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Abstract

Background Substance use behaviours (SUB) including smoking, alcohol consumption,
and coffee intake are associated with many health outcomes. However, whether the health
effects of SUB are causal remains controversial, especially for alcohol consumption and
coffee intake.
Methods In this study, we assess 11 commonly used Mendelian Randomization (MR)
methods by simulation and apply them to investigate the causal relationship between 7SUB
traits and health outcomes. We also combine stratified regression, genetic correlation, and
MR analyses to investigate the dosage-dependent effects.
ResultsWe show that smoking initiation has widespread risk effects on common diseases
such as asthma, type 2 diabetes, and peripheral vascular disease. Alcohol consumption
shows risk effects specifically on cardiovascular diseases, dyslipidemia, and hypertensive
diseases. We find evidence of dosage-dependent effects of coffee and tea intake on
common diseases (e.g., cardiovascular disease and osteoarthritis). We observe that the
minor allele effect of rs4410790 (the top signal for tea intake level) is negative on heavy tea
intake ðb̂GWAS ¼ �0:091; s:e: ¼ 0:007; P ¼ 4:90× 10�35Þ but positive on moderate tea intake
ðb̂GWAS ¼ 0:034; s:e: ¼ 0:006; P ¼ 3:40× 10�8Þ, compared to the non-tea-drinkers.
Conclusion Our study reveals the complexity of the health effects of SUB and informs
design for future studies aiming to dissect the causal relationships between behavioural
traits and complex diseases.

The consumption of various substances, including tobacco, alcohol, and
drugs, is known as substance use behaviours (SUB). These behaviours can
potentially lead to dependence or disorders related to substance use, which
can substantially affect human health1–4. Tobacco smoking is linked to ~6
milliondeaths globally every year5, and is also amajor contributor to chronic
respiratory diseases in the UK6. Global alcohol consumption is associated
with ~3 million deaths annually7, and individuals who consume alcohol
excessively may face a range of health complications. Meanwhile, beverages
like coffee and tea, known to contain stimulants such as caffeine, are con-
sumedwidely but are subject to limited regulatory oversight. Long-termand

heavy consumption of coffee could result in caffeine dependence, and dis-
continuation may lead to withdrawal symptoms such as fatigue, difficulty
concentrating, and muscle pain8. For specific substances like alcohol and
coffee, their potential benefits are still controversial and under heavy
debate9–11. Understanding the causal effects of SUB on common diseases is
essential to guide disease prevention and intervention.

Observational studies have provided evidence for associations between
SUB and common diseases such as the associations between smoking and
lung cancer12 and between alcohol use and breast cancer13. However,
observational studies are vulnerable to confounding effects and reverse

1Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia. 2Garvan-Weizmann Centre for Cellular Genomics, Garvan
Institute of Medical Research, Sydney, NSW 2010, Australia. 3School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
4National Centre for Register-Based Research, Aarhus University, Aarhus V 8210, Denmark. 5School of Life Sciences, Westlake University, Hangzhou, Zhejiang
310024, China. 6Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China. e-mail: jian.yang@westlake.edu.cn

Plain language summary

Many people smoke or consume alcohol,
coffee and tea. The relationship between
using these types of substance and the
development of different diseases is not well
understood. Previous studies have
suggested that differences in genetics, i.e.
inherited characteristics, could have an
impact on how each substance impacts a
particular person’s health.Weused amethod
called Mendelian Randomization to look at
the impact of consuming tobacco, alcohol,
coffee and tea on the development of various
common diseases using genetic information.
We found that relationshipswerecomplicated
and many were dosage-dependent, but that
consumption of a large amount of all
substances tended to have negative health
impacts regardless of lifestyle, behavioural or
inherited characteristics.
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causality, which could lead to biased effect estimates. Randomized Con-
trolledTrial (RCT) is considered as a gold standard to test for causality, but it
could be expensive and time-consuming, sometimes unethical or imprac-
tical.Mendelian Randomization (MR) is a statisticalmethod to estimate the
causal effect of a modifiable exposure on a health outcome using the
exposure-associated genetic variants (e.g. SNPs) as instrumental variables
(IVs)14. Recent MR studies have provided evidence for putative causal
associations between smoking behaviour and obesity15, between alcohol
intake and cardiovascular disease16, and between smoking initiation and
schizophrenia17. The validity of the MR framework relies on several core
assumptions14 (e.g., valid IVs should only affect outcome via exposure),
while in real data analysis, those assumptions are not always fulfilled (e.g.,
IVs can have direct effects on outcome, a phenomenon dubbed horizontal
pleiotropy, commonly seen in genetic studies). Although many MR meth-
ods have been developed to deal with pleiotropy18–20, the extent to which
these methods are robust to horizontal pleiotropy remains elusive.

In this study, we investigate the putative causal associations between
seven SUB traits, namely smoking initiation, current smoking, past smok-
ing, smoking cessation, alcohol consumption, coffee intake and tea intake,
and a range of commondiseases. Summary statistics of these traits are either
from published genome-wide association studies (GWAS; sample size
n = 16,731–547,261) or in-house GWAS using the UK Biobank (UKB)21

data (n = 208,988–454,648). To ensure robust and reliable estimates of the
causal effects, we calibrate 11 commonly used MR methods by simulation
before applying them to real data. We also investigate whether the causal
effect estimates could be confounded by socioeconomic status (SES) and
physical activity (PA), aiming to determine if the IVs have effects on the
outcome via pathways other than SUB traits. Our study identifies putative
causal links between SUB and common diseases, highlights the complexity
of the health consequences of SUB due to dosage-dependent effects, and
provides analytical guidance for future research to study the health con-
sequences of behavioural traits.

