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Abstract

Background The objective of this comprehensive pan-cancer study is to evaluate the
potential of deep learning (DL) for molecular profiling of multi-omic biomarkers directly from
hematoxylin and eosin (H&E)-stained whole slide images.
Methods A total of 12,093 DL models predicting 4031 multi-omic biomarkers across 32
cancer types were trained and validated. The study included a broad range of genetic,
transcriptomic, and proteomic biomarkers, as well as established prognostic markers,
molecular subtypes, and clinical outcomes.
Results Here we show that 50% of the models achieve an area under the curve (AUC) of
0.644 or higher. The observed AUC for 25% of the models is at least 0.719 and exceeds
0.834 for the top 5%. Molecular profiling with image-based histomorphological features is
generally considered feasible for most of the investigated biomarkers and across different
cancer types. The performance appears to be independent of tumor purity, sample size, and
class ratio (prevalence), suggesting a degree of inherent predictability in histomorphology.
Conclusions The results demonstrate that DL holds promise to predict a wide range of
biomarkers across the omics spectrum using only H&E-stained histological slides of solid
tumors. This paves the way for accelerating diagnosis and developing more precise
treatments for cancer patients.

Studying the alterations at different levels of the molecular landscape helps
better understand oncogenesis and cancer progression1,2. In-depth analysis
of the associations between the molecular aberrations and the tumor
microenvironment has enabled the development of targeted therapies in

various cancer types3–5. Genetic profiling has become an important tool6,
especially for individuals who possess a higher risk of developing cancer due
to genetic factors7. There is also an increasing need for alternative solutions
to standard molecular and genomic profiling methods, which are often
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Plain language summary

Molecular profiling tests are used to check
cancers for changes in certain genes,
proteins, or other molecules. Results of such
tests can be used to identify the most
effective treatment for cancer patients. Faster
and more accessible alternatives to standard
tests are needed to improve cancer care. This
study investigates whether deep learning
(DL), a series of advanced computer
techniques, can perform molecular profiling
directly from routinely-collected images of
tumor specimens used for diagnostic pur-
poses. Over 12,000 DL models were utilized
to evaluate thousands of biomarkers using
statistical approaches. The results indicate
that DL can effectively detect molecular
changes in a tumor from these images, for
many biomarkers and tumor types. The study
shows thatDL-basedmolecularprofiling from
images is possible. Introducing this type of
approach into routineclinicalworkflowscould
potentially accelerate treatment decisions
and improve outcomes.
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accountable for laboratory delays in the routine clinical workflow, as they
take time toprepare, process, and analyze8,9. In addition, expensive testsmay
not be routinely accessible to all patients10.

Meanwhile, there has been accumulating evidence suggesting that
diagnostic histology images stainedwithhematoxylin and eosin (H&E)may
contain information that can be used to infer molecular profiles directly
from histological slides11,12. Deep learning (DL) can effectively reveal dif-
ferences in morphological phenotypes in malignancies, which in turn,
enables the prediction of molecular profiles directly from H&E-stained
whole slide images (WSIs)11–15. DL-based methods have been used to infer
molecular alterations in various cancer types, including breast9,16–18,
colorectal13,15,19,20, lung12,21, gastric22, prostate23, skin24, and thyroid25 (see
Echle et al. for an extensive review of DL applications for biomarker pro-
filing from histology images26). More recently, pan-cancer studies have
explored the links between genetic/molecular alterations and histomor-
phological features in H&E images. These studies showed that in almost all
malignancies, DL methods can be used to infer a plethora of biomarkers
directly from routine histology11,14,15,27–29.

Expanding upon previous work, we conducted a large-scale study to
assess the feasibility of biomarker profiling from routine diagnostic slides
with DL. The investigated biomarkers included a broad range of genomic,
transcriptomic, and proteomic alterations as well as various downstream
biomarkers with clinical relevance (e.g., standard of care features, molecular
subtypes, gene expressions, clinical outcomes, and response to treatment).
We systematically evaluated predictability across all solid cancers studied by
the Cancer Genome Atlas (TCGA) program. Our DL approach utilizes an
autoencoder network as a feature extractor that enables learning repre-
sentations of the histology images that are relevant to the profiling task at
hand. In contrast to previous studies, we have extended the scope of
assessing pan-cancer predictability withDL to a wider range of cancer types
(n = 32) and to thousands of biomarkers across the central dogma of
molecular biology (n = 4031). The systematic predictability ofmany of these
biomarkers from routine histology has not been assessed at a large scale
before, including certain phenotypic and clinical outcomes such as drug
responses.

Our findings suggest that multi-omic biomarkers can potentially be
predicted directly from histomorphology. Profiling mutations from his-
tology ismostly feasible for themajority of genes tested. Frequentlymutated
genes like TP53 are predictable across multiple cancer types. It is possible to
predict the under-/over-expression status of transcriptomes and proteins to
a certain degree. The morphological visual characteristics can be detected
withDL, enabling the prediction ofmolecular subtypes andwell-established
clinical biomarkers directly from WSIs. Similar results are acquired when
our experiments are repeated with an external dataset based on certain
cancer types and biomarkers that have equivalents in the TCGA dataset,
further confirming the general feasibility of predicting pan-cancer bio-
markers from H&E-stained slides. Considering various factors that may
have an impact on predictability, such as tumor purity, sample size, and
prevalence of biomarker status, we conclude that there potentially exists a
degree of true predictability that may be associated with histomorphology.

Methods
Dataset
We conducted our experiments on the data provided by TCGA project,
which was retrieved via the Genomic Data Commons (GDC) Portal
(https://portal.gdc.cancer.gov/). The TCGA dataset consisted of 10,954
hematoxylin and eosin (H&E)-stained, formalin-fixed, and paraffin-
embedded (FFPE) whole slides images of 8890 patients, acquired from
the following studies: breast cancer (BRCA), cervical squamous cell carci-
noma, kidney renal papillary cell carcinoma (KIRP), clear cell renal cell
carcinoma (KIRC), kidney chromophobe (KICH), skin cutaneous mela-
noma, sarcoma (SARC), pancreatic adenocarcinoma, ovarian serous
cystadenocarcinoma (OV), prostate adenocarcinoma, bladder urothelial
carcinoma, esophageal carcinoma (ESCA), thyroid carcinoma (THCA),
lymphoid neoplasm diffuse large B-cell Lymphoma (DLBC), brain lower-

grade glioma (LGG), thymoma (THYM), head and neck squamous cell
carcinoma (HNSC), uterine corpus endometrial carcinoma (UCEC), glio-
blastoma multiforme (GBM), cholangiocarcinoma, liver hepatocellular
carcinoma, stomach adenocarcinoma, lung adenocarcinoma (LUAD), and
lung squamous cell carcinoma (LUSC), colon adenocarcinoma (COAD),
rectum adenocarcinoma, adrenocortical carcinoma (ACC), mesothelioma
(MESO), pheochromocytoma and paraganglioma, testicular germ cell
tumors, uterine carcinosarcoma (UCS), and uvealmelanoma (UVM). Only
images scanned at a resolutionof 0.5micronsper pixel (MPP)were kept and
images with no MPP information were discarded, ensuring consistent
resolution within each cancer cohort. The number of the images and
patients included in the TCGA cohort are provided in Supplementary
Table 1.DLBC,UVM, andTHYMwere excluded fromcertain results due to
having less than seven valid targets considering all biomarker types. See the
Biomarker acquisition section for more details on the biomarker inclusion
criteria for each omic/biomarker type.

