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Artificial intelligence-enabled
electrocardiography contributes to
hyperthyroidism detection and outcome
prediction
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Abstract

Background Hyperthyroidism is frequently under-recognized and leads to heart failure and
mortality. Timely identification of high-risk patients is a prerequisite to effective antithyroid
therapy. Since the heart is very sensitive to hyperthyroidism and its electrical signature can
be demonstrated by electrocardiography, we developed an artificial intelligence model to
detect hyperthyroidism by electrocardiography and examined its potential for outcome
prediction.
Methods The deep learning model was trained using a large dataset of 47,245
electrocardiograms from 33,246 patients at an academic medical center. Patients were
included if electrocardiograms and measurements of serum thyroid-stimulating hormone
were available that had been obtained within a three day period. Serum thyroid-stimulating
hormone and free thyroxine were used to define overt and subclinical hyperthyroidism. We
tested the model internally using 14,420 patients and externally using two additional test
sets comprising 11,498 and 596 patients, respectively.
Results The performance of the deep learning model achieves areas under the receiver
operating characteristic curves (AUCs) of 0.725–0.761 for hyperthyroidism detection, AUCs
of 0.867–0.876 for overt hyperthyroidism, and AUC of 0.631–0.701 for subclinical
hyperthyroidism, superior to a traditional features-based machine learning model. Patients
identified as hyperthyroidism-positive by the deep learningmodel have a significantly higher
risk (1.97–2.94 fold) of all-cause mortality and new-onset heart failure compared to
hyperthyroidism-negative patients. This cardiovascular disease stratification is particularly
pronounced in subclinical hyperthyroidism, surpassing that observed in overt
hyperthyroidism.
Conclusions An innovative algorithm effectively identifies overt and subclinical
hyperthyroidism and contributes to cardiovascular risk assessment.

Hyperthyroidism (HT) is a common endocrine disorder with a prevalence
of 0.8–1.3% and increases with age1. It is associated with increased mor-
bidity, all-cause, and cardiovascular mortality if untreated1. Heart failure
(HF) is the leading cause of increased cardiovascular mortality in HT2. The
diagnosis of HT can be made by measuring serum thyroid-stimulating

hormone (TSH), which has the highest sensitivity and specificity for eval-
uating suspected thyrotoxicosis among laboratory tests3. However, the
symptoms ofHT canmimic other illnesses,making early diagnosis difficult.
Patients with HT are frequently underrecognized, and almost two-thirds of
themstill need to undergo appropriate laboratory evaluation4. Furthermore,
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Plain language summary

Hyperthyroidism occurs when the thyroid
gland produces too much hormone and can
cause various symptoms including faster
heartbeat, weight loss, and nervousness.
Diagnosis is often missed, which can lead to
heart problems and even death.
Measurementsof theheart’selectrical activity
can be obtained using Electrocardiograms
(ECGs).Wemadeacomputationalmodel that
can detect hyperthyroidism from ECGs. Our
model was better able to identify people with
hyperthyroidism than currently available
methods, especially themore severe forms of
thecondition. If futurework demonstrates our
model is safeandaccurate, it couldpotentially
be used to detect hyperthyroidism sooner,
enabling faster treatment and improved
health of people with hyperthyroidism.

Communications Medicine |            (2024) 4:42 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-024-00472-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-024-00472-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-024-00472-4&domain=pdf
http://orcid.org/0000-0003-2337-2096
http://orcid.org/0000-0003-2337-2096
http://orcid.org/0000-0003-2337-2096
http://orcid.org/0000-0003-2337-2096
http://orcid.org/0000-0003-2337-2096
http://orcid.org/0000-0001-6152-4885
http://orcid.org/0000-0001-6152-4885
http://orcid.org/0000-0001-6152-4885
http://orcid.org/0000-0001-6152-4885
http://orcid.org/0000-0001-6152-4885
mailto:l521116@gmail.com


laboratory-based thyroid function tests often require longer turnaround
times. Therefore, tools to boost the timely diagnosis ofHTare sorely needed.

Cardiovascular manifestations are among the most critical effects of
thyroid hormone5. The electrocardiogram (ECG) is an inexpensive and
non-invasive tool to characterize cardiac changes, popularly applied in
clinical practice. Well-known ECG findings associated with HT include
sinus tachycardia, increased QRS voltage, and atrial fibrillation6.
Recently, artificial intelligence (AI) techniques based on deep learning
models (DLMs)7 have been shown to achieve human-level performance
and effectively detect cardiac and non-cardiac disorders affecting the
heart using large, annotated ECG datasets8,9. As mentioned above,
the heart is very sensitive to hyperthyroidism, and its electrical signature
can be detected by non-invasive electrocardiography (ECG). A recent
study has developed a DLM to detect overt HT with area under the
receiver operating characteristic (ROC) curves (AUCs) of >0.88 using 12-
lead ECG10. Although AI-enabled ECG (AI-ECG) systems have been
shown to identify previvors of cardiovascular diseases (CVD)9, their
prognostic value as independent predictors for HT-related cardiovas-
cular disease has yet to be investigated.

In this retrospective cohort study, we aim to develop an artificial
intelligence-enabled ECG (AI-ECG) system with internal and external
validation to assess its diagnostic accuracy and outcome prediction in HT.
The AI-ECG system detects overt HTwith AUCs of >0.86 in the test sets of
three different hospitals. AI-ECG suggested HT (positive AI-ECG) also
predicts adverse outcomes such as all-cause mortality and new-onset HF in
patients with HT and non-HT. Such digital augmentation can be used for
opportunistic clinical screening to identify high-risk patients warranting
further thyroid testing.

Methods
Ethics statement
This retrospective study was approved by the institutional review board of
Tri-Service General Hospital, Taipei, Taiwan (IRB No. C202105049). The
need for individual consent from patients was waived because data were
collected retrospectively in anonymized files and encrypted from the hos-
pital to the data controller.

