carbohydrate values, the trained generative model has to have an input for
both the insulin and carbohydrates to generate new BG samples. In the
closed-loop therapy case, the carbohydrate data are taken from the actual
cohort of patients, such as the quantity of meals in carbohydrate units
consumed by a patient in real life being translated into the RA value using
the meal library referenced in the methodology section. This is done to
generate comparable profiles under both open-loop and closed-loop
therapies using the same meal information. Moreover, the insulin input of
the generative model is fed by the closed-loop controller. Because the input
insulin and the generated BG depict a causal relationship, altering the
amount of insulin alters the output BG values.

To illustrate the dependence of generated BG profiles on the input
PI and RA, Supplementary Fig. 4 shows a total of 2 days of BG data for
four different patients. It is clear from these plots that the generated BG
values take on trajectories guided by the input insulin and carbohydrate
values. Similar relationships are observed in the BG data of real-life
patients. These results make our proposed model unique in terms of the
lifelike behaviours of the generated BG values. To reinforce this point
further, the generated curves for four days of four randomly selected
patients on open-loop therapy are plotted against the real curves for the
corresponding days in Fig. 4. It could be observed from these curves that
even though the glycaemic trends are similar in the real and simulated
profiles, the values are not exactly the same. This confirms the inherently
stochastic nature of the trained models, which is a desired quality of any
simulation environment.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
The results section is divided into three subsections. The first subsection is
dedicated to the results of statistical tests performed to check the statistical
similarity of the generated data to the real data. The second subsection
contains results about the causal relationships between the input and output
data. The third subsection presents the results of the distance test performed
to measure the similarity of the probability distributions of the generated
patients against the real patients.

Statistical similarity
Data were generated for the three cohorts under open-loop therapy.
However, only the carbohydrate data from theHospital Clinic de Barcelona
T1D dataset were used to generate patients under closed-loop therapy. A
total of 4 weeks of BG data was generated for each patient under both open-
loop and closed-loop therapies for the purpose of attaining the optimal
amount of data required to report glycaemic outcomes66. After computing
the glycaemic outcomes for each patient in both real and generated cohorts,
the medians of these values along with the interquartile ranges (IQR) were
computed for both cohorts. The medians of both datasets were comparable
for each of the glycaemic outcomes. The Wilcoxon signed-rank test was
used to evaluate statistical similarity by assuming that both the real and
generated glycaemic outcomes came from the same population of patients.

Fig. 4 | One day of generated blood glucose data vs. real blood glucose data.
Twenty-four hours of generated blood glucose vs real blood glucose of patients
1, 5, 8, and 12 for the same plasma insulin approximation and carbohydrate rate of

appearance inputs under open-loop therapy. The plasma insulin values are nor-
malized between 0 and 1 mU/L whereas the carbohydrate rate of appearance values
are normalized between 0 and 1 mmol/min.

https://doi.org/10.1038/s43856-024-00476-0 Article

Communications Medicine |            (2024) 4:51 7



Based on the rejection hypothesis, all the glycaemic outcomes qualified the
test by demonstratingP values of 0.05 ormore. Tables 1, 2, and 3 present the
results for the generated and real patients along with their P scores under
open-loop therapy for the Hospital Clínic de Barcelona T1D dataset, the
Hypomindataset, and theOhiodataset, respectively.Theobtainedstatistical
scores demonstrate that the glycaemic outcomes, such as BG time in stan-
dardized ranges, mean, CV, and standard deviation (STD), all show sig-
nificant statistical similarity to those of the real T1D patients. These results
confirm the accurate approximation of the T1D cohort by the generative
model since the same insulin and carbohydrate inputs yielded similar BG
outcomes.

During closed-loop therapy, thePDcontroller provided insulin as input
to the generative model, while the carbohydrate data used were from real
patients. The glycaemic outcomes from closed-loop therapy in terms of the

medians and IQR of all the metrics for each generated patient are presented
in Table 4. As per the discussion above, the control action of the controller
was designed to increase the percentage time in the 70–180 mg/dL range of
generated BG profiles. The glycaemic outcomes showed that the proposed
model behaved in a way similar to real T1D patients by demonstrating TIR
results thatwere closer to real scenarios. Furthermore, it has beenobserved in
T1D patients that strong glycaemic control is often the reason for the
occurrence of iatrogenic hypoglycaemia67. A similar phenomenon was
observed in our generated patients under closed-loop therapy, and an
increase in the percentage of time in level 2 hypoglycaemia was observed.