External dataset
In order to assess the general feasibility of biomarker predictability on an
external dataset, we repeated our experiments with the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) data, retrieved via the Cancer
Imaging Archive (https://wiki.cancerimagingarchive.net/display/Public/
CPTAC+Imaging+Proteomics). The CPTAC dataset consisted of 3481
H&E stained images corresponding to 1329 patients, acquired from the
following seven different studies: LUAD, COAD, head-and-neck cancer
(HNSCC), LSCC, pancreatic ductal adenocarcinoma (PDA), GBM, and
UCEC. LUAD, GBM, and COAD were obtained from frozen tissues,
whereas the rest of the datasets contained FFPE slides. Images with a
resolution different than 0.25MPP inCOADand 0.5MPP in other datasets
were discarded, ensuring consistent resolution within each cancer cohort.
The details of the final images and patients included in the CPTAC cohort
are provided in Supplementary Table 2.

Biomarker acquisition
Acquisition of actionable driver genes. Clinically relevant driver genes
were retrieved from https://cancervariants.org30. We only considered
driver genes that are known to associate with (1) Food and Drug
Administration (FDA)-approved disease-specific therapies and (2)
response or resistance to therapies as shown in professional guidelines
and/or based onwell-powered studies with consensus from experts in the
field based on evidence provided in another study31. Driver mutation and
drug-associated data were acquired from the following sources: BRCA
exchange, the Cancer Genome Interpreter Cancer Biomarkers Database,
Clinical Interpretation of Variants in Cancer, Jackson Laboratory Clin-
ical Knowledgebase (JAX-CKB), the PrecisionMedicine Knowledgebase.
These source files already contained the associations between SNP
mutations and phenotypes, allowing an expert pathologist to map them
to TCGA studies. Finally using this mapping and driver mutation data
per phenotype, we created a set of driver genes per TCGA study and
subsequently used them to filter actionable biomarkers for tran-
scriptomic, proteomic, and genomic data.

TCGA genomic biomarker profiles. Genomic biomarker data was
collected using the cBioPortal web API and the GDC API. For each
TCGA study, we retrieved all samples with associated diagnostic slides.
The samples that did not have whole-genome or whole-exome sequen-
cing data were excluded from further consideration, allowing us to
assume that all genes of interest were profiled across the remaining ones.
While there existed samples without WGS or WXS data with mutations,
it was not possible to assume that genes with no mutations were present
in their wild-type, as they might simply have not been sequenced. For all
TCGA studies listed on the cBio portal, we acquired molecular profiles
with the “MUTATION_EXTENDED” alteration type and all mutations
belonging to these molecular profiles within the collected samples were
retrieved and stored in an intermediate format. Finally, we created
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molecular profiles for all driver genes using this mutation data. A sample
was considered positive for a driver gene if it contained at least one single
nucleotide variant (SNV). SNVs are typically insertions, replacements, or
deletions of one base, but on a few occasions can be ofmultiple bases (e.g.,
“T” is replaced by “CGC”). The resulting profiles were filtered to exclude
driver genes that had less than ten positive samples in a given cancer.

Transcriptomic and proteomic profiles. Transcriptomic and pro-
teomic data for TCGA datasets were retrieved from the cBioPortal API.
cBioPortal provides z-scores, which were originally computed from the
raw FPKM counts of gene expression and the corresponding number of
standard deviations to themean of expression values. These z-scoreswere
acquired for each coding gene and each sample with an associated tissue
slide in theTCGA studies. cBioPortal restricted the transcriptome z-score
calculations to the samples in which the tumor comprised diploid cells.
Proteomic z-scores were calculated among all available samples for a
given cancer. The z-scores were binarised for each gene and sample based
on thresholds chosen as follows: For each sample, genes with a z-score of
less than or equal to t_under were considered underexpressed and those
with a z-score of larger than or equal to t_over were considered over-
expressed. We set {t_under, t_over} to {−2, 2} and {−1.5, 1.5}, for
transcriptomic and proteomic data, respectively, based on their ability to
divide the total distribution of z-scores into balanced classes over all genes
of interest. These thresholds were then used to generate two under-/over-
expression profiles for proteomic and transcriptomic genes. In an under-
expression profile all samples that were considered underexpressed were
labeled as positive whereas all other samples were labeled as negative.
Similarly, overexpressed samples in an over-expression profile were
assigned a positive label, while the remaining samples were considered
negative. Finally, to reduce the number of target biomarkers, we limited
the over-and under-expression profiles to only include the driver genes
(see Acquisition of actionable driver genes) for each study. Furthermore,
profiles that did not contain enough positive samples were excluded. The
minimum number of positive samples for proteomic genes was set to 20.
For the transcriptomic profiles, only the ones with at least a positive ratio
of 10% and having a minimum of ten positive samples were kept.

Standard of care features, gene expression signatures, and mole-
cular subtypes. A publicly available dataset provided as part of a relevant
study on detecting clinically actionable molecular alterations was used to
acquire the biomarker profiles for gene expression signatures, molecular
subtypes, and standard clinical biomarkers11. The dataset was originally
curated from the results of systematic studies using the TCGA data
(https://portal.gdc.cancer.gov/)32–34 and contained profiles for 17 TCGA
datasets (please refer to the original study11 for the description of bio-
markers and other details regarding the acquisition protocol). For certain
biomarkers, we used the consensus opinion to map the molecular status
to binary labels. For instance, consideringmicrosatellite instability (MSI),
all patients defined as MSI-H were included in the positive class, while
microsatellite stable (MSS) and MSI-L patients were labeled as negative.
Profiles with multiple categorical values were binarised with one-hot-
encoding, where a profile was created for each category with only the
samples of that category being set to positive. Non-categorical profiles
with continuous values were binarised at mean after eliminating NaN
values11.