Data source and definition
This study included three separate institutions affiliated with a Taiwanese
hospital system. An academic medical center in Neihu district, Taipei City,
denoted as Hospital A, provided research data from January 2010 to Feb-
ruary 2022. A community hospital located in Zhongzheng district, Taipei
City, denoted as Hospital B, provided an external test set fromMay 2011 to
February 2022; patients who ever visitedHospital Awere excluded.We also
collected data from a local hospital on Penghu Island, an isolated island off
the main island of Taiwan, denoted as Hospital C, and outpatient depart-
ment data from January 2021 to February 2022.

All 12-leadECGswere recorded using a Philips system®, which yielded
5000 voltage–time data points for each lead, up to 35 ECG patterns, and 8
ECG measurements. Serum TSH determination was based on radio-
immunoassay with a lower detection limit of 0.03 μIU/mL (Diagnostic
Products Corporation, Los Angeles, CA,USA). This study defined a TSHof
≤0.50 μIU/mL asHT.Wealso collected the nearest fT4within three days for
each HT record; serum fT4 ≥ 1.78 ng/dL was defined as overt HT11. In
addition to overt and subclinical HT determined by fT4 levels, we also
defined TSH levels ≤0.05 μIU/mL as severe HT. Methimazole and pro-
pylthiouracil were the only available antithyroid drugs (ATDs) at these
hospitals. The use of ATDwas also recorded, and the first dispense date of a
period of at least twomonths denoted the start of ATD therapy. Short-term
usage of less than two months was excluded.

Patient characteristics were collected from each hospital’s information
system, and theirmedical history prior to the index datewas identified using
ICD codes, which included the following: hyperthyroidism (HT, ICD-9
code 242.9 and ICD-10 codes E05.x), diabetes mellitus (DM, ICD-9 codes
250.x and ICD-10 codes E11.x), hypertension (HTN, ICD-9 codes 401.x to

404.x and ICD-10 codes I10.x to I16.x), hyperlipidemia (HLP, ICD-9 codes
272.x and ICD-10 codes E78.x), chronic kidney disease (CKD, ICD-9 codes
585.x and ICD-10 codes N18.x), acute myocardial infarction (AMI, ICD-9
codes 410.x and ICD-10 codes I21.x), stroke (STK, ICD-9 codes 430.x to
438.x and ICD-10 codes I60.x to I63.x), coronary artery disease (CAD, ICD-
9 codes 410.x to 414.x, and 429.2, and ICD-10 codes I20.x to I25.x), heart
failure (HF, ICD-9 codes 428.x, 398.91, and 402.x1, and ICD-10 codes
I50.x), atrial fibrillation (Afib, ICD-9 code 427.31 and ICD-10 codes I48.x),
and chronic obstructive pulmonary disease (COPD, ICD-9 codes 490.x to
496.x and ICD-10 codes J44.9). Additionally, we reviewed records of
laboratory tests and transthoracic echocardiography for patients with HT
and HF, identifying those with abnormal records from either source.

We also gathered traditional ECG features from the Philips system®.
ThePhilips system®providedanautomatedanalysis for eachECG, resulting
in 35 ECG patterns and 8 ECG measurements extracted from XML docu-
ments. These 8 ECG measurements encompassed heart rate, PR interval,
QRSduration,QT interval, correctedQT interval, Pwave axis, RSwave axis,
and Twave axis. The data for these eight variables were 91–100% complete.
For missing values, we performed imputation using multiple imputations
via chained equations, employing theRpackage “mice”version3.5.0. The35
ECG patterns were derived from statements generated by the Philips sys-
tem® for each ECG. Each ECG underwent analysis by the Philips system®,
which produced 3-6 statement codes. The 35 ECG patterns included: sinus
rhythm (statements code: SR; ST; TWRV; SB), sinus arrhythmia (state-
ments code: SA; SAB; SAT), sinus pause (statements code: SP; SARSV;
SARA), ectopic atrial rhythm (statements code: EAR; EAB; EAT; SEAR;
SEAB; SEAT), junctional rhythm (statements code: JER; JRA; JT; SDJ),
pacemaker rhythm (statements code: PMR; WPACE; PSAR; NFAD;
NFRA), early precordial R/S transition (statements code: ET), ST elevation
(statements code: STE; MSTEL; BSTEAL; EREPOL; STELVH; MSTEAL;
CINJI; BSTEA; MSTEI; CINJA; MSTEA; CINJL; MSTED; BSTEI; BSTE;
PINJA; PINJL; PINJAL; CINJAL; SD0IN; BSTEL), ST depression (state-
ments code: STD; SD1AL; SDJ; SDPRR; SD1IN; SD0DI; SD2AN; SD2WI;
SD1AN; SD0AN; SDM; SD2IN; SD2AL; SD0AL; SD0LA; SD1LA; SD2NS;
SD1DI), abnormal T wave (statements code: ATW; T1LA; T0IN; T0LA;
T1LA; T1AN; T1IN; T0AN; T0DI; T1DI; T0NS; TTW10; T1AL; T3AL;
T3LA; T6AL; T3WI; T3IN; T3AN; T0AL), abnormal Q wave (statements
code: AQW; LATQ; INFQ; IMI3; ASQLVH; AMI57; AQLVH; PQIN;
IMI18; PIMI; AMI17; AMI48; LMI10; ANTQ; LMI28), RSR’ wave (state-
ments code: RSRW; RSR1; ETRSR1), low voltage (statements code: LVOL;
LVOLFB; LVOLF; LVOLP; LVORAD; LVOLT), left axis deviation (state-
ments code: LAD;AXL;CAFBII;NIVCDL), right axis deviation (statements
code:RAD;AXR;LVORAD), left ventricularhypertrophy (statements code:
LVH; LVH1; LVHVP; LVHSR; LVHR56; LVHV; LVHREP; STELVH;
LVHCNP; LVHPRE; LVHSR; LVHCNV; ASQLVH; LVHR56; LVHCO;
LVHV; AQLVH; TIALVH; LVHCOL; AMI57; AMI17; AMI48; LMI28),
right ventricular hypertrophy (statements code: RVH; PRVH; CRVH;
RVHR; PRVHR; CRVHR), left atrial enlargement (statements code: LAE;
PLAE; CLAE; LAECB), right atrial enlargement (statements code: RAE;
LAECB; BAE; RAECB; CRAE), left atrium abnormality (statements code:
LAA; CRAA; PLAA), right atrium abnormality (statements code: RAA;
CRAA; PRAA), nonspecific intraventricular conduction delay (statements
code: NIVCD; BIVCD; IVCDP; LVHCO; NIVCDL), left fascicular block
(statements code: LFB; LAFB; LPFB; CLAFB; RLAFB; CAFBII; IRAFB;
RLPFB), right bundle branch block (statements code: RBBB; IRBBB;
RLAFB; IRAFB; RLPFB; ARBBB), left bundle branch block (statements
code: LBBB; ILBBB),first degreeAVblock (statements code: 1AVB), second
degree AV block (statements code: 2AVB; AFL2; AFLT2; AFLT3; AFLT4;
WENCK; MOBII), complete degree AV block (statements code: CAVB;
3AVB; 3AVBFF; 3AVBIR), atrial fibrillation (statements code: AFIB;
AFIB0; 3AVBFF; VPACCF; VPACEF; FLFIB; AFIBT; AVDPCF), atrial
flutter (statements code: AFLT; AFL2; AFLT2; AFLT3; AFLT4; 3AVBFF;
AFLTV; FLFIB; VPACCF; VPACEF), supraventricular tachycardia (state-
ments code: SVT), WPW syndrome (statements code: VPE), ventricular
tachycardia (statements code: RVPC), and atrial premature complex
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(statements code: APC; MAPC; APCPR), ventricular premature complex
(statements code: VPC; PVPC; APCPR; VBIG; MVPC; VTRI;
MFVPC; IVPC).