Causality analysis
In the context of a simulation environment, the model is expected to
respond to the effects of certain inputs in a causal manner. The causal

Table 1 | Hospital Clínic de Barcelona T1D dataset: statistical comparison of the glycaemic metrics of real patients against the
generated patients: standard BG ranges in T1D management, average BG (Mean), standard deviation (STD), coefficient of
variation (CV)

Glycaemic metrics Real patients (open-loop therapy) Generated patients (open-loop therapy) P-Values

% time CGM <54 0.43 (0.13–0.90) 0.40 (0.0–2.89) 0.25

% time CGM 54–69 2.39 (1.24–3.65) 2.45 (0.43–5.67) 0.50

% time CGM 70–140 40.57 (30.07–45.68) 42.80 (30.32–54.94) 0.98

% time CGM 70–180 64.02 (55.08–68.87) 67.28 (52.85–75.70) 0.74

% time CGM 180–250 24.28 (18.79–30.08) 19.89 (11.59–29.57) 0.63

% time CGM >250 6.41 (3.45–11.43) 7.19 (1.93–13.29) 0.39

Mean CGM 157.06 (148.66–172.32) 154.20 (127.92–178.52) 0.85

STD 56.57 (50.20–64.49) 61.49 (49.07–70.48) 0.34

% CV 35.53 (32.94–39.03) 38.58 (31.81–42.60) 0.22

Table 3 | Ohio dataset: statistical comparison of the glycaemicmetrics of real patients against the generated patients: standard
BG ranges in T1D management, average BG (Mean), standard deviation (STD), coefficient of variation (CV)

Glycaemic metrics Real patients (open-loop therapy) Generated patients (open-loop therapy) P-Values

% time CGM <54 0.31 (0.17–1.21) 0.30 (0.21–0.42) 0.519

% time CGM 54–69 2.32 (1.61–3.36) 1.83 (1.53–2.06) 0.204

% time CGM 70–140 39.49 (36.97–49.81) 40.82 (38.39–43.23) 0.850

% time CGM 70–180 65.58 (59.93–72.59) 66.67 (63.70–69.24) 0.677

% time CGM 180–250 24.05 (19.13–28.12) 22.21 (21.45–23.62) 0.301

% time CGM >250 6.89 (3.69–11.87) 7.12 (6.67–10.96) 0.791

Mean CGM 155.55 (145.52–167.18) 157.72 (154.75–167.47) 0.470

STD 57.96 (53.41–62.08) 59.08 (58.01–67.54) 0.110

% CV 36.89 (34.08–39.96) 38.25 (36.46–40.12) 0.151

Table 2 | Hypomin dataset: statistical comparison of the glycaemic metrics of real patients against the generated patients:
standard BG ranges in T1D management, average BG (Mean), standard deviation (STD), coefficient of variation (CV)

Glycaemic metrics Real patients (open-loop therapy) Generated patients (open-loop therapy) P-Values

% time CGM <54 3.61 (3.16–4.40) 2.07 (0.57–3.74) 0.131

% time CGM 54–69 4.86 (4.15–5.85) 4.60 (1.10–5.49) 0.193

% time CGM 70–140 31.75 (28.94–35.34) 29.85 (25.11–31.57) 0.275

% time CGM 70–180 49.62 (46.64–56.03) 49.34 (44.64–51.37) 0.492

% time CGM 180–250 24.70 (22.91–26.67) 25.75 (21.54–30.00) 0.375

% time CGM >250 13.76 (11.08–17.08) 11.59 (10.59–15.77) 0.922

Mean CGM 161.80 (156.05–174.28) 165.60 (154.67–180.80) 0.625

STD 76.99 (70.46–80.41) 75.79 (70.59–79.21) 1.000

% CV 45.54 (43.86–46.91) 45.84 (36.39–51.22) 0.625
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relationship between the inputs and outputs of a model is the basis for
validating real-life phenomena using a simulation environment. There are
several ways to test for causality in systems. Two of the more famous
causality tests are the Granger causality test and convergent cross mapping
(CCM). The Granger causality test has been used extensively by researchers
for causality analysis in a variety of applications. The intuition behind this
test is that if variableX causes variableY in a system, there should be amodel
of such a system that improves the prediction of Y after the inclusion of X.
This means that X should be separable from the remaining system’s vari-
ables. This is, however, a limitation of the Granger test, since in many
systems with interacting variables, the information of a variable may not be
separable from other variables. This poses a problem when causality is
checked using the Ganger causality test in highly complex dynamical sys-
tems such as the human glucose-insulin system. CCM, on the other hand, is
a causality testing methodology that identifies causalities in a system whose
variables are inseparable. In addition, CCM can quantify weak to moderate
causalities that other causality tests may miss. In the past, several studies
have utilized CCM for causal analysis in nonlinear systems68,69. A recent
study by Hoda et al. demonstrated the use of CCM for causality analysis
in T1D70.