Clinical outcomes and treatment responses. Survival data was
acquired from the TCGA Pan-Cancer Clinical Data Resource (TCGA-
CDR), a publicly available dataset that provides four major clinical out-
come endpoints35, namely, overall survival (OS), disease-specific-survival
(DSS), disease-free-interval (DFI), and progression-free interval (PFI).
These endpoints were systematically binarized into actionable events by
considering multiple clinical and prognostic features acquired from
TCGA’s routinely-collected clinical data (https://portal.gdc.cancer.gov/)
such as vital status, tumor status, cause of death, new tumor events, local

recurrence and distract metastasis. The details of the integration of the
clinical data into actionable survival outcomes are given in the original
study35 and summarized in Supplementary Table 3. Additionally, we
added the residual tumor status acquired from the TCGA clinical files as
another prognostic target. Patients with microscopic or macroscopic
residual tumors (R1 or R2) were classified as positive whereas those with
no residual tumor (R0) were included in the negative class36. Since
TCGA-BRCA did not have residual tumor information, we used the
“margin_status” attribute. Similarly, “treatment_outcome_first_course”
was used to create binary targets representing the treatment response.
Towards this end, any patient with “Complete Remission/Response”was
included in the positive class whereas “Stable Disease”, “Partial
Response” and “Progressive Disease” were considered negative. Finally,
clinical drug files in the TCGA datasets were used to identify drug
responses. This was achieved by first unifying drug names based on the
data provided in another study37 and then identifying drug-study pairs
with enough samples. Finally, the “treatment_best_response” attribute
was used tomap the drug responses to binary categories, with “Complete
Response” constituting the positive class and the others being negative.
For both treatment and drug responses, we only focus on assessing the
predictability of complete response from histology and classify other
outcomes including partial response in the negative class.

CPTAC genomic biomarker profiles. Molecular profiling data was
collected using the GDC API. We focused on the “Single Nucleotide
Variation” (SNV) files, which contained information about mutations
associated with substitutions of a single DNA base or deletion and
insertion of a small number of bases. The SNV files were retrieved
using the files endpoint of the GDC API, with the following filters:
files.data_category = [“Simple Nucleotide Variation”], files.data_-
type = [“Masked Somatic Mutation”] and files.exper-
imental_strategy = [“WXS”]. After acquiring the SNV files, it was
possible to obtain a list of SNV gene mutations for each sample of the
CPTAC dataset. Since the mutation data was based on whole exome
sequencing, a gene was considered wild-type if it was not listed in the
SNV file of a given sample. Finally, biomarker profiles were limited to
only include the driver genes (see Acquisition of actionable driver
genes). A sample was considered positive if the sample contained at
least one mutation for a given driver gene. The resulting profiles were
filtered to exclude genes that had less than 10 positive samples in a
given dataset.

Experimental setup
Weassessed the predictive performance of each biomarker in a 3-fold cross-
validation setting, where the cases with a valid biomarker status in each
dataset were split into three random partitions (folds), each having
approximately the same proportion of positive samples. We trained and
tested three models per biomarker, each time keeping aside a different fold
for validation and using the remaining ones for training. This setting
ensured that the predictability can be assessed on a different (hold-out)
validation set for multiple times, and consequently allowing us to assess the
variability ofmodelperformance. The imageswerepartitioned at thepatient
level so that no patient could appear in multiple folds. A biomarker profile
with less than ten positive patients was discarded from the study.

Pre-processing pipeline and training details
A convolutional neural network (CNN) was used for predicting molecular
profiles fromH&E images as illustrated in Fig. 1. A single CNNwas end-to-
end trained from scratch for each biomarker and fold, yielding a total of
12,093 unique models that were used to obtain the results presented in this
study. Each model was trained on a set of 256 × 256 tiles acquired from
H&E-stainedWSIs, considering thewhole histologicalmaterial. A standard
deviation filter was used to eliminate the tiles which do not contain any
relevant information, allowing us to extract the tissue from the rest of the
image.A slidewas discarded fromanalysis if it contained fewer than ten tiles
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after the filtering process. Macenko color and brightness normalization38

was applied to the remaining tiles before they were assigned with a ground-
truth molecular profile (see Biomarker acquisition).

A CNN consisted of a feature extractor (encoder), a decoder and a
classification module. The encoder can capture the tissue properties within
tiles throughout a set of convolutional filters applied to tiles at various layers
of depth, effectively encoding the high-level visual features into a
d-dimensional feature vector, where d depends on the architecture of the
CNN. These vectors are regarded as the fingerprints of the tiles and are
submitted to both the decoder and the classification module. The decoder
module takes a d-dimensional embedding as input and returns an output of
the same shape as the original tile that the embedding represents. It consists
of a series of transposed convolutional and upsampling layers that is used to
reconstruct the original tile from the latent vector to achieve better repre-
sentations of each tile that do not contain irrelevant features. The output of
the decoder is compared against the original tile with mean squared error
(MSE), or reconstruction loss. In the meantime, the output of the encoder,
i.e., the d-dimensional feature vector, is submitted to the classification

module, which consists of a fully-connected dense layer with softmax
nonlinearity and performs the actual classification task. The output of this
module, i.e., classification probability, is then compared to the ground-truth
label associatedwith theWSI and a cross-entropy (CE) loss is produced.CE-
loss is finally added to the MSE loss to acquire the total loss. By back-
propagating on this combined loss function, we train the model to output
classification scores that are closer to the tile-level targets while achieving
representations of each tile that are independent of image noise (i.e., irre-
levant features).

