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adipose tissue to predict cardiovascular
risk in heavy smokers
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Abstract

Background Heavy smokers are at increased risk for cardiovascular disease and may
benefit from individualized risk quantification using routine lung cancer screening chest
computed tomography. We investigated the prognostic value of deep learning-based
automated epicardial adipose tissue quantification and compared it to established
cardiovascular risk factors and coronary artery calcium.
Methods We investigated the prognostic value of automated epicardial adipose tissue
quantification in heavy smokers enrolled in the National Lung Screening Trial and followed
for 12.3 (11.9–12.8) years. The epicardial adipose tissue was segmented and quantified on
non-ECG-synchronized, non-contrast low-dose chest computed tomography scans using
a validated deep-learning algorithm. Multivariable survival regression analyses were then
utilized to determine the associations of epicardial adipose tissue volume and density with
all-cause and cardiovascular mortality (myocardial infarction and stroke).
Results Here we show in 24,090 adult heavy smokers (59% men; 61 ± 5 years) that
epicardial adipose tissue volume and density are independently associated with all-cause
(adjusted hazard ratios: 1.10 and 1.38; P < 0.001) and cardiovascular mortality (adjusted
hazard ratios: 1.14 and 1.78; P < 0.001) beyond demographics, clinical risk factors, body
habitus, level of education, and coronary artery calcium score.
ConclusionsOur findings suggest that automated assessment of epicardial adipose tissue
from low-dose lung cancer screening images offers prognostic value in heavy smokers, with
potential implications for cardiovascular risk stratification in this high-risk population.

Individuals eligible for lung cancer screening have a high risk of dying from
cardiovascular (CV) causes, even higher than lung cancer1–3. While low-
dose screening chest computed tomography (CT) is recommended todetect
lung cancer, the heart is also imaged but not the focus of the evaluation.
Thus, screening CTs offer a unique opportunity to assess imaging markers
to predict CV disease (CVD) risk without additional radiation or cost.

Although prior studies have shown a relationship between lung
screening CT-derived coronary artery calcium (CAC) and mortality4, data

on the prognostic value of other imaging features is limited. Epicardial
adipose tissue (EAT) is a metabolically active organ directly adjacent to
coronary arteries5,6 that has paracrine proatherogenic effects on coronary
artery walls7,8. A growing body of evidence links increased EAT volume and
density to coronary artery disease (CAD) and adverse CV events in
asymptomatic9–11, stable chest pain12, and acute chest pain13,14 individuals.
Most prognostic data is based on manual, time-consuming EAT mea-
surements using specialized electrocardiogram (ECG)-synchronized
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Plain Language Summary

Heavy smokers are at increased risk of poor
health outcomes, particularly outcomes
related to cardiovascular disease.Weexplore
how fat surrounding the heart, known as
epicardial adipose tissue,maybe an indicator
of the health of heavy smokers. We use an
artificial intelligence system to measure the
heart fat on chest scans of heavy smokers
taken during a lung cancer screening trial and
following their health for 12years.We find that
higher amounts and denser epicardial
adipose tissue are linked to an increased risk
of death from any cause, specifically from
heart-related issues, even when considering
other health factors. This suggests that
measuring epicardial adipose tissue during
lung cancer screenings could be a valuable
tool for identifying heavy smokers at greater
risk of heart problems and death, possibly
helping to guide their medical management
and improve their cardiovascular health.
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cardiac CT scans. The prognostic value of automated EAT assessment from
non-gated low-dose chest CTs is unknown but of substantial clinical rele-
vance, given the high number of individuals undergoing lung cancer
screening and their increased CVD risk. Hence, an automated EAT
assessment has the potential of becoming a new, low-cost, low-effort, and
high-yield tool to identify individuals at increased CVD risk, guide their
primary prevention, and improve their CV health.

The primary objective of this study was to investigate whether an
automateddeep-learning algorithm tomeasureEATvolume anddensity on
non-ECG-gated low-dose lung screening chest CTs helps predicting all-
cause and CV mortality in a high-risk population of heavy smokers. This
study shows that automatically assessed EAT volume and density relate to
all-cause and CV mortality, independent of traditional CV risk factors,
including level of education, body habitus, and CAC score.