Methods
Comparing different MRmethods by simulation and real data
analysis
We calibrated 11 commonly used MR methods by simulation, including
GSMR2 (implemented in GCTA v1.93.0b, https://yanglab.westlake.edu.cn/
software/gcta/index.html#GSMR), IVW, Robust, MR-Egger, weighted
median, mode, and Con-Mix, implemented in the R package Mende-
lianRandomization (v0.4.2, https://CRAN.R-project.org/package=
MendelianRandomization), and MR-Lasso, MR-PRESSO (v1.0, https://
github.com/rondolab/MR-PRESSO), MRMix (v0.1.0, https://github.com/
gqi/MRMix) and RAPS (v0.2) in R. All theMRmethods were used with the
default settings.Among these,GSMR2 is anupdatedversion ofGSMR22 and
was developed as part of this study (https://github.com/jianyanglab/gsmr2
and https://yanglab.westlake.edu.cn/software/gsmr/). It introduces a new
heterogeneity test to exclude invalid IVs and is more robust against direc-
tional pleiotropy compared to GSMR (Supplementary Note 1). All the
methods were compared based on the false-positive rate, the estimate of
causal effect, and statistical power under the scenarios with different pro-
portions of invalid IVs, different proportions of variance explained by the
invalid IVs, and different levels of balanced or directional pleiotropy.
Detailed simulation settings and results can be found in Supplementary
Note 2 and Supplementary Figs. 1–3. We then applied the 11 MRmethods
to test for causal associations between SUB and commondiseases of interest
in real data. We selected independent lead SNPs (LD r2 < 0.01 between the
lead SNPs) with aGWAS P-value < 5 × 10−8 as IVs for theMR analyses.We
defined a significant or suggestive association for each exposure using a local
FDRof < 0.01 or < 0.05 (qvaluepackage23), respectively. In the bi-directional
MR analyses, we also set the p-value threshold for selecting IVs for common
diseases at 5 × 10−8. This p-value threshold is equivalent to a chi-squared
statistic of 29.7, but considerablymore stringent than the ‘rule of thumb’ chi-
squared statistic threshold of 10 [ref. 24]. Based on the simulation results, we
have compiled a table recommending the use of these 11 MR methods for

real data analyses under various circumstances (Supplementary Table 1).
Additionally, we conducted a univariate MR analysis for each IV used in
GSMR2 for all exposure-outcome pairs and plotted the strength of asso-
ciation of each IV with the exposure (as measured by p-value) against its
causal estimate (b̂xy) (Supplementary Data 1).

Phenotype definitions and selection criteria
We collected seven traits related to substance use behaviours (Supple-
mentaryTable 2) from theUKBiobank (UKB)data21.Weobtained access to
the UK biobank data by applying to the Access Management Team under
Application Numbers 12514 and 66982. The UK Biobank has obtained
ethical approval from the North West Multi-centre Research Ethics Com-
mittee (MREC) as a Research Tissue Bank (RTB), which means that
researchers are not required to seek separate ethical approval and can
process the data under the existing RTB approval. The smoking status was
defined based on the answer to questions about current and past tobacco
smoking (data-field IDs: 1239 and 1249). Individuals who answered “just
triedonce or twice” for past tobacco smokingwere regardedas never regular
smokers. For smoking initiation (SI), we collected 453,693 records from a
self-report survey (208,988 regular smokers and 244,705 never regular
smokers) and coded regular smokers as 1 and never regular smokers as 0.
Former smoking (FS) was also a binary trait, contrasting between 161,569
former smokers and 244,705 never regular smokers. Binary trait current
smoking (CS) was defined to the contrast between 47,419 current smokers
and 244,705 never regular smokers. Cigarette per day (CPD) was a quan-
titative phenotype measured by how many cigarettes were smoked per day
for the current smokers (data-field ID: 3456) who mainly smoked manu-
factured or hand-rolled cigarettes (data-field ID: 3446). Smoking cessation
(SC) was a binary trait, contrasting between 161,569 former smokers and
47,419 current smokers, where former smokers were defined as participants
who had quit smoking, and current smokers were defined as participants
who reported that they were smoking at the time of the interview. For
alcohol consumption (AC), we calculated an average intake of alcohol
consumption in units perweek25 (n = 358,449 individuals).We performed a
correction for misreports and longitudinal changes, similar to that in our
previous study26 which shows that not all the MR methods are robust to
these confounders. Heavy alcohol consumption (HAC) was a binary trait
(coded as 1 or 0), defined as current heavy drinkers (n = 106,576, mean =
21.23 units, standard deviation (s.d.) = 8.54) who drink ≥ 12.5 units per
week, contrasted to never drinkers. Moderate alcohol consumption (MAC)
was a binary trait, defined as current moderate drinkers (n = 251,873,
mean=5.74units, s.d. = 3.48)whodrink< 12.5 units perweek, contrasted to
the never drinkers (n = 14,488). We chose the threshold of 12.5 units per
week because it showed the lowest risk of all-cause mortality in a previous
study10. For coffee intake (CI), the number of cups of coffee intake per day
(mean = 2.07 cups per day, s.d. = 2.10) was collected from 421,947 indivi-
duals (data-field ID: 1498). For tea intake (TI), the number of cups of tea
intake per day (mean = 3.47 cups per day, s.d. = 2.90) was collected from
440,094 individuals (data-field ID: 1488). Moderate/heavy coffee/tea intake
were defined as drinkers consuming ≥ or < 5 cups per day, contrasted to the
non-drinkers. Diet by 24 h recall is an online-follow questionnaire being
emailed to participants at 3–4monthly intervals (category ID: 100090). The
phenotype “coffee consumed” (data-field ID: 100240) is a binary trait
indicating whether coffee intake in the last 24 h (n = 63,891). Sugar and
artificial sweetener added to the coffee (data-field ID: 100370 and 100380)
are quantitative traits measured by the number of teaspoons per drink, with
half, 1, 2, and 3+ coded as 0.5, 1, 2, 3, respectively (n = 63,786; those
answered “varied” were excluded).

The phenotypic records of 18 common diseases in the UKB were
acquired from ICD10 main diagnoses, ICD10 secondary diagnoses, and
self-report records (data-field IDs: 41202, 41204, and 20002; n = 454,108-
455,607). We first selected the same 22 common diseases as in ref. 22 but
excluded 4 diseases with a low prevalence ( < 2% in UKB v2 full release).
Each disease trait was labelled as 0 (control) or 1 (disease carrier), and the
disease count was the number of diseases carried by an individual as an
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indicator to quantify the general health status of the UKB participants. The
descriptive characteristics of these phenotypes can be found in Supple-
mentary Table 3. We also collected two socioeconomic traits, educational
attainment (EA) and household income (HI), from the UKB. EA was
measured by years of schooling derived from qualification (data-field ID:
6138), and HI was measured by annual average total household income
before tax (data-field ID: 738).