Training, validation, and test sets
Figure 1 summarizes the data set generation process in this study. All 12-
lead ECGs recorded on patients who had also received at least one serum
TSHtestwithin three days before or after theECGwereused.HospitalsA, B,
and C included 47,666, 11,498, and 596 eligible patients. Hyperthyroidism
was defined as a TSH ≤ 0.50 μIU/mL. The patients from Hospital A were
randomly partitioned for various uses. 50% of patients and all their ECG-
TSH pairs comprised the DLM training set (HT: 2,383 ECGs and non-HT:
35,344 ECGs), and 20% of patients and their first ECG-TSH pair made up
the validation set (n = 492 and 9,026 for HT and non-HT ECGs). The
remaining 30% of patients and their first ECG (n = 745 and 13,675 for HT
and non-HT ECGs) were reserved for internal accuracy testing. External
validation of the model used unique data pairs obtained from Hospitals B
and C. We only used each patient’s first ECG to avoid patient dependency.
The community test set included 726 HT ECGs and 10,772 non-HT ECGs
fromHospital B, and the isolated test set had 31HTECGs and 565 non-HT
ECGs fromHospital C. Since the definition of an ECG-TSHpair was within
three days of each other, patients may have had an ECG or TSH test before
the first ECG-TSH pair, for instance, if they had a history of thyroid disease
or ATD usage.

Outcome measurement
The outcomes of interest included all-cause mortality and new-onset HF.
We tracked each patient from their corresponding index date, which in the
internal and community test sets was defined as the date of the ECG
examination. Moreover, data for non-event visits were censored at the
patient’s last known hospital alive encounter to limit bias from incomplete
records. The endpoint of this study was set as Feb 28, 2022. Considering the
first case in this studywas collected in 2010, themaximum follow-up period
was over ten years.

The electronic medical record captured patient status (dead/alive) for
all-cause mortality. Although patients may have died at an outside hospital
with a separate electronicmedical record, we believe the prevalence is low as
a previous study of readmissions in Taiwan using the government’s
National Health Insurance Research Database found that only 0.16% of
readmissions occurred at a different hospital12. Moreover, we ensured the
censored patients were alive at the last known hospital encounter.

For new-onset HF, we excluded patients with a history of HF. The
definition of HF included ICD codes (ICD-9 codes 428.x, 398.91, and
402.x1, and ICD-10 codes I50.x) and a transthoracic echo (TTE) reportwith
an ejection fraction ≤35%. Since new-onset HF often requires hospitaliza-
tion, we also estimated our incomplete data rate to be low based on patient
loyalty to their hospital in Taiwan, as referenced above.

Deep learning model and machine learning model
The DLM architecture, incorporating an attention mechanism, was
employed to estimate the probability of HT, as per our prior study13–15.
Supplementary Fig. 1A illustrates the structure of our DLM. Each ECGwas
recorded in the standard 12 leads, resulting in sequences of 5000 numbers,
from which we generated a 5000 × 12 matrix. The input format for this
architecture is a 4096 × 12 matrix. The creation of the input matrix is
depicted in Supplementary Fig. 1B. We randomly selected a 4096-length
sequence for input during the training phase. During the inference stage, we
utilized two overlapping sequence lengths of 4096 justified to the beginning
and end to generate predictions, which were then averaged to yield the final
prediction.