Methods
Study setting and participants
Our study retrospectively analyzed prospectively acquired data of 24,090
individuals enrolled in the CT arm of the National Lung Screening Trial
(NLST; ClinicalTrials.gov identifier: NCT00047385), a community-based
randomized controlled trial of chest X-rays vs. low-dose chest CT imaging
for lung cancer screening1,15. The NLST trial included current/recent
(smoking cessationwithin thepast 15 years) and formerheavy smokerswith
a 30-pack-year or more smoking history aged 55 to 74 years from 33 U.S.
sitesbetweenAugust 2002 andApril 200415. The study sizewasdrivenby the
available NLST data and included all participants randomized to the CT
arm. Participants without available or interpretable CTs were excluded.
Flow diagram Supplementary Fig. 1 provides specific study cohort details.
All individuals were prospectively followed over 12 years for incident
adverse events, including all-cause and CV mortality (fatal myocardial
infarction or stroke)1. In addition, self-reported sex, race, and ethnicitywere
acquired as a part of the parent trial.

The secondary use ofNLST data was approved by theNational Cancer
Institute (Bethesda, Maryland) and the local Mass General Brigham (Bos-
ton, MA) institutional review board (IRB#: 2017P002844). All participants
provided written consent to the parent trial, and informed consent was
waived for this retrospective study.

CT image acquisition and coronary artery calcium assessment
All scans were performed on multi-detector (≥4) CT scanners using stan-
dard non-ECG-synchronized, non-contrast, low-dose chest CT protocols15.
Each participant’s first chest CT was considered. For 13,996/24,090 (58%)
participants, CAC scores (Agatston score), calculated from a deep learning
algorithm, were available as previously published4. The continuous CAC
score was divided into four clinically relevant categories: CAC = 0;
CAC= 1–100, CAC= 101–300, and CAC > 30016.

Epicardial adipose tissue measurement
WemeasuredEATvolume (cm3) anddensity (HounsfieldUnits,HU)using
a dedicated deep-learning algorithm in the non-contrast non-gated NLST
CT data. EAT was defined as fat tissue inside the pericardial sac14,17 (Fig. 1).
Since body fat depots strongly correlated with obesity and body habitus, we
indexed the absoluteEATvolumebybody surface area (BSA;m2)18 andused
the BSA-indexed EAT volume (cm3/m2) for all analyses. Furthermore, we
adjusted all multivariable models for body mass index (BMI). EAT density
was defined as the average attenuation of all segmented EAT voxels within
the pericardial sac.

Deep-learning algorithm for epicardial adipose tissue segmenta-
tion. We developed and open-sourced a deep learning system for fully
automated EAT segmentation in cardiac ECG-gated andnon-ECG-gated
chest CT utilizing data from the large Framingham Heart Study (FHS)19,
Prospective Multicenter Imaging Study for Evaluation of Chest Pain
(PROMISE)20, and NLST1 cohorts; this algorithm was used in a prior
PROMISE analysis12. The deep-learning algorithm comprised three

stages: (1) heart localization, identifying and isolating/cropping the heart
region from the input chest CT scans; (2) heart segmentation by iden-
tifying the pericardial sac; (3) EAT rendering within the pericardial sac
(Fig. 1). EAT was defined as all voxels within the segmented pericardial
sac and attenuation between −190 to −30 HU21.

Training and testing data sets. A dataset of 2164 randomly selected CT
scans from FHS (n = 628), PROMISE (n = 1,140), and NLST (n = 396)
was used to develop the system. Four experienced CV radiologists pro-
vided standard manual segmentations for all 2164 cases.

We used 858 cases (FHS, n = 628; PROMISE, n = 130; NLST, n = 100)
for training and tuning of the algorithm, while the remaining 1306 cases
(PROMISE, n = 1010; NLST, n = 296) were reserved for testing.

Deep-learning algorithmdevelopment. The heart localization step was
framed as a coarse segmentation problem on down-sampled scans and
segmentation masks. We trained the heart localization model on
resampled 3 mm isotropic images cropped to 112 × 112 × 112 voxel
cubes. The localization models predicted heart masks were used to crop
the hearts by resampling them to the original voxel spacing, calculating
the center of the bounding box around the mask, and finally cropping a
384 × 384 × 80 voxel cube around it.We added an 11-voxel safetymargin
to ensure that the whole heart is captured in the cropped region.

A heart segmentation model was then trained on the cropped scans
from the previous stage, with data resampled to the voxel spacing of
2.0 × 2.0 × 2.5mm and cropped to 128 × 128 × 80 voxel cubes to fit the
graphics processing unit (GPU) memory. Compared to the localization
model, the chosenhigher spatial resolutionallowed forprecise segmentation
and improved performance.