We used both theGranger causality test andCCM to demonstrate that
the BG profiles generated using our proposedmodel are causally dependent

on the input insulin and carbohydrate values. The causality analysis is
performed for the 27 patients from the Hospital Clínic de Barcelona T1D
dataset since it is the largest dataset used in this work. The results of both
these tests are provided in Supplementary Tables 1 and 2. For the Granger
causality test, the P values in Supplementary Table 1 show that both the
insulin and carbohydrate values impact the generated BG values. On the
other hand, as the name suggests, CCM checks for two parameters
while establishing causality between two quantities, i.e., cross-mapping and
convergence. Cross-mapping is measured using the correlation strength,
whereas convergence is checked by observing the cross-map skill against the
increasing amount of data. Even though a stronger correlation suggests
stronger causation, a relationship is deemed causal only if the correlation
converges as the amount of data increases. The causal strengths for indi-
vidual patients are given in Supplementary Table 2, whereas the con-
vergence is shown for all the patients in Fig. 5. It could be observed from
these figures that for both insulin and carbohydrates, the cross-map skill
converges as the amount of data increases. This confirms the existence of a
causal relationship between the generated BG and insulin and carbohy-
drates. Figure 6 shows the average causal strength of insulin and carbohy-
drates on the generated BG values obtained using CCM and the average
P values obtained using the Granger causality test.

Probability distribution comparison
To further assess the similarity of the generated cohort against the real
cohort, the BG time series of each individual patient of theHospital Clínic
de BarcelonaT1Ddataset was compared to the corresponding real patient
using the Jensen-Shannon divergence (JSD) measure. JSD is a distance
measure used to compute the similarity between two probability dis-
tributions, i.e., P andQ. Equation (8) shows themathematical description
of how the JSD value is computed. The resultant value of JSD falls between
0 and 1, where 0means that the distributions are identical. This essentially
means that the smaller the value of JSD is, the higher the similarity.
Supplementary Table 3 gives the JSD values for all the generated patients
compared to the real patients. It can be observed that the JSD value for
every patient is lower, and the real and generated probability distributions
are similar.

DJS ¼
1
2
DKL PjjP þ Q

2

� �
þ 1

2
DKL QjjP þ Q

2

� �
ð8Þ

Table 4 | Glycaemic outcomes of the generated patients under
closed-loop insulin therapy: standard BG ranges in T1D
management, average BG (Mean), standard deviation (STD),
coefficient of variation (CV)

Glycaemic metrics Generated patients (closed-loop therapy)

% time CGM<54 0.79 (0.07–1.88)

% time CGM 54–69 1.85 (0.57–4.23)

% time CGM 70–140 35.46 (21.47–49.84)

% time CGM 70–180 74.67 (57.03–80.70)

% time CGM 180–250 13.99 (8.30–32.37)

% time CGM>250 5.31 (2.45–9.29)

Mean CGM 155.13 (143.21–173.41)

CV 35.60 (31.92–41.01)

STD 58.11 (47.18–62.62)

Fig. 5 | The cross-map skills for the effect of input on the generated blood glucose profiles. aThe effect of insulin on generated blood glucose. bThe effect of carbohydrates
on generated blood glucose. The cross-map skills are shown for the 27 patients in theHospital Clínic de Barcelona T1D dataset as a function of the time series length. A value
of cross-map skill is computed after 100 samples.
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Discussion
The aptness of the proposed methodology for the purpose of generating
glycaemic trends similar to those of real-life T1D patients has been
demonstrated by the results. Approximating the human glucose-insulin
system is considered the hardest part of creating a diabetes simulator.
Formerly, the techniques used for these approximations were heavily based
on mathematical physiological models. Apart from the advantages they
offer, these models suffer from shortcomings that may lead to inaccurate
approximations. Deep generative models can provide a solution for this
problem. The ability of deep generative models to learn from the distribu-
tion of data obtained from a system gives them a important advantage over
physiological models in that they can encompass almost all the character-
istics of the system, including minor behaviours. This makes a full
approximation of the system possible. Moreover, since the proposed
methodology not only generates T1Dpatients who are similar to a cohort of
real patients but can also demonstrate the behaviours of insulin, carbohy-
drates, and BG relationships found in real patients, the generated patients
can be used in various simulation scenarios. In addition, the causality
between insulin, carbohydrates, and glucose generation is shown by BG
values generated in the future, which fulfils the benchmark of prediction in
simulation environments. The deep generative model employed in the
proposed work is a modified version of the P2P GAN architecture. Apart
from redesigning the model for time-series data, several architectural
changes were made to the original P2P GAN architecture. The generator
architecture in the original implementation used a U-net configuration;
however, since the proposed model was trained on one-dimensional
numerical data, a feedforwards generator architecture was used in the
proposed implementation. 1D convolutional layers were preferred over 2D
convolutional layers to capture the time series properties in the data. A
Wasserstein loss was employed instead of the binary cross-entropy loss
along with the training recommendations of the WGAN to ensure stable
training. Furthermore, the L2 distance was preferred over the L1 distance
used in the original architecture because of better quality outputs.