Considering the concerns that not all the methods we used are free
from bias due to sample overlap, as some disease summary statistics also
incorporate theUKBdata, we performed a re-sampling analysis to compare
the estimates of causal effect and their corresponding test-statistics (i.e., z-
scores) between the analyses with and without sample overlap, given the
same sample size. To do this, we randomly divided the UKB participants
into two equal subgroups and re-ran the GWAS and MR for smoking
initiation and cardiovascular disease. We repeated this process 100 times
and compared the bxy estimates between the scenarios of no sample overlap
and full overlap for each method. We did not observe any significant dif-
ference in thebxy estimate or z-test statistic between the analyseswithnoand
full sample overlap, except for Egger, which presented a significantly higher
bxy estimate and test-statistic in full overlap compared to no overlap (Sup-
plementary Fig. 4). It is noteworthy that inflation in test-statistics due to
sample overlap is a well-recognized issue in two-sample MR methods, and
while the simulations in this study suggest that the primary conclusions are
highly unlikely to be influenced by sample overlap, they should not be
misconstrued as dismissing the issue of sample overlap entirely.

GWAS and genetic correlation
The UKB individual-level genotype data were subject to quality controlled
and imputed toHaplotypeReferenceConsortium (HRC)27 by theUKBdata
analysis team21. We extracted a subset of the UKB data representing Eur-
opean ancestry (n = 456,426) by projecting all the participants onto the
principal components (PCs) fromthe1000GenomesProject (1KGP).Then,
we used PLINK228 (https://www.cog-genomics.org/plink2) to generate the
hard-call genotypes from the imputed genotype probabilities (parameter
setting: -hard-call 0.1). We filtered out SNPs with minor allele count < 5,
missing genotype rate > 0.05, Hardy-Weinberg equilibrium test P-
value < 1 × 10–6, or imputation info score < 0.3.

We used BOLT-LMM29 to perform GWAS to acquire summary sta-
tistics for SUB and common diseases in the UKB. For binary traits (case
versus control),we ranBOLT-LMManalysisfitting sex, age, andfirst 10PCs
as covariates, and then transformed the effect size fromBOLT-LMMeffects
to the odds ratio (OR) using LMOR30. For quantitative traits (e.g., SUB and
disease count), we excluded the extreme phenotypic values located outside
themean± 7 s.d. interval in each sex group, pre-adjusted the phenotypes for
sex and age, converted them to z-scores, and then performed BOLT-LMM
analysis29 with the first 10 PCs fitted as covariates. Recently developed
approaches31–33 have been utilized to perform generalized linear mixed
model-based association analysis for binary traits in biobank-scale datasets.
We employed fastGWA-GLMM33 to rerun the GWAS and subsequentMR
analyses for the four smoking related binary traits. The effect sizes of
genome-wide significant SNPs were highly similar between GLMM and
LMM + transformation (e.g., a Pearson’s correlation of 0.9996 for 157
independent SNPs for SI). The causal estimates were also largely consistent,
and any discrepancy was mainly due to the low robustness of certain MR
methods rather than the methods used to generate GWAS summary sta-
tistics (Supplementary Fig. 5). GWAS summary statistics for several com-
mon diseases were obtained from the published studies: coronary artery
disease (CAD)34, type 2 diabetes (T2D)35, Crohn’s disease (CD)36, ulcerative
colitis (UC)36, rheumatoid arthritis (RA)37, schizophrenia (SCZ)38, bipolar
disorder (BIP)39, major depressive disorder (MDD)40, Alzheimer’s disease
(AD)41, ovarian cancer42, breast cancer43, and prostate cancer44. The
descriptive characteristics of these phenotypes can be found in Supple-
mentary Table 4.

Genetic correlation characterizes the genetic relationship between two
traits due to pleiotropic and/or causality. To estimate the genetic correlation

between substance use behaviours, we used bivariate LDSC45 which only
requires GWAS summary statistics. The input for bivariate LDSC was
restricted to ~1.2 million SNPs that overlapped with those in the HapMap
3 panel.

Multi-trait-based conditional and joint analysis (mtCOJO)
The mtCOJO method22 (https://yanglab.westlake.edu.cn/software/gcta/
index.html#mtCOJO) is an approach to conduct GWAS for a trait, con-
ditioned on a set of other traits, using only summary statistics. To validate
the results from the mtCOJO analysis, we ran the BOLT-LMM analysis for
the seven main SUB traits with EA and HI fitted as covariates in the linear
mixed model. Then, we used the conditional GWAS summary to perform
the MR analysis and compared the results with the unconditional results
(Supplementary Fig. 6).

Investigating dose-dependent effects
We conducted a simulation to analyse the causal relationship between
exposure (x) and outcome (y). Specifically, we simulated a quadratic rela-
tionship between x and y (y = x2+ x), divided x into ten quantiles based on
exposure values, and classified the first quantile as the control group (i.e.,
those who never drink coffee or tea). The causal effect (bxy) is set as 0.2. We
also identifiedmoderate andheavy intake groups basedon the turning point
of the average outcome value (i.e., disease risk).We then conducted GWAS
of the moderate and heavy intake groups against the control group and
estimated the genetic correlation (rg) between x and y in each group. We
repeated this simulation 100 times for both linear and non-linear causal
effects and then compared the estimates (Supplementary Fig. 7).