Finally, to obtain EAT segmentations, the system automatically ren-
dered voxels between−190 and−30 HU from the original high-resolution
image in the area of the heart mask generated by the segmentation model.
The same rendering step is used in manual EAT segmentation.

Bothheart localization and segmentation stagesused separately trained
3DU-Net architectures22 with four down-sampling steps and a dropout rate
of 0.5. To reduce the network’s memory requirements, we introduced a
feature reduction step in the bottleneck part of the architecture. We trained
the models using Dice loss function23 and Adam optimizer24 with an initial
learning rate of 0.0001 that we reduced by 50% (localization) or 70% (seg-
mentation) every 100 epochs. The batch size was 3 (localization) or 4
(segmentation). Data augmentation strategies differed for the two stages.
We applied a random ±10 voxels axial plane translation and ±4 degrees
rotation in anyaxis for the localizationmodel.Weused a random±20voxels
axial plane translation and ±35 degrees rotation in any axis for the seg-
mentation model. Both networks were trained for 1200 epochs. While the
localization stagemodelwas trainedona single 70/30 trainingand tuning set
split, the segmentation model used a variation of cross-validation to take
advantage of all the datawithout overfitting.We achieved that by reselecting
the training (70%) and tuning (30%), which were split randomly every 100
epochs throughout the training.

Development and evaluation were done on a Linux workstation
equipped with one Nvidia RTX A6000 GPU using Tensorflow-GPU
(v1.14), Keras (v2.3.1), and NVIDIA CUDA (v10.2). Using this setup, the
systemneeded less than 2 s on average to segment EAT in a given scan. This
system is the latest version of our heart segmentation system developed by
our group4,12,25,26. Unlike the previous versions that required four GPUs, the
newest algorithm can be run on single GPU or CPU-only systems.

Deep-learning algorithm testing. To determine the algorithm’s accu-
racy, we compared 1306 automatically vs. manually segmented hearts in
an independent data set using the original high-resolution CT images.
Our system demonstrated a strong performance with a median Dice
coefficient of 0.95 (Interquartile Range, IQR = 0.02; Spearman’s corre-
lation of 0.96; p < 0.0001), indicating a high degree of overlap between the
automated and manual heart segmentations. The median surface
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distance was 1.6 mm (IQR = 0.71), suggesting a close match between the
automated and manually segmented pericardial sac. Supplementary
Fig. 2 provides images of optimally and suboptimally segmented hearts.

Statistical methods
Continuous variables were reported as mean ± SD or median (IQR), and
categorical variables as absolute and relative frequencies. Clinical char-
acteristics were stratified by survival/all-cause death, and the differences
were testedwith the log-rank test.We also provide EAT volume and density
values across categories of clinical features, testing the differences by the
Kruskal–Wallis test. Spearman’s correlation was used to calculate the cor-
relation between EAT volume and density.

Uni- and multivariable Cox proportional hazard regression models
were used to calculateHazard ratios (HR) and95%confidence intervals (CI)
to evaluate associations between the continuousEATmeasures and incident
all-cause and CV death. Multivariable models were adjusted for age, sex,
race, ethnicity, smoking (former vs. current), number of pack years, history
of heart disease, history of stroke, hypertension, diabetes, education status,
BMI, andCACscore. Furthermore,we includedEATvolumeanddensity in
all main multivariable regressions to test their independent prognostic
value. We also performed sensitivity analyses in participants (A) without
known CAD, heart failure, or stroke at baseline and (B) in participants

without CAC at baseline. Cumulative event rates between EAT volume and
density quartileswere compared using theKaplan-Meiermethod and tested
for significance using log-rank tests. We also performed C-statistic tests to
assess the predictive power of the EAT measures and compared the dis-
criminatory capacity between models using the Likelihood-ratio test for
nestedmodels.We added a cNRI analysis to assess themodels’ incremental
value using the StataNRI package by Lunt27,28.We used the continuousNRI
as recommendedbyPencina et al.27,28, as continuousNRI offers the broadest
and most standardized application and is not affected by different event
rates and should thus be used when comparing NRIs across studies. Stata
17.1 (College Station, TX, USA) was used for all analyses, and two-sided P
Values of <0.05 were considered statistically significant.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Study population
The study analyzed 24,090 NLST participants with an average age of 61 ± 5
years and59%(14,204/24,090) of thembeingmen.Over amedian follow-up
time of 12.3 (11.9–12.8) years, 19.5% (4,690/24,090) of the participants died,