Model hyperparameters and the CNN architecture were determined
based on a relevant benchmark analysis from the clinical validation study of
a DL model developed for molecular profiling of BRCA39. We adopted the
best-performing model’s feature extractor network (based on a “resnet34”
architecture40) and hyper-parameters to configure a CNN for each bio-
marker in the current pan-cancer study. Our model selection is further
endorsed by a recent benchmarking study comparing weakly-supervised
DL approaches for biomarker profiling in computational pathology, where
the tile-based DL models are shown to likely outperform newer

Fig. 1 | Deep learning for molecular profiling from routine histology images.
a Overview of the pre-processing and training pipeline used for assessing the fea-
sibility of predicting a plethora of genomic, transcriptomic, and proteomic bio-
markers as well as various clinically-relevant biomarkers (e.g., standard of care
features, molecular subtypes, clinical outcomes, response to treatment) with deep
learning from whole slide images stained with hematoxylin and eosin (H&E). A
convolutional neural network (CNN) consisting of an encoder (i.e., feature extrac-
tor), a decoder, and a classification module was used for predicting molecular

profiles from H&E images (see Methods: Pre-processing pipeline and training
details). A single CNN model was end-to-end trained from scratch for each bio-
marker. Each slide was parcellated into a set of 256×256 tiles and those that did not
contain any tissue were automatically discarded. The remaining tiles were assigned
with a ground-truth molecular profile (see Methods: Biomarker acquisition). b The
number of biomarkers per cancer type is shown as a heatmap. Biomarkers are
grouped according to omics category and cancer type. SNV refers to single
nucleotide variant. Cancer abbreviations are defined in Supplementary Table 1.
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architectures, such as those based on multi-instance learning, in classifica-
tion tasks41. Each model was trained for 10 epochs using the Adam opti-
mizer with a learning rate of 0.0001. A total of 200 tiles were randomly
sampled from each of the training slides and oversampling was applied to
the tiles from the underrepresented class to ensure that there is roughly a
50–50 representation of each class during training. During validation,
predictions across all tiles were averaged to determine a slide-level predic-
tion. Validation AUC was monitored as the target metric to select the final
model during training. Classification scores across images of the same
patients were averaged to compute AUC values at patient level.

Tumor purity experiment
TCGA tumor purity data. We obtained the tumor composition data
from the biospecimen slide files named as “nationwidechil-
drens.org_biospecimen_slide_${study_name}.txt”. These files are part of
the TCGA metadata and can be downloaded from https://portal.gdc.
cancer.gov/. We extracted the “percent_tumor_cells” property that
measures the proportion of the tumor cells in a tissue image and used it as
an estimate for tumor purity. For cases where multiple tissue slides were
available, a single tumor purity value was calculated by averaging the
corresponding “percent_tumor_cells”measurements. Cases lacking this
property were excluded from the tumor purity experiment.

Experimental details. For assessing the capability of tumor purity to
predict the endpoints (Supplementary Fig. 1), we employed the experi-
mental setup used for H&E-driven biomarker profiling. However,
instead of predicting on image-based features (XH&E), we opted to use
tumor purity (XTP) to determine the biomarker status (y). Tumor purity
was defined as the percentage of tumor cells in a tissue slide, which is
provided for each case in the TCGA metadata (refer to TCGA tumor
purity data for details). Using the same 3-fold cross-validation setting
(see Experimental setup), we trained and tested three random forest (fRF)
classifiers per biomarker, each time reserving a different fold for vali-
dation and using the remaining folds for training. In total, 12,093 fRF
classifiers were trained across 4031 distinct endpoints (biomarkers) and
32 cancer types, with the classification performance being evaluated using
the AUC metric.

Following the same experimental setup established a one-to-one cor-
respondence between image-drivenDLmodels (fDL) and classifiers running
on tumor purity (fRF) for all studied biomarkers. This facilitated a
direct comparison of the prediction tasks defined as ƒDL(XH&E) = y and
ƒRF(XTP) = y, where XTP and XH&E denote the inputs to the classifiers and y
corresponds to the biomarker status. The significance of the difference in
performance between the fDL and fRF classifiers was assessed using a two-
sided t-test (see Performance characteristics and statistical Procedures for
details). This comparison was conducted separately for each subgroup of
biomarkers to provide increased granularity.

Additionally, we explored the linear relationship between tumor purity
and predictability, as indicated by model performance. The percentage of
tumor cells used to estimate tumor purity was averaged within the samples
of each biomarker and comparedwith theAUCsof theDLmodels using the
Pearson correlation coefficient (PCC). This correlation analysis was per-
formed separately for each subgroup of biomarkers.

Performance characteristics and statistical procedures. Perfor-
mance of a model was measured with the area under receiver operating
characteristic curve (AUC), which plots the relationship between True
Positive Rate and False Positive Rate across different predictive thresh-
olds. An AUC of 0.5 denotes a randommodel, while a perfect model that
can predict all samples correctly yields an AUC of 1. For each biomarker,
we reported the performance as the average AUC across the threemodels
(unless otherwise specified), accompanied with the standard deviation
(denoted with ±where appropriate).

Statistical significance of results were determined with a two-sided t-
test using the “ttest_ind” function from the python scipy-stats library.

This is a test for the null hypothesis and assumes that two independent
samples have identical expected values and variances. For testing the
significance at the group level, the measured AUC values were compared
against a randomly-sampled set of values with the same underlying
variance. For instance, to measure the statistical significance of the dif-
ference between the AUC values acquired for a specific cancer and
biomarker type, all AUC values from that group were compared against a
set of random AUC values sampled from a distribution with a mean of
0.5 (resembling random performance) and the standard deviation of the
group in comparison. To determine the statistical significance of the
predictability at biomarker level, we applied the same test on the pre-
diction scores obtained from the true negative and positive cases.
Towards this end, classification scores from all three folds of a biomarker
were retrospectively combined and the scores from the positive cases and
those from the negative class were compared with a two-sided t-test to
determine if the difference between the negative and positive predictions
were statistically significant. The resulting p-values were corrected for
multiple testing using the Benjamini-Hochberg procedure with a false
discovery rate (FDR) of 0.05. All biomarkers with an adjusted p-value of
less than 0.05 were considered statistically significant.