There are concerns that dichotomizing consumption data does not
provide direct evidence for dose-dependent effects. To address this concern,
we used a recently developed method called PolyMR46 to investigate non-
linear causal effects (Supplementary Fig. 8).However, sincePolyMRwasnot
designed for binary outcomes, we selected six quantitative biomarkers (total
cholesterol, blood glucose, HbA1c, HDL, LDL, triglycerides, and urate) as
outcomes toassess thepotential non-linear causal effects of coffee intake and
tea intake (CI and TI).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Comparison of the commonly used MR methods
Prior research26 has indicated that some GWAS on substance use beha-
viours (SUBs) may be biased by potential confounders, leading to invalid
IVs. This necessitates the re-evaluation ofMRmethods through simulation.
To compare the performance of different MR methods and better under-
stand the differences in real data analysis results, we conducted extensive
simulations under a range of scenarios (Methods and Supplementary
Note 2), with a specific focus on the effect of horizontal pleiotropy. In our
previous study26, we observed that strong confounders could distort the true
genetic correlation and causal association, even reversing their direction,
and a large proportion of IVs showed strong directional pleiotropic effects.
Thus, simulation settings need to mimic such extreme scenarios to test the
limits of MR methods. We included in the benchmark analysis a set of
commonly used MR methods, namely IVW47, weighted median48, mode19,
MR-Egger18, Robust49, MR-Lasso50, RAPS51, MR-PRESSO20, MRMix52 and
Con-Mix53. We also included an upgraded version of the Generalised
Summary-data-based Mendelian Randomisation22 (named GSMR2),
incorporating a new global heterogeneity test with improved robustness to
detect and remove pleiotropic IVs (Supplementary Note 1).

The simulation results showed that under the nullmodel (i.e., no causal
effect between exposure and outcome), when the proportion of invalid IVs
was small and the invalid IVs explained a small fraction of heritability of the
exposure, almost all the methods showed a well-controlled false-positive
rate (FPR) (Supplementary Figs. 1, 2). However, when the proportion of
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invalid IVswas large (e.g., half of the IVswere invalid),mostmethodshadan
inflated FPR under the null. Under a causal model (i.e., the alternative
model), the estimates of causal effects could be biased by directional
pleiotropy (the effects of pleiotropic IVs are correlated between exposure
and outcome), and the inflation was proportional to the strength of the
directional pleiotropy. Under the alternative model, most methods attained
high statistical power when the level of directional pleiotropy was modest,
but the power for several methods decreased substantially when the level of
directional pleiotropy was strong (Supplementary Fig. 3). The simulation
results suggest that in the presence of strong directional pleiotropy, no MR
method can attain both low FPR under the null model and high statistical
power under a causal model. The consistency in result between the MR
methods reduced with the increased level of directional pleiotropy because
of the differences in robustness to pleiotropy between the methods. Thus, it
is essential to compare results from different MR methods before making
definitive inferences about causality, and such triangulation framework has
proven effective in improving the robustness of causal inference50,54,55.

To estimate the causal effects of SUB on common diseases, we carried
out MR analyses between 7 SUB traits (e.g., smoking initiation, alcohol
consumption) and 18 common diseases (e.g., asthma, type 2 diabetes,
psychiatric disorders) plus disease count (i.e., a sum of diseases carried)
using the 11 MR methods that were calibrated as mentioned above
(Methods and Supplementary Tables 2, 3). For each SUB trait, we used a
local false discovery rate (FDR) of 0.01 to define significant associations
between the exposures and outcomes and a local FDR of 0.05 to define
suggestive associations (Methods).

Widespread risk effects of smoking on common diseases
Results from nearly all the methods consistently showed that smoking
initiation (SI) had significant risk effects on 13diseases andprotective effects
against 1 disease (Fig. 1 and Supplementary Data 2), consistent with recent
MR studies for smoking traits56–58. In total, there were 100 significant
associations out of 209 tests (11 methods multiplied by 19 outcomes). MR-
Egger and MRMix were the only two methods that did not show any
significant association, consistentwith the simulation evidence that theyhad
the lowest statistical power inmost scenarios among theMRmethods tested
(Supplementary Fig. 3). The only protective effect of SI was against allergic
rhinitis, which was significant in seven methods, and the estimates were
largely consistent acrossmethods (Fig. 1). Former smoking (FS) and current
smoking (CS) both showed consistent results with SI, and all these three
smoking-related traits showed consistent risk effects on disease count
(Supplementary Figs. 9 and Supplementary Data 3, 4). On the contrary, for
smoking cessation (SC), only the GSMR2 method showed a significant
protective effect against cardiovascular disease and a suggestive protective
effect against disease count (Supplementary Fig. 9 and Supplementary
Data 5). The small number of significant associations for SC was likely due
to the lack of power because only 8 index SNPs were included in the MR
analysis (see below for the results from a more powerful analysis).

The observed beneficial health effects of moderate drinking are
likely non-causal
The health consequences of alcohol consumption (AC) have been under
debate for decades. Several genetic analyses showed negative estimates of
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Smoking initiation

Fig. 1 | Estimates of causal associations between smoking initiation and common
diseases from different MR methods. Data for both the exposures and the out-
comes were from the UK Biobank. In total, 152 index SNPs for smoking initiation
were used as instrumental variables. Each square represents an MR association
result, and the colour indicates the direction of the estimate. The size and opacity of

each square is proportional to the size of causal effect estimate. The suggestive
associations (local FDR < 0.05) are annotated with “*“ and “[95% confidence
interval of OR]”. The significant estimates with local FDR < 0.01 are labelled with
“**”. The names of theMRmethods are shown on the left of the plot, and the names
of the diseases are shown on the top.
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genetic correlation between AC and common diseases25,59. However, recent
MR analyses failed to find any significant cardioprotective effect of alcohol
drinking58,60,61. In addition, observational studies showed a non-linear
relationship of AC with common diseases10,62, e.g., a J-shaped relationship
with cardiovascular disease63,64. Ourprevious study showed that thenegative
estimates of genetic correlation and J-shaped relationship between AC and
disease could be largely driven by misreports and longitudinal changes due
to disease ascertainment26. In this study, results from differentMRmethods
showed consistently that AC had risk effects on cardiovascular disease,
dyslipidemia, and hypertensive disease (Fig. 2 and Supplementary Data 6).
To further investigate the health effects of moderate drinking, we derived
two additional phenotypes: moderate alcohol consumption (MAC) and
heavy alcohol consumption (HAC) and re-ran theMR analysis (Methods).
We found that MAC did not show any significant protective effects in any
methods, while HAC still showed significant risk effects on dyslipidemia
and hypertensive disease (Supplementary Fig. 10 and Supplementary
Data 7), implying that the protective effects of moderate drinking observed
from observational studies are likely non-causal.