Fig. 1 | Overview of the deep-learning framework and EAT segmentation steps
implemented on lung cancer screening CT. EAT is segmented from non-contrast
low-dose chest CTs by localizing the heart, identifying the pericardium (red line),
and rendering the fatty components (blue) within the pericardial sac. EAT was

rendered using fixed attenuation thresholds of −190 to −30 HU. CT computed
tomography, EAT epicardial adipose tissue, HU Hounsfield Units. Created with
BioRender.com.
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with 23.2% (1,089/4,690) CV deaths. Participants who died were generally
older, more likely males, African American, Non-Hispanic, active smokers
with more pack years and had a history of CVD (i.e., CAD, heart failure, or
stroke), more CV risk factors, higher CAC score, slightly lower BMI, and
lower level of education. Table 1 details key baseline demographics and
clinical characteristics.

Association of epicardial adipose tissue with CV risk factors
and CAC
The BSA-indexed mean EAT volume was 70.3 ± 24.6 cm3/m2. It increased
with age, was higher in men vs. women, and was substantially higher in
Asians, followed by Caucasians and African Americans. EAT volume also

increased with rising BMI, was higher in former vs. current smokers, and
increased with the number of pack years. Also, participants with prior heart
disease or stroke, lower level of education, or higher CAC scores presented
high EAT volumes (P ≤ 0.007 for all; Supplementary Data 1). The associa-
tion between EAT volume and CAC (ln-transformed CAC due to right
skewness of the CAC score) remained significant in a multivariable
regression analysis adjusting for age, sex, race, ethnicity, smoking status
(current vs. former), number of pack years, hx of myocardial infarction, hx
of stroke, diabetes mellitus, hypertension, education status, and BMI (beta
per 10 cm3/m2: 0.04, 95%CI: 0.02–0.05, P < 0.001).

The mean EAT density was −77.7 ± 5.2 HU and decreased with
increasing EAT volume, reflected in a strong negative correlation (Spear-
man’s rho:−0.72; P < 0.001; Fig. 2). Accordingly, the associations between
EAT density and clinical characteristics were similar but inverse compared
to EAT volume (Supplementary Data 1).

Association of epicardial adipose tissue with mortality
Epicardial adipose tissue volume. EAT volume was approximately
11% higher in participants who died (76.0 ± 28.0 vs. 69.0 ± 23.5 cm3/m2;
P < 0.001, Table 1), and the mortality rates increased with rising EAT
volume (quartiles of EAT volume—all-cause mortality: Q1 ( < 53 cm3/
m2): 16.3%, Q2 (53–67 cm3/m2): 16.0%, Q3 (67–85 cm3/m2): 19.6%, Q4
(>85 cm3/m2): 25.9%; CV mortality: Q1: 3.7%, Q2: 3.3%, Q3: 4.7%, Q4:
6.4%; log-rank: P < 0.001 for both, Supplementary Table 1). Figure 3
provides the corresponding survival curves.

In the Cox regression analysis, an EAT volume increase by 10 cm3/m2

was associated with 19% and 27% higher hazards of all-cause and CV
mortality, respectively, independent of EAT density (all-cause mortality:
HR = 1.19; 95%CI: 1.17–1.21; P < 0.001, and CVmortality: HR = 1.27; 95%
CI: 1.23–1.30; P < 0.001). This association remained significant after further
adjustment for age, sex, race, ethnicity, smoking status (current vs. former),
number of pack years, history of CV disease, diabetes, hypertension, edu-
cation, BMI, and categorical CAC score (HR = 1.10; 95%CI: 1.08–1.13;
P < 0.001 and HR= 1.14; 95%CI: 1.10–1.19; P < 0.001, respectively)
(Table 2).

Epicardial adipose tissue volume in participants without known
heart disease or CAC at baseline. The association between EAT
volume and events was significant in a subgroup of 20,454 participants
without known CVD at baseline (i.e., primary prevention cohort without
prior CAD, heart failure, or stroke) in the fully adjusted model (all-cause
mortality: HR = 1.11; 95%CI: 1.08–1.14; P < 0.001, CV mortality: HR =
1.14; 95%CI: 1.08–1.20; P < 0.001, Supplementary Table 2).