Ethics oversight. Only retrospective and publicly-available data was
used. The authors had no role in the recruitment of participants.
Therefore, no ethical approval is required.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
DL for molecular profiling from routine histology images
A CNN was used for predicting molecular profiles from H&E images as
illustrated in Fig. 1a and explained in Methods. Our CNN consisted of an
encoder (i.e., feature extractor), a decoder, and a profiling module for
classification. In conventional CNNs, morphological features acquired
from histology images are directly correlated with the target molecular
profile. In our approach, the combined classification and encoder-
decoder architecture enable learning a better representation (i.e.,
encoding) of morphological images that are free of irrelevant features like
image noise. The investigated biomarkers in our study included genetic
alterations in driver genes, over-and under-expression of driver genes
and relevant proteins, established biomarkers that are routinely used in
clinical management, clinical outcomes such as OS and treatment
responses, biomarkers that are highly relevant for prognosis and targeted
therapies, including molecular subtypes and gene expression signatures
(Methods: Biomarker acquisition). We assessed the predictive perfor-
mance of each biomarker in a 3-fold cross-validation setting, where the
cases with a valid biomarker status in each cohort were split into three
random partitions (folds), each having similar proportions of positive/
negative samples. We trained and tested three models per biomarker,
each time keeping aside a different fold for testing and using the
remaining ones for training. This setting ensured that a test prediction
could be acquired for each patient and allowed us to assess the variance in
biomarker performance. The predictability of a biomarker was measured
with the area under the receiver operating characteristic curve (AUC).
For each biomarker, we reported the performance as the average
AUC across the three models (unless otherwise specified), accompanied
by the standard deviation (denoted with ±where appropriate) measuring
intra-marker variability. In total, 12,093 models were trained across
4031 distinct biomarkers and 32 cancer types, with the following
breakdown (Fig. 1b): 1950 SNV mutations in driver genes, 1030 tran-
scriptome expression level markers, 576 protein expression level markers,
270 gene signature and molecular subtype markers, 160 markers related
to clinical outcomes and treatment responses and 45 standard-of-care
markers.
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Pan-cancer predictability of multi-omic biomarkers from routine
histology images with DL
We assessed the overall feasibility of profiling biologically different bio-
markers using histomorphological characteristics of standard H&E-stained
WSIs.Half of themodels achieved anAUCof 0.644 or higher. The observed
AUC was greater than or equal to 0.719 for 25% of the models and above
0.834 for 5%. The top 1% of models (n = 122) returned an AUC of at least
0.909 (Fig. 2a, b). For the majority of the biomarkers we investigated, the
predictability was mostly consistent, with the standard deviation being less

than 0.1 AUC and the difference between the minimum and maximum
performance being less than 0.2 AUC (Fig. 2c). The majority of the bio-
markers under investigation showed better-than-random performance
across all omics/biomarker types (Fig. 2d, Table 1). The lowest average
performance was seen in the prediction of SNVs in driver genes (AUC
0.636 ± 0.117), and the highest performing models were from the standard
clinical biomarkers (AUC0.742 ± 0.120).Variability acrossdifferentmodels
of the same biomarker type showed similar trends compared to that in the
overall distribution, with the standard deviation for all omics being around

Fig. 2 | Multi-omic biomarkers can be predicted directly from histomorphology
across multiple cancer types. a Histogram distribution and kernel density esti-
mation of the area under the curve (AUC) values for all models (n = 12,093), where
the markers indicate the proportion of models at 50%, 75%, 95%, and 99%. b
Cumulative AUC distribution shows the proportion of models that have AUC less
than the shown markers at 0.5, 0.6, 0.7, and 0.8. c Standard deviation and min-max
range distribution of model performance in AUC. d Violin plots showing the AUC
distribution of each biomarker type. The same coding in Table 1 was used to
abbreviate the biomarker types. Box plots were used to represent the data points in
violins, with whiskers showing the 1.5x interquartile range and median values
indicated with white dots. e Standard deviation (orange histogram) and min-max

range distribution (blue histogram) of model performance in AUC across the cross-
validation folds. f Violin plots showing the AUC distribution per cancer type (see
Supplementary Table 1 for cancer abbreviations). Plots are sorted by average intra-
study AUC. Lymphoid neoplasm diffuse large B-cell Lymphoma (DLBC), uveal
melanoma (UVM), and thymoma (THYM) were excluded from this analysis due to
only constituting one to seven valid targets across all biomarker types. The number
of models per cancer type is given in parentheses. g Violin plots showing the stan-
dard deviation distribution of model performance across different folds of each
biomarker, in the same order as in (f). The number of standard deviation values per
cancer type is given in parentheses.
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0.2 AUC and an increase in variance considering the range in minimum-
maximum performance (Fig. 2e).

To show a more granular overview of the biomarker performance
across cancers, we plotted the distribution of AUC values for all the inves-
tigated malignancies with sufficient samples (Fig. 2f) and provided the
average performance with standard deviations in Supplementary Table 4.
Overall, performance was significantly better than random across all cancer
types (i.e., mean AUC > 0.5 and p < 1e–05 for all malignancies, where sta-
tistical significance for each cancer was measured with a two-sided t-test
performedbetween theAUCvalues of all models belonging to a cancer type
and a set of randomAUC values with a mean of 0.5 and the same standard
deviation as the compared AUC distribution). The lowest general perfor-
mance was obtained in UCS with a mean AUC of 0.585 (±0.158), and the
highest performingmodels were in THCA, where an average AUC of 0.768
(±0.091) wasmeasured. The variability across cross-validation folds of each
biomarker was mostly stable, with standard deviations centering around
0.05 AUC in most of the studies (Fig. 2g). A breakdown of the overall
predictability performance for each malignancy depending on the type of
biomarker is provided in Supplementary Fig. 2.

Feasibility of predicting genetic alterations from histology
Recent pan-cancer studies have shown thatmutations can be detected from
histomorphological features with DL11,14. In our study, we extend the pre-
vious work on predicting mutational status to a total of 1950 genomic
biomarkers. We focused on predicting the SNVs in driver genes that are
associated with disease-specific therapies approved by the FDA or are
known to be relevant for specific treatments based on evidence from clinical
guidelines or well-powered studies with consensus from experts in the
field31. In our experiments, we used the genomic profiles available from the
TCGA project.

Genetic alterations were significantly predictable across most of the
investigated cancer types (Fig. 3a), with a mean AUC of 0.636 (±0.117).
More than 40% of the mutations were detectable with an AUC of at least
0.65, and considering the highest performingmutations in each cancer type,
almost all major malignancies had at least ten genes with mutations being
predictable at an AUC level of 0.70 or above. Among them, endometrial
carcinomahad thehighest numberof predictablemutational status (n = 112
out of 442 genes). It was followed by colon cancer (n = 62 out of 250 genes),
gastric cancer (n = 58 out of 178 genes), skin melanoma (n = 29 out of 109
genes), LUAD (n = 28 out of 180 genes), and BRCA (n = 26 out of 128
genes). Among all the tested genes, the top-performing ones wereNUMA1
and JAK1 in KIRC, PDGFRB and BCL6 in lung cancer, IRS2 in endometrial
cancer, and GNAS in BRCA, each with an AUC of at least 0.89. A large
number of genes were highly predictable across multiple cancer types
(Supplementary Fig. 3a). Notably, SNV alterations in TP53were detectable
in many malignancies, with 7 out of 22 cancers tested having an AUC of at
least 0.7 and 14 of them showing AUCs greater than 0.65, reaching up to

0.841 for brain LGG, up to 0.785 for BRCA and up to 0.771 for endometrial
cancer.