Coffee and tea intake exerted complicated effects on common
diseases
Coffee intake (CI) showed significant risk effects onfive diseases (Fig. 3). For
asthma, cardiovascular disease, dyslipidemia, and iron deficiency anemias,
only one method was significant although the estimates from all the other
methods showed a consistent direction. For osteoarthritis, all the methods
showed significant results except for MR-Egger, and the direction of the

estimates were all consistent (Supplementary Data 8 and Fig. 3). The mean
OR from all methods was 1.52, which is interpreted as a 1 s.d. increase in CI
(equivalent to 2.10 cups per day) leading to a 1.52-fold increase in the risk of
osteoarthritis. CI also showed a protective effect against irritable bowel
syndrome, osteoporosis, and varicose veins of lower extremities (VVLE),
but the evidence is considered asmodest since only a fewmethods provided
significant estimates (Fig. 3). Tea intake (TI) showed a significant risk effect
on osteoarthritis in Median and Mode methods, a significant protective
effect against osteoporosis in GSMR2, and a suggestive protective effect
against type 2 diabetes (T2D) and VVLE in GSMR2 and Mode methods
(Fig. 4), indicating possible confounding effects were dealt with differently
by different methods so that these results should be interpreted with great
caution. Neither CI nor TI had a significant effect on disease count, sug-
gesting that the overall health effects of these two behaviours are mild
(Figs. 3, 4 and Supplementary Data 8, 9). Alternatively, the effect may be
dosage-dependent, and thus underestimated if we assume a linear rela-
tionship (see below).

The relationship between CI and common diseases is complicated and
controversial. For example, CI has previously been associated with lower
T2Drisk65,66.However, recent evidence argues that high coffee consumption
increases the T2D risk compared to low consumption67. We attempted to
investigate this potential dosage-dependent relationship via a stratified
analysis by performing logistic regression of 18 common diseases on 10
different dose groups against non-drinkers (Supplementary Note 3). The
results showed that for T2D, coffee intake of less than five cups per day had
beneficial effects, but when the intake was more than six cups per day, the
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Alcohol consumption

Fig. 2 | Estimates of the causal associations between alcohol consumption and
commondiseases fromdifferentMRmethods.Data for both the exposures and the
outcomes were from the UK Biobank. In total, 52 index SNPs for alcohol con-
sumption were used as instrumental variables. Each square represents an MR
association result and the colour indicates the direction of the estimate. The size and

opacity of each square is proportional to the size of causal effect estimate. The
suggestive associations (local FDR < 0.05) are annotated with “*“ and “[95% con-
fidence interval of OR]”. The significant estimates with local FDR < 0.01 are labelled
with “**”. The names of the MR methods are shown on the left of the plot, and the
names of the diseases are shown on the top.
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protective effects turned to risk effects (Supplementary Fig. 11). TI also
showed dosage-dependent patterns for cardiovascular disease and
osteoarthritis (Supplementary Fig. 12) as well as several other diseases,
suggesting that the health effects of both coffee and tea intake might be
dosage-dependent.

If there is a J-shaped, dosage-dependent relationship between CI/TI
and a disease, the genetic correlation (rg) between moderate CI/TI and the
disease could potentially be in the opposite direction compared to that
between high CI/TI and the disease. To verify this hypothesis, we derived
four new traits, heavy/moderate coffee intake (HCI/MCI) and heavy/
moderate tea intake (HTI/MTI), i.e., contrasting people with a daily intake
of ≥ 5 or < 5 cups against those with zero intake, and assessed the associa-
tions of the original and new tea/coffee intake phenotypes with the 18
common diseases by genetic correlation, stratified regression, and MR
analyses (Methods). HCI showed a significant (local FDR < 0.01) positive r̂g
with 3 diseases and no significant negative rg (Supplementary Fig. 13),
consistent with the results for CI. In contrast, MCI showed a significant
negative r̂g with 9 diseases and no significant positive r̂g (Supplementary
Fig. 13 and Supplementary Data 10). For example, MCI showed a negative
r̂g (−0.22, s.e. = 0.03, q− value = 2.65 × 10−10) with cardiovascular disease,
whereas the estimate for HCI was in the opposite direction
(̂rg ¼ 0:16; s:e: ¼ 0:04; q� value ¼ 1:07× 10�4), consistent with the
results from the dosage-dependent regression analysis (Supplementary
Fig. 11). However, in the MR analysis, the significant estimates of causal
effects (b̂xy) ofMCIon commondiseasesweremostly in consistent direction

with those forHCI (Supplementary Fig. 14), suggesting that thedifference in
the direction of r̂g with common diseases between MCI and HCI might be
due to pleiotropic effects and/or confounders (see below for more discus-
sion). For tea intake, the rg estimates between the MTI-disease pairs were
broadly consistent with those between theHTI-disease pairs, e.g., bothMTI
and HTI showed significant negative genetic correlation with T2D (Sup-
plementary Fig. 13) and protective effects against T2D as suggested by three
MRmethods (Supplementary Fig. 15). The only robust risk causal effect of
HTIwas found for osteoarthritis (significant inMR-Median andMR-Mode
methods with the estimates from the other MR methods in a consistent
direction).We further demonstrated by simulation that observing opposing
directions in the estimates of rg between exposure and outcome across
different stratified exposure groups is indicative of dosage-dependent effects
(Methods and Supplementary Fig. 7).

To better understand the dosage-dependent associations and the dis-
crepancies between the genetic correlation andMR results shown above, we
focused specifically on the association betweenMTI/HTI and osteoarthritis
because of a discernible dosage-dependent effect shown consistently in the
stratified regression, genetic correlation, and MR analyses (Supplementary
Figs. 12, 13, 15).We visualized the relationship between the effects of IVs on
the exposure and outcome (Supplementary Fig. 16) and found that the two
most significant IVs (rs1264377 and rs977474) for MTI were distinct from
those forHTI (rs4410790 and rs2472297), causing the estimates of bxy to be
in opposite directions for the two sub-phenotypes (Table 1). For example,
the T allele of rs4410790 (top IV for HTI) had a negative effect on HTI
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Fig. 3 | Estimates of the causal association between coffee intake and common
diseases from different MR methods. Data for both the exposures and the out-
comes were from theUKBiobank. In total, 49 index SNPs for coffee intake were used
as instrumental variables. Each square represents an MR association result, and the
colour indicates the direction of the estimate. The size and opacity of each square is