Table 1 | Baseline demographic and clinical characteristics
stratified by all-cause death

All (N = 24,090) Alive (N = 19,400) Dead (N = 4,690) P

Clinical characteristics

Age –years 61 ± 5 61 ± 5 64 ± 6 <0.001

Sex –male 14,204 (59.0) 11,056 (57.0) 3,148 (67.1) <0.001

Race <0.001

Caucasian 21,950 (91.1) 17.718 (91.3) 4,232 (90.2)

African American 1,050 (4.4) 795 (4.1) 255 (5.4)

Asian 524 (2.2) 447 (2.3) 77 (1.6)

Other/Unknown 566 (2.4) 440 (2.3) 126 (2.7)

Ethnicity 0.001

Hispanic/Latinx 429 (1.8) 367 (1.9) 62 (1.3)

Non-Hispanic/
Latinx

23,559 (97.8) 18,963 (97.7) 4,597 (98.0)

Other/Unknown 102 (0.4) 71 (0.4) 31 (0.7)

Smoking <0.001

Former 12,518 (52.0) 10,558 (54.4) 1,960 (41.8)

Current 11,572 (48.0) 8,842 (45.6) 2,730 (58.2)

Pack years 48.0 (39.0–66.0) 46.5 (39.0–64.5) 55.0 (43.0–78.0) <0.001

Hx of heart dis-
ease of MI

3.095 (12.88) 2,110 (10.9) 985 (21.1) <0.001

Hx of stroke 660 (2.7) 419 (2.2) 241 (5.2) <0.001

Diabetes mellitus 2,326 (9.7) 1,576 (8.1) 750 (16.0) <0.001

Hypertension 8,462 (35.2) 6,444 (33.3) 2,018 (43.1) <0.001

Level of education <0.001

High school grad-
uate or below

7,025 (29.2) 5,343 (27.5) 1,682 (35.9)

Post high school
(excluding college)

3,389 (14.1) 2,703 (13.9) 686 (14.6)

Some college or
bachelor’s degree

9,715 (40.3) 8,027 (41.4) 1,688 (36.0)

Graduate school 3,479 (14.4) 2,942 (15.2) 537 (11.5)

Other/unknown 482 (2.0) 385 (2.0) 97 (2.1)

BMI –kg/m2 27.9 ± 5.0 27.9 ± 4.9 27.7 ± 5.5 <0.001

BSA –m2 1.99 ± 0.3 1.99 ± 0.25 2.00 ± 0.26 0.003

CT measures

EAT volume (BSA-
indexed) –cm3/m2

70.3 ± 24.6 69.0 ± 23.5 76.0 ± 28.0 <0.001

EAT density –HU −77.7 ± 5.2 −77.6 ± 5.1 −78.0 ± 5.5 <0.001

CAC score* 61.8 (1.3–375.5) 41.6 (0–294.2) 202.9 (20.9–786.6) <0.001

Unless otherwise specified, data are numbers of participants, with percentages in parentheses,
means ± standard deviation, or median (Q1–Q3). *CAC score was available in a subgroup of 13,966
participants. BMI = bodymass index, BSA= body surface area, CAC= coronary artery calcium, EAT
= epicardial adipose tissue, HU = Hounsfield Units, MI = myocardial infarction.

Fig. 2 | Association between EAT volume and density. The scatterplot shows a
strong negative correlation between EAT volume and density, as shown by the fitted
red regression line. Blue dots represent individual observations. EAT = epicardial
adipose tissue, HU = Hounsfield Units.
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In a subgroupof participantswithoutCAC(3,355/13,966, 24.0%), EAT
volume was also related to all-cause and CV mortality in the fully adjusted
analyses (all-cause mortality: HR = 1.10; 95%CI: 1.03–1.17; P = 0.003, CV
mortality: HR = 1.21; 95%CI: 1.05–1.40; P = 0.01; Supplementary Table 3).

Epicardial adipose tissue density. Overall, EAT density was
−77.7 ± 5.2 HU and slightly lower in those who died vs. survivors
(−78.0 ± 5.5 vs. −77.6 ± 5.1 HU; P < 0.001), reflected in a negative
univariable association between EAT density and adverse events (all-
cause mortality (per 10 HU) HR: 0.87, 95%CI: 0.82–0.92, P < 0.001;

CV mortality (per 10 HU) HR: 0.88, 95%CI: 0.79–0.99, p = 0.032).
Nevertheless, in a multivariable regression analysis accounting for
EAT volume, an increase of EAT density by 10 HU was associated
with a 66% higher hazard of all-cause mortality and more than a
twofold risk in CV mortality (all-cause mortality: HR = 1.66; 95%CI:
1.53–1.80; P < 0.001, CV mortality: HR = 2.14; 95%CI: 1.81–2.52;
P < 0.001). This association remained significant after additional
adjustment for age, sex, race, ethnicity, smoking status (current vs.
former), number of pack years, history of CV disease, diabetes,
hypertension, education status, BMI, and categorical CAC score (all-

Fig. 3 | Kaplan-Meier survival analysis of EAT volume anddensity for all-cause and cardiovascularmortality.A two-sided log-rank test was used to calculate theP values.
EAT = epicardial adipose tissue, HU = Hounsfield Units.
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cause death: HR = 1.38; 95%CI: 1.24–1.54; P < 0.001, CV death:
HR = 1.78; 95%CI: 1.42–2.22; P < 0.001; Table 2).