We defined a “residual module” as a neural combination with a con-
stant ‘k,’ structured as follows: (1) a 1 × 1 convolution layer with ‘k/4’ filters
to reduce data dimensions; (2) a batch normalization layer for normal-
ization; (3) a rectified linear unit (ReLU) layer for non-linearity; (4) a 3 × 1
convolution layer with ‘k/4’ filters to extract features; (5) a batch normal-
ization layer for normalization; (6) aReLU layer for non-linearity; (7) a 3 × 1
convolution layer with ‘4k’ filters to further extract features; (8) a 1 × 1
convolution layer with ‘k’ filters to restore the feature shape; (9) another
batch normalization layer for normalization; (10) a ReLU layer for non-
linearity; and (11) a squeeze-and-excitation (SE) module for feature
weighting. The SE module was defined as follows: (1) an average global
pooling layer; (2) a fully-connected layerwith ‘k/r’ neurons; and (3) another
fully-connected layer with ‘k’ neurons, where ‘r’ was consistently set to 8 in
all experiments. Each residual module had a shortcut connection, directly
connecting to all subsequent layers.When the size of featuremaps changed,
concatenation could not be performed, so our architecture used a “pool
module” for down-sampling. This module included similar concatenated
layers as the residual module but with a stride change in the 3 × 1 con-
volution layer (from 1 × 1 to 2 × 1). An average pooling layer with a 2 × 1
kernel size and stride was used for down-sampling, and the input data were
integrated through the concatenated function.

The initial data underwent processing through a batch normalization
layer, followed by an 11 × 1 convolution layer with a 2 × 1 stride and 16
filters, another batch normalization layer, a ReLU layer, and a pool module.
Subsequently, the data passed through a series of residual and poolmodules,
resulting in a 32 × 12 × 1024 array. A global pooling layer was followed by
the last residualmodule.This outputwasdivided into12 lead-specific feature
maps, each with 1024 features. These feature maps underwent processing
through a fully connected layer with one neuron to generate lead-specific
predictions. A sigmoid function was applied to calculate the probability of
HT for each lead. We designed an attention mechanism based on a hier-
archical attention network to concatenate these blocks, thereby enhancing
the interpretive power of theDLM.The attentionmodule consisted of a fully
connected layer with eight neurons, followed by a batch normalization layer,
a ReLU layer, and a fully connected layer with one neuron to generate

47,666 patients who visited hospital A
(academic medical center) in study period and 
had at least 1 ECG-TSH pair within 3 days

23,728 patients 9,518 patients 14,420 patients

Randomization by patients

50% 20% 30%

Training set
2,383 HT ECGs

35,344 non-HT ECGs

Used all ECGs

Validation set
492 HT ECGs

9,026 non-HT ECGs

Used first ECG

Internal test set
745 HT ECGs

13,675 non-HT ECGs

Used first ECG

For training and deciding cut-off points of prediction For accuracy testData source

Community test set
726 HT ECGs

10,772 non-HT ECGs

Used first ECG

11,498 patients who visited hospital B 
(community hospital) in study period and 
had at least 1 ECG-TSH pair within 3 days

Isolated test set
31 HT ECGs

565 non-HT ECGs

Used first ECG

596 patients who visited hospital C (local 
hospital in an isolated island) in study period 
and had at least 1 ECG-TSH pair within 3 days

Fig. 1 | Study flow chart and dataset generation summary. This schematic illus-
trates the process of creating and analyzing the dataset to ensure a robust and reliable
dataset for training, validation, and testing of the network. Each patient’s data was
exclusively used within their assigned dataset to prevent cross-contamination
between the training, validation, and test sets. The sky blue represents the data source

level; orange signifies data used for training and determining cutoff points for
prediction; while bluish green indicates data used for accuracy testing. Further
details regarding the usage of each dataset are provided in the Methods section. HT
hyperthyroidism.
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weights for each lead. Attention scores were calculated for each ECG lead
and standardized by the last linear output layer. These standardized atten-
tion scores were used to weigh the 12 ECG lead outputs through simple
multiplication. The 12 weighted outputs were summed and processed
through a prediction module to produce the final prediction value.

We trained these DLMs with a batch size of 32 and initiated the
learning rate at 0.001 using the Adam optimizer with standard parameters
(β1 = 0.9 and β2 = 0.999). To ensure adequate recognition of HT cases, we
implemented an oversampling process. For each batch, we sampled 16 cases
from the pool of 2869HT ECGs and 16 cases from the more extensive pool
of 62,485non-HTECGs in the training set. The learning ratewas reducedby
a factor of 10 whenever the loss on the validation set reached a plateau after
an epoch. To prevent the networks from overfitting, we employed early
stopping. This involved saving the network after each epoch and selecting
the saved DLMs that exhibited the lowest loss on the validation set. In this
study, the only regularization method employed to prevent overfitting was
L2 regularization, with a coefficient set at 10−4.

We also trained an XGB classifier using the same training, validation,
and test sets as theDLMabove to compareHTdetectionusingdeep learning
and machine learning methods. The XGB classifier utilized all patient
characteristics and ECG features. The training was conducted using the R

package xgboost version 0.71.2, and all default prediction parameters were
used. Additionally, we generated new predictions by combining the DLM’s
predictions with patient characteristics using the XGB classifier. These
predictions were used to evaluate and compare accuracy between the two
approaches.

Statistics and reproducibility
The patient characteristics are presented as means and standard deviations
or percentages where appropriate. The Student t-test, analysis of variance
(ANOVA), and chi-square tests were used for hypothesis tests. ROC curve
and AUCwere used tomeasure DLM accuracy.We also usedmultivariable
Cox proportional hazard models to analyze the relationship between AI-
ECGprediction andoutcomesof interest.Hazard ratios (HRs)wereused for
comparison, and Kaplan–Meier curve analysis was used to calculate the
cumulative incidence over time. The statistical analysiswas conductedusing
the software environmentR version 3.4.4with a significance level of p < 0.05
and 95% confidence intervals (95% CIs).