proportional to the size of causal effect estimate. The suggestive associations (local
FDR < 0.05) are annotated with “*“ and “[95% confidence interval of OR]”. The
significant estimates with local FDR < 0.01 are labelled with “**”. The names of the
MR methods are shown on the left of the plot, and the names of the diseases are
shown on the top.
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(b̂GWAS ¼ �0:091; s:e: ¼ 0:007; P ¼ 4:90× 10�35) but a positive effect on
MTI (b̂GWAS ¼ 0:034; s:e: ¼ 0:006; P ¼ 3:40× 10�8). All these observa-
tions above indicate a substantial genetic heterogeneity between MTI and
HTI, which was further supported by the evidence that the genetic corre-
lation between them was significantly different from unity
(̂rg ¼ 0:651; s:e: ¼ 0:028). For coffee intake, the top two IVs for HCI and
MCI were the same, and their bxy estimates were in the same direction
(Table 1). Also, HCI showed more significant bxy estimates with common
diseases (risk effects on T2D, dyslipidemia, and osteoarthritis, and protec-
tive effects against osteoporosis across different methods) than MCI did
(only risk effect on T2D and osteoarthritis in a single method, Supple-
mentary Fig. 14). In addition to the disease outcomes, we utilised PolyMR to
directly assess the non-linearity of the effects ofCI andTI on seven common
biomarkers (Methods). We found significant non-linear effects of CI on
total cholesterol (P = 9.50 × 10−7) and low-density lipoprotein levels
(P = 2.46 × 10−3), even after applying the Bonferroni correction (Supple-
mentary Fig. 8).

Taken together, our results demonstrate the complexity of the health
consequences of coffee/tea intake. The results also suggest that the overall
health effects of CI and TI are mild and need to be interpreted with caution,
especially when a dosage-dependent relationship is observed.

Validating the causal estimates using data from published
studies
To validate our causal estimates above, we first re-ran the MR analysis
with the disease GWAS summary statistics replaced by those from

published studies (Methods and Supplementary Table 4). We identified
86 significant associations (local FDR < 0.01) between the 7 SUB traits
and 12 common diseases (Supplementary Fig. 17). The causal effects
estimated using the published disease GWAS data were highly correlated
with those estimated using the UKB disease data, despite the phenotypic
definitions of the diseases being slightly different between studies. The
Pearson’s correlation r of the bxy estimates across 7 SUB traits was 0.86
between cardiovascular disease and coronary artery disease (CAD), and
0.77 between psychiatric disorder and schizophrenia (SCZ) (note: the
reported r is the median of the estimates across 11MRmethods). We also
re-ran the MR analysis using summary data for SI, SC, and AC from a
recent GWAS meta-analysis by the GSCAN consortium59 (Supplemen-
tary Fig. 18). The bxy estimates using the UKB SUB data were generally
consistent with those using the GSCAN SUB data (Pearson’s correlation
r = 0.55–0.81 across different MR methods). Of the 100 significant
associations between SI and common diseases discovered in the UKB, 94
remained significant when using SI from the GSCAN data. Notably,
smoking cessation from GSCAN showed several significant protective
effects with consistent estimates from multiple methods, validating the
beneficial effects of SC, as indicated by the GSMR2 analysis above with
the SC data from the UKB. The gain of power is likely due to the
increased number of IVs (from 8 to 18). These results also demonstrate
the power of GSMR2 when the number of IVs is limited. On the other
hand, the replication rate of AC was low (4/20), probably because the
GSCAN dataset has not corrected for misreports and longitudinal
changes as noted previously26.
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Fig. 4 | Estimates of the causal association between tea intake and common
diseases from different MR methods. Data for both the exposures and the out-
comes were from the UKBiobank. In total, 43 index SNPs for tea intake were used as
instrumental variables. Each square represents an MR association result, and the
colour indicates the direction of the estimate. The size and opacity of each square is

proportional to the size of causal effect estimate. The suggestive associations (local
FDR < 0.05) are annotated with “*“ and “[95% confidence interval of OR]”. The
significant estimates with local FDR < 0.01 are labelled with “**”. The names of the
MR methods are shown on the left of the plot, and the names of the diseases are
shown on the top.
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Causal estimates are largely robust to the confounding of
socioeconomic status
Considering that the estimates of causal associations between SUB and
common diseases might be confounded by SES, we estimated the causal
effects of SUBon the diseases adjusting for educational attainment (EA) and
household income (HI). To achieve this, we applied mtCOJO22 which only
requires summary statistics to conduct a conditional GWAS analysis for
each SUB or disease trait conditioning on EA and HI simultaneously
(Methods).We then re-ran theMRanalysis using the SES-adjustedSUBand
disease GWAS summary statistics. The causal estimates after the SES
adjustment were largely consistent with those without adjustment (Fig. 5
and Supplementary Data 11), indicating that the causal estimates between
SUB and common diseases were generally robust to the confounding of the
SES analyzed in this study (except for MRMix which showed several
extreme bxy estimates for AC and TI after the SES adjustment). In terms of
the robustness for each specific exposure, most of them showed consistent
results before and after the SES adjustment except for tea/coffee intake. The
results for smoking-related traits were highly robust even for the results
from MRMix. These observations indicate that tea/coffee intake is more
likely to be confounded by SES compared to smoking and drinking. We
further validated the mtCOJO adjustment by conducting BOLT-LMM29

analysis on both SUB and common diseases fitting EA andHI as covariates
and re-ran the MR analysis (Methods). The individual-level data-based
conditional GWAS analysis results were consistent with those from
mtCOJO (Supplementary Fig. 6), and the Pearson’s correlation r of the bxy
estimates between mtCOJO adjustment and individual-level data-based
adjustment ranged from 0.61 to 0.97 across different exposures (excluding
the estimates fromMRMix). We also adjusted the SUB and disease GWAS
data for twophysical activity traits (i.e., leisure screen time andmoderate-to-

vigorous intensity physical activity during leisure time)68 using mtCOJO,
and the causal estimates remain largely unchanged (Supplementary Fig. 19).
To further assess the robustness of our analysis topotential colliderbias69,we
employed Slope-Hunter70 to correct the sevenSUB traits for SES, specifically
educational attainment, and re-estimated their effects on diseases using all
11 MR methods. The bxy estimates after Slope-Hunter adjustment were
largely consistent with those after mtCOJO adjustment (Supplemen-
tary Fig. 20).