Epicardial adipose tissue density in those without prior heart dis-
ease or CAC at baseline. Supplemental subgroup analyses in partici-
pants without known CV disease revealed a strong and independent
association between EAT density and events (Supplementary Table 2). In
participants without CAC (n = 3,355), EAT density was associated with
CV mortality in a model adjusted for EAT volume (HR = 2.05; 95%CI:
1.03–4.09; P = 0.042). In addition, there was a trend towards an asso-
ciation between EAT density and CV death in the fully adjusted model
correcting for CV risk factors, education, EAT volume, and BMI (HR =
1.83; 95%CI: 0.90–3.71; P = 0.096; Supplementary Table 3). Of note,
there were only 63 CV deaths in the relatively low-risk subgroup with
CAC = 0, and the analysis may have been underpowered.

Incremental value of epicardial adipose tissue volume and
density
The combination of clinical parameters with CAC and EAT was most
predictive of CV mortality (Harrel’s C concordance: 0.78), while being less

predictive of all-cause mortality (Harrel’s C concordance: 0.71). Adding
EAT to clinical risk factors and clinical risk factors+ CAC score increased
the discriminatory capacity significantly from 0.70 to 0.71 (all-cause mor-
tality) and 0.75 to 0.78 (CV-mortality) (P < 0.001 for all). The continuous
net reclassification improvement (cNRI) test revealed that adding EAT
measures to CV risk factors improved the prediction of all-cause (cNRI:
0.12;P < 0.001) andCVdeath (cNRI: 0.16;P < 0.001).We found the greatest
improvement when adding both EAT and CAC to clinical CV risk factors
with cNRIof 0.27 and0.49 for all-cause andCVmortality, respectively (both
P < 0.001) (Table 3).

Discussion
People undergoing lung cancer screening are at high CV risk.
However, up until now, the full potential of routine low-dose chest
CTs has not been fully utilized to determine a person’s mortality risk.
Our study demonstrates that an automated deep learning-based
epicardial fat quantification accurately stratifies the risk for all-cause
and CV mortality across 24,090 heavy smokers enrolled in the NLST.
In addition, our results demonstrate that automated EAT assessment
is a feasible and reliable way of predicting mortality independent of

Table 3 | Incremental prognostic value of EAT volume and density

Harrell’s C concordance statistics Likelihood-ratio test (Chi2) P cNRI Improvement P

All-cause mortality

Clinical parameters* 0.700 Ref. - Ref. -

CAC score 0.611 - - - -

EAT† 0.579 - - - -

Clinical parameters + CAC score 0.706 86.8 <0.001 0.27 <0.001

Clinical parameters + EAT 0.705 72.4 <0.001 0.12 <0.001

Clinical parameters+CACscore+EAT 0.710 159.9 <0.001 0.27 <0.001

Cardiovascular mortality

Clinical parameters* 0.751 Ref. - Ref. -

CAC score 0.672 - - - -

EAT† 0.625 - - - -

Clinical parameters + CAC score 0.769 72.7 <0.001 0.49 <0.001

Clinical parameters + EAT 0.759 31.0 <0.001 0.16 <0.001

Clinical parameters+CACscore+EAT 0.776 104.2 <0.001 0.49 <0.001
*Clinical parameters function as a referencegroup for the improvement calculation, including age, sex, Race, Ethnicity, smoking (former vs. current), number of pack years, history of heart disease, history of
stroke, hypertension, diabetes, education status, and BMI.
†EAT volume and density. All analyses were based on a random subset of 13,860 individuals with complete CAC data. CAC = coronary artery calcium, cNRI = continuous net reclassification index, CV =

cardiovascular, EAT = epicardial adipose tissue.