Feasibility of inferring under-/over-expression of transcriptomes
from diagnostic histology slides
Analysis of gene expressions is fundamental to better understanding the
underlying cancer mechanisms and holds promise in improving cancer
diagnosis and facilitating drug discovery42. While it is already known that
genetic alterations could potentially be detected fromhistomorphologywith
DL, studies to understand the extent of predictability at transcript and
protein levels have been rather limited. Recently, it has been shown that
transcriptomic profiles are correlated with histomorphological features
detectedwithDL inanannotation-free setup15.Our study took amoredirect
and comprehensive approach and trained DLmodels to predict the under-
and/or over-expression status in selected driver genes, using the tran-
scriptomic profiles available from TCGA. We identified 97 genes qualified
for studying the predictability of under-expression and 933 genes qualified
for studying the predictability of over-expression at the transcript level
across different cancers.

The over-/under-expression status for the investigated genes was
mostly predictable across themajority of cancer types (Fig. 3b) with amean
AUC of 0.637 (±0.108). The average performance was slightly lower for the
under-expressed genes (mean AUC 0.633 ± 0.115). Expression status in at
least 40% of the genes was detectable with an AUC of 0.65 or above. ESCA
and testis cancer were the malignancies with the highest number of genes
with a predictable expression status (a total of 28 out of 105 and 52 genes,
respectively), defined as an AUC level of at least 0.70. It was followed by
ovarian cancer (18out of 62 genes) andACC (16 out of 46 genes). Almost all
of the top-performing genes were that of over-expression, with PMS2 in
THYM;CARD11, LASP1, STIL, POLE, KMT2C, andCLIP1 in testis cancer;
ERC1, WRN, OLIG2, FANCC, and ACSL6 in ACC; and SOX2 andNDRG1
in ESCA leading in performance with AUCs ranging 0.832-0.911. On the
predictability of under-expressed genes, the most notable ones were RHOA
in THYM (AUC 0.908 ± 0.05), LSM14A, THRAP3, andMTOR in the brain
LGG (AUCs ranging from 0.785 to 0.818) and BAP1 in MESO (AUC
0.818 ± 0.084). The expression status of many genes was predictable across
multiple cancer types (Supplementary Fig. 3b).

Feasibility of predicting protein expression level status with DL
As the next step in ourmulti-omicspan-cancer study,we assessed the ability
of DL to detect histomorphological changes that might be associated with
the alterations in the expression of proteins. Towards this end, we trained
models to predict the under and/or over-expression status of proteins
associatedwith certaindriver genes basedonproteomic profiles providedby
TCGA. It isworthnoting that associationwith a gene in this context refers to
the encoding of a protein by that gene and we use associated with/encoded
by interchangeably throughout the paper. A total of 267 and 309 driver

Table 1 | Average performance and standard deviation for all omic types, alongside their brief description

Biomarker type/omic Description Mean AUC ± std.

Standard clinical biomarkers Established biomarkers that are routinely used in clinical management, as described in a related
study11.

0.742 ± 0.120 (n = 135)

Clinical outcomes and treatment
responses

Clinical outcomes such as overall survival and treatment responses to therapy or drugs. 0.671 ± 0.120 (n = 480)

Under-/over-expression of proteins Under- and/or over-expression status of proteins encoded by driver genes. 0.666 ± 0.108 (n = 1728)

Gene signatures and molecular
subtypes

Biomarkers that are highly relevant for prognosis and targeted therapies, includingmolecular subtypes
and gene expression signatures, as compiled in a related study11.

0.653 ± 0.097 (n = 810)

Under-/over-expression of
transcriptomes

Under- and/or over-expression status in driver genes at the transcript level. 0.637 ± 0.108 (n = 3090)

Presence of single nucleotide var-
iants (SNVs)

The presence of SNVs in driver genes, associated with FDA-approved therapies or known-relevance
for specific treatments.

0.636 ± 0.117 (n = 5850)

The table is sorted by the average performance in descending order. The number of biomarkers tested for each biomarker type is given in parentheses in the last column.
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genes were qualified to evaluate the predictability of their corresponding
under- and over-expression status at the protein level, respectively.

We achieved an average AUC of 0.666 (±0.107), with the under-
expression status being slightly less predictable on average (mean AUC
0.662, ±0.105) compared to its over-expressed counterpart (mean AUC

0.669 ± 0.109). The expression status prediction of almost all genes under
investigation performed above random (Fig. 4a), with more than half of
them being detectable with an AUC of at least 0.65 and over 30% of them
further achieving an AUC above 0.70. BRCA had the highest predict-
ability rate, where the expression status of 37 out of 107 genes was

Fig. 3 | Deep learning could predict genetic alterations and transcriptome
expression status fromroutine histology images acrossmany cancer types. Scatter
plots show the average test area under the curve (AUC) for each model trained to
predict (a) presence of single nucleotide variants (SNVs) in driver genes and (b)
under-/over-expression status of transcriptomes across selected cancer types. Each
marker in the scatter plot represents a tested biomarker. A two-sided t-test was
applied to prediction scores of eachmodel to assess the statistical significance and the
corresponding p-values were corrected for false discovery rate (FDR). The y-axis of

each plot was inverted and the p-values were log-transformed for visualization
purposes. p values smaller than 1e–05 were set to 1e–05 to avoid numerical errors
during transformation. The statistical significance threshold of 0.05 ismarked with a
dashed line. Color shading of the markers indicates the standard deviation of the
predictability performance for each biomarker. Plots are ordered by the number of
tested biomarkers in each row. Due to space limitations, cancer types with few
biomarkers are not shown in this figure but are provided in Supplementary Fig. 9.
Cancer abbreviations are defined in Supplementary Table 1.
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detectable with an AUC of at least 0.7. It was followed by KIRC and low-
grade brain glioma (25 out of 51 and 76 genes, respectively). The
expression level status of a large number of proteins encoded by driver
genes was highly predictable, with TFRC, ATM, and PIK3CA in low-
grade brain glioma;NRAS, FOXO3,MYC, andTP53 in papillary renal cell
carcinoma; CDKN1B in HNSC; and MYC in SARC, exhibiting the top
performance with AUCs ranging 0.835-0.974. Multiple under-expressed
proteins were also predictable to a great extent, the top-performing ones
being CASP8,MET, BCL2, and SETD2 in BRCA;AR and TFRC in gastric
cancer; and VHL in lung cancer with AUCs ranging 0.814–0.866. We
found that the p53 protein over-expression (encoded by TP53) was
consistently predictable in six of the eight tested cancers, including renal
cell carcinomas, lower-grade brain glioma, and endometrial cancer, with

AUCs ranging from 0.672 to 0.835. The expression status of many other
proteins was also detectable across multiple cancer types (Supplemen-
tary Fig. 3c).