Bi-directional effects are rare
To investigate whether there are reverse causal associations between SUB
and complex diseases (i.e., disease status leads to behavioural change), we
performed a reverse MR analysis, designating a disease as the exposure
and an SUB as the outcome (Methods). The number of diseases that
showed significant effects on SUB at local FDR < 0.01 was small (Sup-
plementary Data 12). For the diseases available from the UKB, only
asthma showed significant negative effects on current smoking in the
GSMR2 and Lasso analyses. For the diseases available from the published
studies, there was a strong positive effect of major depressive disorder
(MDD) on smoking initiation (b̂xy ¼ 0:19∼ 0:28) significant in 9 out of
the 11 MR analyses, consistent with the previous findings71,72. Schizo-
phrenia also showed a positive effect on smoking in multiple MR ana-
lyses, but the effect size was much smaller than that for MDD
(Supplementary Data 12).

Discussion
In this study, we investigated the causal associations between substance use
behaviours and common diseases. The results showed that SUB typically
had detrimental effects on health, irrespective of socioeconomic status.

Table 1 | Dosage-dependent effects of the top four GWAS signals for coffee and tea intake

SNP Nearest Gene(s) A1/A2 Trait N Freq_A1 beta s.e. P

rs4410790 AHR T/C CI 421947 0.366 −0.062 0.002 1.1E-166

MCI 393101 0.369 −0.067 0.005 5.0E-36

HCI 124890 0.369 −0.200 0.010 5.3E-92

TI 440094 0.367 −0.045 0.002 4.1E-92

MTI 351508 0.373 0.034 0.006 3.4E-08

HTI 155936 0.354 −0.091 0.007 4.9E-35

rs2472297 CYP1A1 T/C CI 421947 0.265 0.074 0.002 2.6E-198

MCI 393101 0.263 0.080 0.006 1.2E-40

HCI 124890 0.264 0.250 0.010 4.8E-130

TI 440094 0.264 0.060 0.002 1.9E-134

MTI 351508 0.258 −0.027 0.007 9.2E-05

HTI 155936 0.278 0.124 0.008 1.3E-54

rs1264377 PSORS1C3, MIR877 A/G CI 421947 0.182 0.015 0.0028 4.0E-08

MCI 393101 0.181 −0.004 0.0067 0.51

HCI 124890 0.185 0.043 0.0119 3.5E-04

TI 440094 0.182 −0.002 0.0028 0.37

MTI 351508 0.181 −0.054 0.0077 2.8E-12

HTI 155936 0.185 −0.028 0.0091 1.8E-03

rs977474 PRH1/ PPR4/TAS2R14 C/T CI 419168 0.166 0.022 0.0029 1.8E-13

MCI 390497 0.165 0.044 0.0071 4.6E-10

HCI 124071 0.163 0.077 0.0125 7.1E-10

TI 437186 0.165 −0.021 0.0029 4.0E-13

MTI 349186 0.166 −0.058 0.0080 6.3E-13

HTI 154901 0.167 −0.067 0.0095 1.2E-12

rs4410790 and rs2472297 are the top two GWAS signals in all GWAS except for MTI, and rs1264377 and rs977474 are the top two GWAS signals in MTI GWAS. A1/A2: minor allele/major allele. Freq_A1
allele frequency of A1, N sample size, beta estimate of SNP effect, s.e. Standard error of the beta estimate.
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While smoking behaviours either at present or in the past increased the risk
of nearly all common diseases, our results suggested that smoking cessation
had beneficial effects on several diseases such as cardiovascular disease,
dyslipidemia, and hypertensive disease. We also showed that no significant
protective effects were detected for alcohol consumption, including mod-
erate alcohol consumption. Moreover, coffee and tea intake showed com-
plicated relationshipswith common diseases, and their overall health effects
were mild. The effects seemed to be dosage-dependent, and the pattern of
dosage-dependence seemed disease-specific.

Among all the tests for smoking, only allergic rhinitis was foundwith a
significant negative association, and such an effect remains debated in the
literature. For example, Eriksson et al. 73 showed that smoking was asso-
ciatedwith a lowprevalence of allergic rhinitis inmen,whereas ref. 74meta-
analysed 97 studies and concluded that active smoking was not associated
with allergic rhinitis, but passive smoking was. There could be multiple
reasons for the inconsistent observations. First, there are different smoking
measurements such as smoking initiation (SI) and smoking intensity
(measured by cigarettes per day, i.e., CPD). There is genetic heterogeneity
between different smoking phenotypes as reported previously75,76 and
observed in this study. For example, the topGWAS signal for SI (rs9919670,

P ¼ 1:5 × 10�49) was not genome-wide significant in CPD GWAS
(P ¼ 0:0079). Similarly, the top signal in CPD GWAS (rs146009840,
P ¼ 1:2 × 10�52) was not genome-wide significant in SI GWAS
(P ¼ 5:1× 10�5). Such differences could lead to different causal estimates
from MR. Second, there are differences in the definitions of cases and
controls between studies, especially if cases include self-report individuals77.
Hence, the putative causal association between smoking and allergic rhinitis
warrants replication with independent datasets in the future. Third, as
pointed out by Saulyte et al. 74, passive smoking had a risk effect on allergic
rhinitis, whereas our study only included active smoking and thus the effect
of passive smoking was not considered.