Table 2 | Association of EAT volume and density with all-cause and cardiovascular mortality

Univariable Model 1 Model 2 Model 3

All-cause
mortality

HR 95%CI P HR 95%CI P HR 95%CI P HR 95%CI P

EAT volume
–cm3/m2

1.10 1.09–1.12 <0.001 1.19 1.17–1.21 <0.001 1.10 1.08–1.12 <0.001 1.10 1.08–1.13 <0.001

EAT den-
sity –HU

0.87 0.83–0.92 <0.001 1.66 1.53–1.80 <0.001 1.36 1.26–1.48 <0.001 1.38 1.24–1.54 <0.001

Cardiovascular mortality

EAT volume
–cm3/m2

1.14 1.11–1.16 <0.001 1.27 1.23–1.30 <0.001 1.15 1.11–1.19 <0.001 1.14 1.10–1.19 <0.001

EAT den-
sity –HU

0.88 0.79–0.99 0.037 2.14 1.81–2.52 <0.001 1.76 1.49–2.09 <0.001 1.78 1.42–2.22 <0.001

All hazard ratios (HR) are per 10 cm3/m2 or 10 HU change.
Model 1: EAT volume and density.
Model 2: Model 1 + age, sex, Race, Ethnicity, smoking (current vs. former), pack-years, history of heart disease, history of stroke, diabetes mellitus, hypertension, education status, and BMI.
Model 3: Model 2+CAC score. BMI = body mass index, CAC = coronary artery calcium, EAT = epicardial adipose tissue, HU = Hounsfield Units. Full models are provided in Supplementary Table 4.
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and incremental to persons’ demographics, clinical characteristics,
CV risk factors, body habitus, and CAC score.

Heavy smokers are at increased CVD risk and need better risk strati-
fication. Multiple large clinical trials have shown that low-dose chest CT is
an effective screening method for lung cancer, leading to reduced lung
cancer and all-causemortality1–3,29,30. However, these trials also revealed that
more screened individuals died of CV causes than cancer. For example, in
NLST, 356 participants died of lung cancer over six years of follow-up,while
486 died of CV disease1. The recent Nederlands–Leuvens Longkanker
Screenings Onderzoek (NELSON) study indicated the effectiveness of low-
dose chest CT for lung cancer screeningwith a cancer-relatedmortality rate
decrease but similarly high CV mortality compared to NLST, emphasizing
the importance of CV risk estimation to reduce overall mortality2. CAC
scoring can be measured on lung cancer screening CTs and reclassifies CV
risk in heavy smokers4. However, a study of 3,110 individuals showed that
despite significant CAC being a frequent finding (26%) on lung-screening
CT, only a small portion (31%) of those with CAChad been diagnosedwith
CADbefore theCT31. These results emphasize theunmetneed for improved
CV risk stratification and the opportunity to leverage CT images in this
high-risk population better. Our results indicate that EAT provides prog-
nostic value beyond CAC scoring and is associated with mortality even in
people without CAC.

Lung cancer and CVD have overlapping clinical risk factors such as
obesity, diabetes mellitus, hypertension, tobacco smoking, poor diet, and
sedentary lifestyle32. Several of these risk factors, including smoking status,
diabetes, hypertension, and obesity, were associated with higher EAT
volume and density in our study. These findings suggest that changes in
EAT might be part of a shared mechanistic pathway for both cancer
and CVD.

While inflammation is a well-established pathway that drives cancer
and atherogenesis32,33, EAThas been tied to local perivascular inflammation.
EAT, a metabolically active visceral fat depot, encases the coronary arteries
directly without a basal membrane functioning as a barrier. This arrange-
ment facilitates a direct exchange of inflammatorymediators and promotes
atherogenesis6,7. For instance, in a study of patients with critical CAD who
received coronary artery bypass grafts, harvested EAT samples showed
higher levels of proinflammatory IL-1β, IL-6, TNFα, and MCP-1 than
paired subcutaneous fat controls7. EAT inflammation can be measured on
CT, because inflamed EAT changes its morphology through increased
lipolysis, inhibited lipogenesis, and increased perivascular edema, resulting
in a lower lipid-to-connective tissue and water ratio and a higher EAT
density on CT6,34. A recent substudy from the Early Identification of Sub-
clinical Atherosclerosis byNon-invasive Imaging Research (EISNER) study
reported correlations of EAT volume and density with systemic inflam-
matory biomarkers (e.g., CRP, IL-6, PAI-1, and MMP-9)10. Our findings
support these mechanistic insights, indicating that inflammation, repre-
sented by EAT volume and density alterations, may hold prognostic sig-
nificance in heavy smokers.