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.
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Fig. 2 | A comparison between AI-ECG and all available data. a Components of
traditional machine learning models for detecting hyperthyroidism (HT). We
trained three xgboost models to predict HT using patient characteristics, ECG
features, and a combination of both. The sky-blue bars represent patient char-
acteristics, while the reddish-purple bars represent ECG features. b The area under
ROC curve (AUC) of all available data on HT. This includes the DLM using ECG

waveform data only and the DLM combined with patient characteristics. The sky-
blue and reddish-purple bars represent the results of predictions using individual
patient characteristics and ECG features, respectively. The vermillion bars represent
predictions integrating features from xgboost, and the bluish-green bars represent
predictions, including those from DLM. The error bars are the 95% confidence
intervals (CI) of each AUC.
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Results
Patient characteristics
This study included adult patients (≥18 years old) who had undergone 12-
lead ECG recordings and received at least one serumTSH test within 3-days
before or after the ECG. The patients’ characteristics in the training, vali-
dation, and internal test sets are shown in Supplementary Table 1. The
varying baseline characteristics between patients from three geographically
distinct hospitals (SupplementaryTable 2) allowedus to test the resiliency of
our approach outside the derivation cohort. The eligible patient population
from Hospitals A, B, and C comprised 47,666, 11,498, and 596 patients,
respectively. The ECG-TSH pairs of patients were primarily obtained from
outpatient settings (68.5% in Hospital A; 61.6% in Hospital B; 100.0% in
Hospital C), while the remaining pairswere roughly evenly divided between
the emergency department (16.2% in Hospital A; 18.2% in Hospital B) and
inpatients (15.2% in Hospital A; 20.1% in Hospital B). The patient

characteristics of HT and non-HT cases in the test sets are shown in Sup-
plementaryTable 3. PatientswithHTwereprone tobe female andhadmore
HTN. Their lesser other comorbidities might be less due to younger age.
PatientswithoutHT had a higher proportion of ECG-TSHpairs within one
day. The proportion of overt HT in the internal, community, and isolated
test sets were 37.7%, 41.8%, and 51.6% of HT, respectively, and 16.0–32.3%
had a prior history of HT, and 6.8–12.5% had a history of ATD. Supple-
mentary Table 4 shows the detailed comparison between overt and sub-
clinical HT. Patients with overt HT were mainly younger outpatients with
fewer comorbidities, which conversely implies the complexity of the sub-
clinical HT population.

The diagnostic value of AI-ECG for HT
We initially compared the performance ofDLMusing rawECGsignalswith
traditional feature-based machine learning models (MLMs) for HT
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Fig. 3 | The ROC curve of DLM predictions based on ECG to detect hyperthyr-
oidism (HT), overt HT, and subclinical HT. Overt HT was defined as a free T4 of
≥1.78 ng/dL, and the ECGs without corresponding free T4 tests were excluded. The
operating point was selected based on the maximum of Yunden’s index in the
validation set for detecting HT compared to non-HT and presented with a circle.
Since all analyses shared the same operating point, each test set’s specificities were

equal using the same control group (non-HT). The area under ROCcurve (AUC), F1
score, sensitivity (Sens.), specificity (Spec.), positive predictive value (PPV), and
negative predictive value (NPV) were calculated based on it. Reddish-purple, ver-
million, and sky blue represent the results for the internal test set (a), community test
set (b), and isolated test set (c), respectively.
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detection. Figure 2A illustrates the composition of theseMLMs,with patient
characteristics, particularly history of HT and data source being the most
important factors. The most crucial ECG feature was the heart rate. Fig-
ure 2Bcompares theAUCof these parameters,MLMs, andDLM.We found
that the DLM using raw ECG signals performed better than MLMs relying
solely onECG features. Although theDLMdidnot surpass the performance
of MLMs that incorporated both patient characteristics and ECG features,
the utility of these models will be in identifying possible new cases of HT
rather than flagging patients with known thyroid disease. We thus focused
on the DLM using raw ECG signals as our primary model.

As shown in Fig. 3 for the combined detection of overt and subclinical
HT, AI-ECG achieved AUCs of 0.754/0.725/0.761 in the internal/com-
munity/isolated test sets. To strike a balance between sensitivity and spe-
cificity, we defined a single threshold that maximized the Youden index in
the validation set ofHospitalAas thepositive cutoff point.Consequently,we
obtained sensitivities of 62.8%, 60.7%, and 64.5%, and specificities of 75.1%,
72.3%, and 68.8% in the internal, community, and isolated test sets. When
we applied the same threshold to only overt HT, the sensitivities were

improved to≥79.6%with better AUC (0.867–0.876). The stratified analyses
for severe andmildHT are presented in Supplementary Fig. 2. As expected,
the performance of the DLM was better in patients with more severe HT.

As shown in Fig. 4 and Supplementary Fig. 3, subgroups with parti-
cularly highAUCs included patients younger than 60 years old, exclusion of
patients with a prior history of HT/ATD, and ECG-TSH pairs more
than one day apart. Stratified analyses for disease histories demonstrated
that AI-ECG performed better in patients without multiple underlying
diseases (Supplementary Fig. 4). The improved performance of AI-ECG in
detecting HT among outpatients and patients without a history of cardio-
vascular diseases underscored the need to select the target population
carefully for future applications of AI-ECG.