Our analysis revealed the complicated effects of coffee and tea intake on
common diseases. However, the underlying biological mechanisms are still
unclear. Several previous studies have shown that the sugar/sweetener
added along with these drinks could confound the associations78,79, which
might be one of the reasons why CI/TI exerted complicated effects on
common diseases. In other words, the correlation between CI/TI and
metabolic diseases could be confounded by the added sugar/sweetener.
According to a 24 hdiet recall in theUKBdata, around30.3%ofparticipants
added sugar/sweetener into their coffee (data-field ID: 100240, n = 45,068),

Fig. 5 | Comparison of the estimates of causal effects of substance use behaviours
on common diseases before and after adjusting for socioeconomic status. This
figure shows the comparison of bxy estimates before and after adjusting for SES. Each
panel indicates the exposure used. The color of each dot indicates the significance

level change before and after SES adjustment. Significant level is defined at local
FDR < 0.01. The shape of each dot indicates the MR method used. The grey dashed
line is the diagonal line of the coordinate plane.
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suggesting that adding sugar/sweetener is common for the coffee drinkers so
that such an effect should not be neglected. Unfortunately, these records are
not matched with the general coffee and tea intake data in the UKB so that
they cannot be directly used as covariates for adjustment, and this issue also
applies to data for addedmilk in coffee or tea.We showed a significant level
of genetic heterogeneity between general CI and CI from 24 h diet recall
(̂rg ¼ 0:768; s:e: ¼ 0:076) (Methods). The estimate of genetic correlation
between body mass index (BMI) and CI from 24 h recall
(̂rg ¼ 0:174; s:e: ¼ 0:051) was slightly lower after adjusting for sugar/
sweetener added (̂rg ¼ 0:148; s:e: ¼ 0:050), suggesting a role of added
sugar/sweetener in the associations between CI and health-related out-
comes. This conclusion is further evidenced by the observation that people
who drink coffee with added sugar/sweetener had a higher disease burden
than those without (1.45 vs. 1.22, Supplementary Table 5). Besides the
additives, beverage subtypes might also lead to differences. There are four
subtypes of coffee reported from the UKB participants: decaffeinated,
instant, ground, and others (data-field ID: 1508). We adjusted CI for the
coffee subtypes and re-ran the MR analysis. The results were largely con-
sistent but with an exception for VVLE (Supplementary Fig. 21). That is,
before adjusting for coffee subtypes, the causal estimate was not significant
for 4/8 methods, but after the adjustment all eight methods provided sig-
nificant protective bxy estimates. These results suggest that part of the
protective effect of CI on VVLE could be masked by the mixture of coffee
subtypes. The estimated effects of CI on diseases remained almost
unchanged after adjusting for urinary biomarkers including blood urea
nitrogen levels, urinary albumin-to-creatinine ratio, and estimated glo-
merular filtration rate creatinine (Supplementary Fig. 22), indicating that
the identified causal associations of CI are unlikely to be confounded by
urinary or renal functions. To investigate the potential bias in the causal
estimate that may be introduced by unmeasured confounders affecting the
exposure-outcome relationship, we adopted the Latent Heritable Con-
founder MR (LHC-MR)80 method. This allowed us to estimate both the bi-
directional causal effects and the effects of potential confounders. In general,
the estimates from LHC-MR aligned with those from other MR methods
(Supplementary Data 13), except for allergic rhinitis and osteoarthritis
(Supplementary Fig. 23 and Supplementary Data 8). We have also
attempted to estimate the effects ofCI/TI oncommondiseases excluding the
top two IVs, and the results were mostly consistent except for those from
MR-Egger (Supplementary Fig. 24).

This study has several limitations. First, our stratified regression
showed that the health effects of TI and CI could be dosage-dependent,
and the pattern also varied for different diseases. Thus, a triangulation
framework that combines multiple methods is necessary to dissect the
genetic and causal relationship between SUB and common diseases.
Different MR methods have different underlying assumptions that may
not be satisfied in every pair-wise association we tested. In this case,
comparing multiple MR methods would be recommended to identify
robust causal associations between modifiable risk factors and common
diseases. Nevertheless, among the significant associations we identified,
there was no scenario in which the bxy estimates from different methods
were significant but in opposite directions, indicating the robustness of
our findings. Second, despite identifying that the minor allele effects of
the top two GWAS signals for TI/HTI oppose their effects on MTI
(Table 1), we still cannot fully elucidate the discrepancy in the context of
underlying biological mechanisms. There are more than 100 metabolites
significantly associated with coffee intake81. The two top signals were
linked to genes CYP1A1 and AHR, both of which are associated with the
caffeine degradation process82,83. Future studies are warranted to
understand whether caffeine and/or other metabolites has a dose-
dependent mechanism or whether the pattern we observed was just
induced by potential confounders, such as substances added to cof-
fee or tea.

In conclusion, this study combines different analytical frameworks to
detect putative causal links between SUB and common diseases. Smoking
showed widespread risk effects on common diseases and alcohol

consumption showed risk effects specifically on cardiovascular and meta-
bolic diseases. It was also highlighted that coffee and tea intake could exert
dosage-dependent effects on several diseases and the underlying causes are
complicated, possibly due to heterogeneous genetic architecture and con-
founding effects. The complexity of causal effects between SUB and com-
mon diseases should be interpreted with cautions, especially when
significant differences exist in the causal estimates among different MR
methods. Future studieswith large-scale clinical diagnosed phenotypes such
as nicotine dependence, alcohol use disorder, and caffeine dependence
would be helpful to elucidate the genetic heterogeneity between habitual
consumption and substance use disorder.

Data availability
GWAS summary statistics of the seven SUB traits are available at https://
yanglab.westlake.edu.cn/pub_data.html or https://doi.org/10.5281/zenodo.
1059633984. All the data used in this study canbe accessed by applying to the
UKB. The individual-level original and pre-processed data cannot be
directly shared due to restrictions set by the UKB. The numerical data
underlying Figs. 1–4 can be found in Supplementary Data 2, 6, 8, and 9,
respectively. The numerical data underlying Fig. 5 can be found in Sup-
plementaryData 1–4, 6, 8, 9, and 11.All other data can be obtained from the
corresponding author (or other sources, as applicable) upon reasonable
request.

Code availability
The GSMR/GSMR2 tools are integrated into the GCTA software package
(v1.93.3), and the source code for GCTA v1.93.3 is available at https://
yanglab.westlake.edu.cn/software/gcta/#GSMR (https://doi.org/10.5281/
zenodo.5226943)85. The GitHub repositories for the GSMR2 and GSMR
R packages can be found at https://github.com/jianyanglab/gsmr2 (https://
doi.org/10.5281/zenodo.10595875)86 and https://github.com/jianyanglab/
gsmr (https://doi.org/10.5281/zenodo.10595809)87, respectively. The code
for themainanalyses presented in thismanuscript canbe accessed athttps://
github.com/anglixue/MR_SUB(https://doi.org/10.5281/zenodo.10586538)88.
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