Even though the generated BG profiles are tested for similarity in
glycaemic outcomes using statistical tests, the generative model is further
scrutinized using a closed-loop controller to imitate a closed-loop insulin
therapy setup. This was done to further validate the causal generation of BG
values by observing whether the generated BG values demonstrated the
same response behaviour to closed-loop therapy as that observed in real
patients. Since it was not possible to validate the closed-loop glycaemic
outcomes for the real patient cohort used in this study because the patients
were under open-loop insulin therapy, the only alternative method we had
was to observe the glycaemic outcomes for general trends and response
behaviours seen in closed-loop therapy patients. It was observed under
closed-loop therapy that the proposed simulator exhibits similar glycaemic
outcomes as those observed in real-life patients under closed-loop therapy71.
This is in contrast to what is observed in conventional physiological T1D
simulators where the glycaemic outcomes of patients under closed-loop are
unrealistically optimistic. According to the literature, strong glycaemic
control has oftenbeenassociatedwith theoccurrenceof hypoglycaemia, and

this behaviourwasnoted in the generatedpatients under closed-loop insulin
therapy.

The proposed methodology shows promise in setting up a T1D
simulation environment for the generation of novel cohorts of patients,
validation of treatment methodologies, and the formation of new therapies.
Considering that BG generation is caused by the input insulin and carbo-
hydrate values, the generation of BG data with glycaemic responses of our
choice may be made possible with the help of this simulator. Moreover, by
exploring and quantifying the latent space configurations, the generation of
cohorts with desirable characteristicsmay be ensured. The proposed system
may also provide leverage to augment data for specific T1D patients to
obtainmore data in less time or at a reduced cost. This is important because
the acquisition of diabetes-related data suffers from the issue of intrapatient
variability since the condition of a patient’s disease varies with time. Hence,
classification/prediction techniques based on data often fail to work effi-
ciently when trained on T1D data collected over a long period.

By introducing improved closed-loop control strategies such as car-
bohydrate recommendations, the glycaemic outcomes of the generated BG
profiles may be further improved and used in devising various other
treatments. In the current implementation of the proposed simulator,
insulin and carbohydrates were selected as the two conditional variables
because of their high relevancy and impact in the context of the glucose-
insulin model. Moreover, the availability of the data and ease of data pre-
paration were also conclusive factors in selecting the input variables.
However, the approximationof thedeepgenerativemodelmaybe improved
by conditioning the generation of BG data on more variables, such as
physical activity and stress. A proficient closed-loop control system along
with an accurate T1Dpatient generationmodelmaymake the in silico trials
of different treatment methodologies as close to real scenarios as possible.
Moreover, BG profiles generated by a model with a high level of approx-
imation accuracy will present the same challenge as BG profiles from real
patients for data-based techniques/models. This will ensure the develop-
ment ofmore robustmodels. It will also allow designers and practitioners to
be more creative and will provide confidence that the simulated scenarios
will stay close to real scenarios and will not diverge to create unattainable
situations. Furthermore, the evidence suggests that the proposed metho-
dology may enable us to replicate any cohort. This allows the creation of
individualized treatments. The intrinsic random nature of the generated
data with the proposed model allows the generation of patients with dif-
ferent BGprofiles and similar glycaemic characteristics. In addition, altering
the latent space allows the generation of patient cohorts that may have
similar glycaemic characteristics but different variability outcomes. In the
future, the authors of this work are confident in producing the cohorts of
choice at will to challenge the control system techniques and data-driven
prediction/classification models so that they act robustly in real-life
scenarios.