Predictability of transcriptomic and proteomic biomarkers is
positively correlated
Despite the average predictability of the protein expression status being
higher than that of the transcriptome in the targetswe investigated (Table 1),
both omic types had around 200 highly predictable genes (i.e., AUC > 0.7).
The slightly lower overall performance of transcriptome expression pre-
dictionmay be attributed to it inherently being less predictable compared to
its proteomic counterpart. Considering how predictability changes across
the molecular landscape (Supplementary Fig. 4), we measured a positive

Fig. 4 | Protein expression status, standard clinical biomarkers, gene signatures,
and molecular subtypes could be inferred with deep learning across many
cancer types. Scatter plots show the average test area under the curve (AUC) for each
model trained to predict (a) under-/over-expression status of proteins (b) standard
clinical biomarkers across selected cancer types, and (c) gene signatures and

molecular subtypes. Plots are ordered by the number of tested biomarkers in each
cancer type. Due to space limitations, cancer types with fewer biomarkers are not
shown in this figure but are provided in Supplementary Fig. 9. Please refer to the
caption of Fig. 3 for a detailed explanation of the visualization.
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PCC of 0.227 (p < 1e–05) between the transcriptomic and proteomic bio-
markers with regard to their over-expression status. A positive linear rela-
tionship also existed between genetic alterations and under-expressed
transcriptomes (PCC: 0.131, p < 0.01) as well as its proteomic counterpart
(PCC: 0.068, p < 0.01).

Feasibility of predicting standard clinical biomarkers with DL
We tested the feasibility of DL to predict well-established biomarkers that
are routinely used in clinical management. Towards this end, a set of
standard of care features was compiled by following the biomarker acqui-
sition approach in ref. 11, including data for tumor grade, microsatellite
instability (MSI) status (in colorectal and gastric cancer), histological sub-
types, hormone receptor status (in BRCA), and Gleason score (in prostate
cancer).

Standard pathology biomarkers demonstrated a relatively higher
predictability performance, with an average AUC of 0.742 (±0.120).
None of the biomarkers had a performance worse than random (i.e., all
AUCs > 0.5) and almost 30% of them could be inferred with an AUC of
above 0.8, a potential sign of high predictability (Fig. 4b). As expected,
histological subtypes were in general highly predictable, especially for
BRCA, renal cell carcinomas, hepatocellular and gastric cancer. Predic-
tion of molecular features in clear cell and chromophobe subtypes of
renal cell carcinoma had the highest performance, reaching up to an
AUC of 0.999. Invasive ductal carcinoma (IDC) and invasive lobular
carcinoma (ILC) subtypes of BRCAwere well detectable fromWSIs, with
AUCs ranging 0.759–0.908. Our models were able to predict hormonal
receptor status in BRCA,withAUCs of 0.806 and 0.744, for estrogen (ER)
and progesterone (PR) receptors, respectively. Notably, multiple clinical
biomarkers important for hepatocellular cancer could also be accurately
inferred from histology, including growth patterns (AUC up to 0.862)
and the etiological status of non-alcoholic fatty liver disease (NAFLD,
AUC 0.826 ± 0.054). Another highly predictable biomarker was MSI
status, whichwas detectable in both colon and gastric cancerwith average
AUCs of 0.716 and 0.773.

Feasibility of inferring molecular subtypes and gene expression
signatures from routine images
To evaluate the capability of DL to detect molecular subtypes and gene
expression signatures of cancer from WSIs, we compiled a set of well-
established features with clinical and/or biological significance, by closely
following the experimental details in a previous study11. This includes fea-
tures that are relevant forprognosis and targeted therapies suchasmolecular
subtypes and clusters, immune-related gene expressions, homologous
recombination defects, cell proliferation, interferon-γ signaling and mac-
rophage regulation and hypermethylation/mutation32–34. Given their asso-
ciationwith higher-level functions, these biomarkersmay potentially have a
larger impact on the morphology than the previously-assessed alterations,
especially compared to single mutations11.

Overall, molecular subtypes and gene signatures were considerably
predictable with an average AUC of 0.653 (±0.097). Almost half of them
were detectable at an AUC level greater than 0.65 (Fig. 4c). Many bio-
markers with high AUC were observed in BRCA (18 out of 28 bio-
markers) and the adenocarcinomas of the stomach (16 out of 22
biomarkers) and colon (14 out of 24 biomarkers). Our method was
capable of inferring TCGA molecular subtypes in multiple cancer types,
including KIRP (AUC up to 0.884 ± 0.085), gastric cancer (AUC up to
0.875 ± 0.048), LUSC (AUC up to 0.861 ± 0.015), and BRCA (AUC up to
0.859 ± 0.028). Notably, the average AUC for PAM50 subtypes in BRCA
was 0.752 (±0.080), reaching up to 0.871 (±0.015) for the Basal subtype.
Consensus molecular subtypes (CMS) in colon cancer (i.e., CMS1,
CMS2, CMS3, CMS4) were also potentially detectable with an inter-
subtype averageAUCof 0.763 (±0.068), reaching up to 0.821 (±0.083) for
CMS1. Cell proliferation and hyper-methylation emerged as relatively
well-predicted biomarkers, particularly in breast, stomach, colon, and
lung cancers, with AUCs reaching up to 0.854.

Feasibility of inferring clinical outcomes and treatment response
from diagnostic histology slides
The ability to accurately estimate prognosis can be vital for clinical man-
agement operations. Previous work has focused on developing prognostic
models from routine clinical data, standard of care features, histopatholo-
gical assessment, molecular profiling, and more recently, morphological
features acquired via DL43–47. There have also been attempts to use ML
approaches and image-based features to predict clinical endpoints in dif-
ferent cancers, such asmelanoma and non–small cell lung cancer48,49. In our
study, we explored the end-to-end predictability of prognostic outcomes
directly from histology across multiple cancer types by treating the clinical
outcome endpoints such as OS, DSS, DFI, and PFI as potential prognostic
biomarkers35. We further expanded our analysis towards detecting treat-
ment responses directly from WSIs to assess whether DL models can cor-
relatehistomorphological featureswith theoutcomeof a therapyordrug.To
the best of our knowledge, this study constitutes the first systematic attempt
to assess the DL-based predictability of drug responses across multiple
cancer types.