HT-related AI-ECG features and associated outcomes
Supplementary Table 5 shows the ECGcharacteristics in patients with overt
HT, subclinical HT, and non-HT, and Supplementary Table 6 shows the
ECG characteristics stratified by AI-ECG. The ECG features significantly
associated with laboratory-based thyroid function tests and AI-ECG
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Fig. 4 | Stratified analysis of selected patient characteristics for AI-ECG perfor-
mance in predicting hyperthyroidism (HT), overt HT, and subclinical HT. The
performance is presented in bar charts and error bar, which represent the area under
ROCcurve (AUC) and 95% confidence intervals (CI). The analyses were stratified by
data source (orange, yellow, and blue for emergency department [ED], inpatient
department [IPD], and outpatient department [OPD]), sex (vermillion and sky blue

for female and male), age (shades of reddish-purple from dark to light representing
younger to older age), and HT information (1 and 2 representing without HT/ATD
history and ECG and TSH within 24 h, in black). The black bars on the right side
represent those meeting <60 y/o and conditions 1 and 2. The isolated test set was
excluded from this analysis due to its small sample size. We presented the perfor-
mance in internal test set (a) and, community test set (b), respectively.
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predictions are summarized in Fig. 5A. ECGs in HT were less likely to
exhibit sinus rhythm, low voltage, shorter PR interval, and QRS duration
andmore likely to exhibit rapidheart rate, left ventricular hypertrophy, right
atrial enlargement, and atrial fibrillation, especially in overt HT. Patients
withAI-ECG-basedHT (positiveAI-ECG) in each subgroupweremore like
overt HT, and patients with AI-ECG-based non-HT (negative AI-ECG)
were more like non-HT. Supplementary Table 7 compares each AI-ECG
group’s ECG features based on thyroid function. For instance, the mean
heart rate in the positive AI-ECG subgroup ranged from 94.6 to 105.1,
significantly higher than the negative AI-ECG subgroup (70.2-75.4). This
shows thatAI-ECGis attuned tospecific changes seen inHT-affectedhearts.

Figure 5B shows the association between these HT-related ECG
characteristics and adverse outcomes. These AI-ECG-identifiedHT-related
ECG changes, including faster heart rate, shorter PR interval, less sinus
rhythm, higher voltage, more left ventricular hypertrophy, right atrial
enlargement, and atrial fibrillation, were significant risk predictors for
adverse outcomes. However, two HT-related ECG changes--shorter QRS
duration and less right bundle branch block--were associated with better
outcomes. An integration analysis might be necessary to explore the rela-
tionship between AI-ECG-based HT and these outcomes.

Outcome analysis of HT and AI-ECG
The average baseline age of the overt, subclinical, and non-HT groups were
49–50, 62–63, and 54–56, with a median follow-up of 1.15 years (inter-
quartile range: 0.06–3.52 years). After adjusting for age and gender, a

significantly higher risk of all-cause mortality (HR: 2.05, 95% CI: 1.61–2.61)
in the subclinical HT group and a much higher risk of new-onset HF (HR:
2.63, 95% CI: 1.51–4.60) in the overt HT group were found, as shown in
Fig. 6. These findingswere also validated in the independent community test
set with a median follow-up of 2.11 years (interquartile range: 0.50–4.50
years). Figure 7A shows the associations between AI-ECG stratification and
adverse outcomes. With similar baseline ages, patients with positive AI-
ECGs for HT carried a significantly higher risk of all-cause mortality (HR:
1.97–2.50) and new-onset HF (HR: 2.21–2.94). We also stratified these HT
and non-HT patients to assess Al-ECG’s ability to identify previvors of HF
andmortality. As shown in Fig. 7B, subclinical HTpatients with positive AI-
ECG had a significantly higher risk of all-cause mortality and new-onset HF
despite the small sample size. Of interest, non-HT patients with positive AI-
ECG for HT also demonstrated consistently higher all-cause mortality and
new-onset HF.

Discussion
In this study, we developed an AI-ECG and assessed its diagnostic accuracy
and prediction of previvors of adverse outcomes in HT.We utilized a DLM
to integrate HT-related ECG features to detect patients with structural or
functional cardiac changes.More than25,000patientswith pairedTSH tests
and ECG from three independent hospitals were used to evaluate the
diagnostic accuracy of AI-ECG forHT detection. AUCs of 0.867–0.876 was
achieved for overt HT. AI-ECG also added value by predicting all-cause
mortality and new-onset HF independent of thyroid function. To our

p < 0.001
overt−HT
p < 0.001

sub−HT
p < 0.001 non−HT

p < 0.001

50

100

150

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

Heart rate

p < 0.001 overt−HT
p < 0.001

sub−HT
p < 0.001

non−HT
p < 0.001

100

150

200

250

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

PR interval

p < 0.001 overt−HT
p < 0.001

sub−HT
p < 0.001 non−HT

p < 0.001

50

75

100

125

150

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

QRS duration

p < 0.001

overt−HT
p < 0.001

sub−HT
p < 0.001

non−HT
p < 0.001

80

85

90

95

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

Sinus rhythm (%)

p = 0.007
overt−HT
p = 0.045

sub−HT
p = 0.045

non−HT
p = 0.045

6

8

10

12

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

Low voltage (%)

p < 0.001

overt−HT
p < 0.001

sub−HT
p < 0.001

non−HT
p < 0.001

10

15

20

25

30

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

Left ventricular hypertrophy (%)

p < 0.001

overt−HT
p < 0.001

sub−HT
p < 0.001

non−HT
p < 0.001

2

4

6

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

Right atrial enlargement (%)

p < 0.001

overt−HT
p < 0.001

sub−HT
p < 0.001

non−HT
p < 0.001

0

3

6

9

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

Right bundle branch block (%)

p < 0.001

overt−HT
p < 0.001

sub−HT
p < 0.001

non−HT
p < 0.001

5

10

15

ov
ert

−H
T

su
b−

HT

no
n−

HT

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

AI−E
CG (+

)

AI−E
CG (−

)

Atrial fibrillation (%)

0.7 1.0 1.5 2.0

Sex, age−adj HR

Heart rate (per 1 SD)

PR interval (per 1 SD)

QRS duration (per 1 SD)