As evident from the theory of DNNs, the larger the amount of training
data is, the better the approximation. Since they are based on DNNs, the
same is observed for deep generative models. However, it is important to
realize that there is no optimal amount of data for trainingDNNs to achieve
realistic outcomes. In the proposed methodology, realistic BG generation
wasmadepossible using1120daysof data from27T1Dpatients, 948daysof
data from 10 T1D patients, and 468 days of data from 12 patients. None-
theless, it was learned empirically that increasing the amount of training
data for a particular cohort resulted in a better approximation of the dataset.
This has also been proven in our prior works on the generation of BG
profiles using deep generative models15,42. As the glycaemic behaviours of
T1D patients vary greatly over the course of their lives, in a particular time
phase, the generation of data to replicate a patient’s physiology will address
the issue of scarce data. In the long term, the approximation of a patient’s
glucose-insulin system, however, will suffer from glycaemic variability. This
couldpose aproblemfor in silico longitudinal trials.Current evidence shows
that deep generative models are capable of learning the underlying dis-
tribution of any type of data and are robust to mistaken confidence errors.
This suggests that theproposedmethodcouldbeutilized equallywell for any

Fig. 6 | The average causal effect of carbohydrates and insulin on the generated
blood glucose profiles. The average causal effect is shown for the 27 patients in the
Hospital Clínic de Barcelona T1D dataset.
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sort of cohort. As patients from a single cohort often exhibit similar char-
acteristics, it is understood that training theproposeddeep generativemodel
on data froma single T1D cohort led to a good approximation of the cohort.
We believe that heterogeneous training data, such as data from various
different cohorts or radically different patients, may adversely affect the
approximation. This essentially means that for a deep generative model-
based T1D simulator to replicate the outcomes of a particular cohort of
patients, it is best to train it on data from the specific cohort. However, for a
more diverse simulator, the training should be performed on data from a
diverse set of cohorts. Thiswould, however,mean that the approximation of
a particular cohort in the set of cohorts might not be as good.

Conclusion
To conclude, this research study presents an AI-based T1D simulation
environment based on the distribution approximation capability of deep
generative models. The proposed simulator employs a sequence-to-
sequence generative adversarial network for the generation of synthetic
T1D patients and shows realistic results under both open-loop and closed-
loop therapies. The generated data display causal relationships between the
input insulin and carbohydrate values and the output blood glucose values.
Moreover, the data are generated for 90 min in the future for each input,
which introduces predictability in the simulation environment. In the
future, the inclusion of more conditional inputs may result in improved
approximation. Textual information could also be used as a conditional
variable to generate data with characteristics described in the text. This may
open doors for the translation of written clinical protocols into synthetic
patient cohorts that fulfil the criteria defined in the protocol. The proposed
technique has the potential to be leveraged for the creation of personalized
digital twins, which may in turn be integrated into platforms to educate
people with T1D. In addition, latent space exploration in this domain may
lead to the generation of cohorts with desired characteristics. Moreover,
improved control therapies could be integrated with the proposed gen-
erative model for the testing and development of new therapeutic strategies
in the field of artificial pancreas development.

Data availability
The Ohio T1DM dataset used in this work is available online at: http://
smarthealth.cs.ohio.edu/OhioT1DM-dataset.html. The Hospital Clinic de
Barcelona T1D dataset and the Hypomin dataset contain sensitive and
proprietary data collected as part of clinical trials involvingmultiple entities.
While making datasets publicly available is often beneficial for scientific
progress and transparency, in the case of the Hospital Clinic de Barcelona
T1D dataset and Hypomin dataset, the sensitive nature of the data, legal
constraints, and ethical considerations surrounding patient privacy and
collaboration agreements necessitate that they remain restricted to
authorized users with appropriate permissions. The Hospital Clínic de
Barcelona T1D dataset and Hypomin dataset will be made available upon
reasonable request. The source data underlying Figs. 4, 5, and Supple-
mentary Fig. 4 are provided as Supplementary Data 1, Supplementary
Data 2, and Supplementary Data 3, respectively.

Code availability
While the executable version of our software has beenmade freely available,
wehaveopted tokeep theunderlying source codeprivate in considerationof
intellectual property rights andourbusiness strategy.The executable version
of the simulator with a sample dataset has been made available at ref. 72. In
the event of any inquiries concerning the code, readers are encouraged to
reach out to the corresponding author.
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