Our study corroborates growing evidence linking increased EAT
volume and density with adverse events. For instance, a large meta-
analysis including over 20,000 individuals (mainly from the FHS, Multi-
Ethnic Study of Atherosclerosis, Heinz Nixdorf Recall Study, EISNER
study, and the Rotterdam study) reported a strong relationship between
EAT volume, CV risk factors, and CAD severity35. Furthermore, Rajani
et al. reported an increased EAT volume in patients with high-risk
plaque phenotype beyond traditional CV risk (Odds ratio 1.7,
P = 0.04)36, results also seen in a large cohort of stable chest pain patients
in the PROMISE study12. In our study, EAT was associated with adverse
events incremental to CAC score and in a subgroup of participants
without CAC or known CVD at baseline (i.e., primary prevention
cohort). These results show that EAT, as an index of inflammation, may
be a precursor of CAD rather than just an imaging marker of prevalent
disease. To the best of our knowledge, our study is the first to show
prognostic value of EAT volume and density in a large prospectively
collected sample of heavy smokers, a group at markedly increased CV

risk. Therefore, increased EAT might be a valuable new parameter for
identifying high-risk patients in this vulnerable cohort requiring
preventive care.

There is an unmet need for automated EAT measurement tools. EAT
assessment is relatively newandusually requires ECG-synchronized cardiac
CT images, specialized software, and manual measurement by expert
readers. Consequently, EAT volume and density are not routinely reported
on non-cardiac chest CTs. We address this issue and provide a robust and
accurate automated algorithm to assess EAT volume and density. In addi-
tion, the algorithm offers EAT measurements in under 2 s without human
input, making it an “end-to-end” solution for CV risk assessment in clinical
settings. Although other research groups have developed deep learning
algorithms for automated EAT quantification10,37–39, these groups used only
dedicated ECG-gated cardiac CT scans, smaller cohorts, or proprietary
technologies.

Our deep learning algorithm has several strengths. First, it has been
developed in collaboration with a core laboratory that assessed EAT in a
standardized fashion using data from multiple large, well-phenotyped
cohorts and randomized controlled trials (e.g., FHS, PROMISE). Finally, we
share thedeep-learning systemwith the community andbelieve that sharing
the algorithmwill contribute to scientific advancement, foster collaboration,
and accelerate the adoption of this new technology by academic and
commercial entities.

We acknowledge several limitations of the current study. First, some
standard CV risk factors (e.g., lipids) were not recorded in the NLST trial,
and adjustment for the standard 10-year atherosclerotic CVD risk was not
possible. However, most of the strongest predictors (e.g., age and sex) were
available and included in the study among other variables influencing
outcomes and EAT values (e.g., BMI). Second, nonfatal CV events (e.g.,
nonfatal myocardial infarction or stroke) were not recorded; hence, our
study provides data only on all-cause and CV mortality. Third, the NLST
cohort included only heavy smokers (≥30 pack years), and differences in
EAT’s prognostic value could not be calculated between heavy smokers,
non-smokers, and lower-risk smokers with ≥20–30 pack years, a group
currently also recommended for lung cancer screening. Future work is
necessary to understand the implications for non-smokers and lesser-
smoking populations. Furthermore, CAC scores were available in a repre-
sentative random sample (N = 13,966) of the NLST data set. Finally, most
NLST participants were white non-Hispanics; thus, future studies in more
diverse populations are needed.

Conclusions
EAT volume and density are independently associated with all-cause and
CV mortality in the high-risk group of lung cancer screening participants.
Deep-learning-based EAT assessment stratifies mortality risk beyond tra-
ditional CV risk factors and CAC score and, therefore, may guide primary
CVD prevention in heavy smokers and improve their outcomes. EAT
assessment is a unique method that serves a large group of high-risk indi-
viduals without a need for additional imaging or manual measurements,
avoiding radiation while saving time and costs. Future prospective studies
are warranted to investigate the impact of adding EAT measurements to
routine lung cancer screening reports.

Data availability
The National Cancer Institute (NCI) forbids sharing the NLST data with
third parties; however, themainNLST data set, including rawCT images, is
available by application directly through the NCI and can be requested at
https://biometry.nci.nih.gov/cdas/nlst. Source data which refers to the
numerical values underlying Figs. 2, 3 in this article are available via Sup-
plementary Data 2.

Code availability
Theunderlying heart segmentation systemweutilized to quantify epicardial
adipose tissue can be assessed via GitHub at https://github.com/AIM-
Harvard/DeepHeart or under https://zenodo.org/records/1072442040.
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