Sinus rhythm

Low voltage

Left ventricular hypertrophy

Right atrial enlargement

Right bundle branch block

Atrial fibrillation

1.45 (1.41, 1.50)

0.80 (0.77, 0.83)

1.12 (1.08, 1.16)

0.57 (0.51, 0.63)

1.38 (1.22, 1.55)

1.01 (0.89, 1.14)

1.59 (1.25, 2.02)

1.26 (1.09, 1.46)

1.74 (1.53, 1.97)

ECG feature HR (95% CI)

All−cause mortality

0.3 0.5 0.7 1.0 1.5 2.0 4.0

Sex, age−adj HR

Heart rate (per 1 SD)

PR interval (per 1 SD)

QRS duration (per 1 SD)

Sinus rhythm

Low voltage

Left ventricular hypertrophy

Right atrial enlargement

Right bundle branch block

Atrial fibrillation

1.54 (1.47, 1.60)

0.87 (0.81, 0.93)

1.19 (1.13, 1.25)

0.30 (0.25, 0.35)

1.08 (0.87, 1.33)

2.05 (1.75, 2.41)

1.44 (0.98, 2.14)

1.12 (0.86, 1.46)

4.03 (3.35, 4.84)

ECG feature HR (95% CI)

New−onset HF

a b

Fig. 5 | Significant hyperthyroidism (HT) related ECG morphology analysis on
adverse outcomes. aDistribution of ECGmorphologies in overtHT, subclinicalHT,
and non-HT groups stratified by AI-ECG. This analysis presents the differences in
ECG morphologies among different groups, with each group further divided into
AI-ECG(+) [representing predicted probabilities greater than the operational cut-
off] and AI-ECG(−) [representing predicted probabilities less than the operational
cutoff]. For continuous variables, we use boxplots to illustrate their distributions,
adjusting for hospitals using linear regression. For categorical variables, we use
barplots to depict proportions, adjusting for hospitals using logistic regression.
Vermillion, reddish-purple, and bluish-green describe the overt HT, subclinical HT,

and non-HT groups, respectively. Blue and orange represent AI-ECG(+) and AI-
ECG(−). b Risk analysis of selected ECG morphologies on adverse outcomes. This
analysis was conducted using the Cox proportional hazard model and combines
results from all hospitals. Hazard ratios were adjusted for hospital, sex, and age. The
square and error bar represent the hazard ratios and corresponding 95% confidence
intervals (CI). Vermillion, black, and sky blue bars denote significantly positive, non-
significant, and negative associations, respectively, with the corresponding out-
comes. In this analysis, the standard deviations (SD) of heart rate, PR interval, and
QRS duration were 19.5, 31.8, and 17.4, respectively.
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knowledge, this is the first AI-ECG study to conduct outcome analysis
for HT.

For diagnostic accuracy, this study achieved comparable perfor-
mance in detecting overt HT compared to another recently published
study10. The AUC of >0.86 in overt HT suggested that AI-ECG may be
part of a non-invasive workflow for the early diagnosis of overt HT,
especially in patients with age less than 60 years and the absence of
multiple co-morbid diseases (much higher AUC of >0.924). Among HT-
related AI-ECG features, increased heart rate and shortening of the PR

and QRS intervals were associated with overt HT, consistent with pre-
vious studies16–18. Since sustained HT may lead to atrial fibrillation and
thickened heart muscle19, these corresponding ECG features were also
highlighted. The AI-ECG might use these features to identify ECGs with
HT characteristics. However, our AI-ECG system did not identify
approximately 20% of overt HT patients. Given that functional and
structural heart changes may be related to the cumulative duration of
high circulating thyroid hormone exposure20,21, these patients may
comprise less severity or shorter duration of overt HT. Like most tests,
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Fig. 6 | The Kaplan–Meier curve analysis was stratified by laboratory-based
thyroid function tests on all-cause mortality and new-onset heart failure (HF).
Patients with a prior history of HF were excluded for the analysis of new-onset HF.
Vermillion dashed line, reddish-purple dotted line, and bluish-green solid line
represent the overt HT, subclinical HT, and non-HT groups, respectively. We have

also highlighted the mean age for each group, as the overt HT group is relatively
younger than the other groups. This age difference results in a notably higher sex and
age-adjusted hazard ratio (HR), especially for new-onset HF. The table displays the
at-risk population and cumulative risk for the specified time intervals, categorized by
AI-ECG positive and negative.
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AI-ECG may have less difficulty identifying patients with more severe
HT than subclinical HT.

Despite the satisfactory sensitivity and specificity of our AI-ECG for
HT, we acknowledge that the low prevalence of HT (~5%), especially overt
HT (~2%) in this study,may lead to lower positive predictive values (<15%).
The relatively higher false positive rate of AI-ECG forHTmay indeed cause
both physician’s and patient’s anxiety, inconvenience, confusion, and
unnecessary examination and cost for patients. Prior studies of AI-ECG
have also encountered similarly high false positives9. However, these studies
have also consistently found a correlation between false positives and pre-
vivors of other cardiovascular diseases, such as AI-ECGbased dyskalemia22,
left ventricular dysfunction23,24, and left atrium enlargement25. In identifying
disease previvors9, we also validated that patients with positive AI-ECG had
a 1.97–2.94 fold risk for developing all-cause mortality and new-onset HF
compared to thosewithnegativeAI-ECG, especially inpatientswithnormal
thyroid function. Although the sensitivity of ~50% for subclinical HT
detectionbyAI-ECGmay seem low initially, thosewithconcerningAI-ECG
features like overtHThad a higher risk of all-causemortality and new-onset
HF26. Our outcome analysis also demonstrated that those with negative AI-
ECGs had a lower risk of future complications in the HT subgroup,
demonstrating AI-ECG’s value on top of existing laboratory-based thyroid
function tests. The clinical implementation of AI-ECG for HT may also
confer risk stratification benefits.

Our rhythm analysis found that AI-ECG identified HT through fea-
tures such as structural heart disease, rapid heart rate, and atrial fibrillation,
similar to left ventricular dysfunction-related features reported in previous
studies onAI-ECG27.ThesefindingsonAI-ECGforHTmayaccount for the
significant association between AI-ECG positivity and new-onset HF,
independent of thyroid function tests. It is well-known that patients with
overt HT are at an increased risk of subsequent HF if left untreated, and the
pathophysiological mechanisms are indeed related to structural abnorm-
alities and atrial fibrillation2. In particular, atrial fibrillation tends to occur
frequently in HTwith a prevalence rate of 10–15%, also shown in our study
(10% of AF in HT). Recently, an atrial fibrillation-specific AI-ECG algo-
rithm was examined in HT patients to identify HT-related atrial
fibrillation28. Moreover, up to two-thirds of HT-related atrial fibrillation
may converted to sinus rhythm after ATD treatment29, which was also
validated in this study. Therefore, the correlation between AI-ECG posi-
tivity and new-onset HF was reasonable. While the proposed AI-ECG for
HT shares similarities with previous AI-ECG models for HF, the distin-
guishing ECG features betweenHT andHF, such as a shorter PR interval in
HT6 and a prolonged PR interval inHF30, can be accurately identified by the
AI-ECGdue to its ability to detect subtle differences. The use of AI-ECG for
HT may assist physicians in the differential diagnosis of HF.

The leading clinical utility of this HT AI-ECG system may be oppor-
tunistic screening.The concept of opportunistic screeningdraws inspiration
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Fig. 7 | Long-term incidence of developing all-cause mortality and new-onset
heart failure (HF) stratified by AI-ECG prediction. a The Kaplan–Meier curve
analysis stratified by AI-ECG prediction. For the new-onset HF analysis, we
excluded patients with a prior history of HF. Yellow dashed line and blue solid line
represent AI-ECG (+) [indicating a predicted probability greater than the opera-
tional cutoff] and AI-ECG (−) [indicating a predicted probability less than the
operational cutoff], respectively. The hazard ratio (HR) presented here has been
adjusted for sex and age using a Cox proportional hazards model. The table displays
the at-risk population and cumulative risk for the specified time intervals in AI-ECG

positive and negative patients. b Forest plot illustrating the risk of AI-ECG (+)
compared to AI-ECG (−) stratified by hyperthyroidism (HT) and non-HT. The HT
group includes overt and subclinical HT (Note: Some cases do not belong to either
group due to a lack of free T4 results). We provide the event count and total
population for each subgroup. The HR presented here was also adjusted for sex and
age using a Cox proportional hazards model. In the figure, the black square repre-
sents the point estimate of the HR, while the error bars indicate the 95% confidence
intervals (CI).
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from radiology, where some incidental findings from radiologic imaging
conducted for nonspecific reasons can lead to better prognoses through
early intervention31. Although HT has also been estimated to have an
underdiagnosis rate exceeding two-thirds4, the US Preventive Services Task
Force has recommended against systematic thyroid testing for asympto-
matic adults32 to prevent harm that may arise from the cascade of care to
both patients and clinical providers33. Currently, applying an AI model for
opportunistic screening has been proposed to address the issue of under-
diagnoses in diseases34,35 such as osteoporosis36. Based on the current study,
AI holds tremendous potential as a tool for opportunistic screeningofHT. It
should be emphasized that the AI-ECGmay be more suitable in outpatient
departments, given its better performance in those settings. Considering
that three million ECGs are conducted worldwide daily37, coupled with the
high accuracy of HT detection provided by AI-ECG, routine ECG exam-
inations can become a giant net to capture high-risk patients who may
benefit from further thyroid testing.

There were some limitations to this study. First, the retrospective
design could not answer how many unrecognized HT patients may be
detected by passive AI-ECG analysis. A prospective study embedding AI-
ECG into a hospital information system should be conducted. Second, it has
been shown that the external validation performance of AI-ECG for
detecting left ventricular dysfunction (AUC = 0.82 and sensitivity = 27%)38

significantly differed from that during model development (AUC= 0.93
and sensitivity = 86%)39, which may be attributed to substantial differences
in the study populations (prevalence = 0.6% vs. 7.8%). Despite additional
external validation conducted in a community hospital and an island hos-
pital in this study, the performance of the DLM may not be generalizable.

In summary, an AI-ECG may become a powerful, non-invasive,
bedside tool for potentially detecting HT and predicting adverse cardio-
vascular outcomes and previvors, especially in patients with ECG
abnormalities. For patients with a positive prediction by AI-ECG, a
laboratory-based thyroid function test is still warranted for confirmation of
HT.A large prospective cohort study to validate such a digital augmentation
workflow is warranted.

Data availability
The authors cannot publicly share the raw ECG signals due to the difficulty
of de-identifying them. These signals are securely stored on the servers of
Tri-Service General Hospital and may be made available to third parties
under a data-sharing agreement for reasonable requests. Access requests
should be directed to C. Lin (e-mail: xup6fup@mail.ndmctsgh.edu.tw) or
S.H. Lin. Additionally, de-identified tabulated data used for generating
statistical charts has been made publicly accessible in the reference (https://
github.com/xup6fup/ECG-for-HT)40. The numerical data presented in
Figs. 2 and 4 can be found in above de-identified tabulated data in github
repository, and the exact p-values presented in Fig. 5 can be found in the
Supplementary Tables 5 and 7.

Code availability
The R-based custom code for model training, statistical analysis, and gen-
erating Figs. 1–7 is publicly available at the reference (https://github.com/
xup6fup/ECG-for-HT)40.
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