Overall, the predictive performance of clinical outcomes and treatment
responseswas considerablyhigh,with ameanAUCof0.671 (±0.12).Almost
40% of the tested targets were predictable at an AUC level of 0.70 or above
(Fig. 5).Weacquired thebest overall performance inGBM,ACC, andKICH
with mean AUCs of 0.77. They were followed by renal papillary cell carci-
noma, MESO, THCA, prostate cancer, renal clear cell carcinoma, and
ESCA, with overall AUCs ranging from 0.731 to 0.76. OS in KICH, GBM,
THCA, andACC;DFI inESCAand renal clear cell carcinoma;DSS inGBM;
residual tumor status in endometrial carcinoma, and the treatment response
in papillary renal cell carcinoma were among the top-performing targets
with AUCs ranging from 0.815 to 0.924.

Among the 20 drugs we investigated in our study, DL was able to
predict the response in half of them with an AUC of at least 0.7. Cisplatin
was themost notable drugwithAUCs ranging 0.763–0.837 in cervical, testis
and gastric cancers. The other predictable drugs were temozolomide in
LGG; paclitaxel in BRCA; leucovorin, oxaliplatin, and fluorouracil in colon
cancer; etoposide in testis cancer; and gemcitabine in pancreatic cancer.

Pan-cancer predictability is consistent across different datasets
To show that a comparable performance can be achieved across different
datasets, we repeated our experiments using publicly available data from the
CPTAC.We limited our analysis to the prediction of the presence of SNVs
in driver genes due to both TCGA and CPTAC relying on the same set of
driver genes, hence exhibiting a relatively large overlap. A total of 176 driver
genes across seven cancer types were identified that have availablemutation
data in both datasets. The investigated cancers were endometrial carcinoma
(n = 61), PDA (n = 4), LUSC (n = 21), LUAD (n = 14), head and neck
cancer (n = 12), GBM (n = 4), and colon adenocarcinoma (n = 60). Com-
parable overall performancewas observed on both datasets across almost all
tested cancer types (Supplementary Fig. 5, p > 0.05 under two-sided t-test
for all but COAD) with within-cancer average AUCs ranging 0.578–0.655
and 0.567–0.672 for TCGA and CPTAC, respectively. Performance across
biomarkers varied more for CPTAC cohorts, as indicated by the shape of
violin plots. Overall, our results indicate that the predictability of the bio-
markers is consistent and dataset-independent.

Discussion
This study assessed the general feasibility of predicting a plethora of bio-
markers from a pan-cancer perspective, using DL and histomorphological
features extracted from H&E-stained diagnostic slides. Morphological
characteristics captured from histology with an encoding-decoding DL
model were used for inferring biomarkers across the omics spectrum. We
observed a notable performance for certain genetic alterations (e.g., TP53)
and clinically-relevant markers (e.g., standard-of-care features and mole-
cular subtypes) across multiple cancer types. The biomarker-level perfor-
mance seemed to exhibit a reasonable degree of consistency, as the cross-
validatedmodels of a biomarker performedmostly similarly. A comparable
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predictive performance was obtained to a certain degree when experiments
were repeated on an independent dataset, further showing the overall
capability of DL for molecular profiling across multiple cancer types.

The performance of a biomarker did not seem to depend on the factors
intrinsic to the tested populations, such as the number of cases (i.e., popu-
lation size) and the proportion of positive-negative samples in the whole
population (Supplementary Fig. 6a, Supplementary Fig. 7). We argue that
the dataset size is more important for the stability of the results, rather than
the performance itself, i.e., having a larger training subset is likely to yield
models with more consistent performance. In addition, our biomarkers
typically had an unbalanced distribution, due to most of the biomarkers
having a much smaller number of positive cases than that of negative. We
tackled this problem at training time by oversampling more from the
underrepresented class and later assessed its impact on the stability of
performance. This was achieved by examining the sample size and class
ratios in comparison to the range of AUCs across the cross-validation folds
for each biomarker (measured by standard deviation). Our observation
revealed a negative relationship for both factors (Supplementary Fig. 6b).
Thismay indicate that the performance is likely to become less variable with
an increasing number of samples and a more balanced dataset. In addition,
we performed an experiment to assess the relationship between the bio-
marker predictability and tumor purity (Supplementary Fig. 1, Methods:
Tumor purity experiment). Our analysis revealed that predicting biomarker
status solely based on tumor purity as an independent variable was not
feasible. However, we observed some correlation between tumor purity and
the predictive performance for certain biomarkers. This correlation may be

attributed to the tendency for larger tumor compositions to enhance per-
formance to some extent.

In our study, we found that detecting alterations from histology at
different levels of the omics landscapewasmostly feasible for themajority of
the investigated genes. Certain mutations likely to be associated with poor
clinical outcomes showed a decent performance across multiple cancer
types, notable examples being those harbored by TP53, BAP1, MTOR, and
GNAS. The relatively high and consistent performance observed for TP53
might be attributed to tumors with TP53 mutations likely being poorly
differentiated, and exhibiting visually discernible higher-grade cell
changes15. Identifyingpatientswith certain alterations is critical forprecision
treatment and can pave the way to developing targeted therapies. For
instance, recent studies show that the detection of mutations in BAP1 can
potentially be useful for the development of targeted treatment strategies in
KIRC50. Similarly,MTORmutations can serve as biomarkers for predicting
tumor responses to mTOR inhibitors, which are already being used to treat
human cancer51. One of the highly predicted genes, GNAS, is known to
promote cell proliferation and migration in BRCA when expressed at high
levels, and thus, can potentially be used as a therapeutic target52.

The identification of downstream changes in tumors and their differ-
entiation fromnormal cells can aid in uncovering the complexmechanisms
that influence the anticancer drug response and potentially enhance the
prediction of therapeutic outcomes53–56. Despite many studies targeting
tumormetabolism, the attempts to assess the detectability of transcriptomic
and proteomic changes from WSIs have been highly limited15,57,58. In our
study, we observed the possibility of predicting the under-/over-expression

Fig. 5 |Deep learning could infer clinical outcomes and treatment responses from
diagnostic histology slides. Scatter plots show the average test area under the curve
(AUC) for each model trained to predict clinical outcomes and treatment responses
across selected cancer types. Plots are ordered by the number of tested biomarkers in

each cancer type. Due to space limitations, cancer types with fewer biomarkers are
not shown in this figure, but are provided in Supplementary Fig. 9. Please refer to the
caption of Fig. 3 for a detailed explanation of the visualization.
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status of transcriptomes andproteins to some extent. For instance,we found
that p53 over-expression was consistently predictable across multiple
cancer types.

Our findings indicated that DL can potentially infer well-established
standard-of-care clinical biomarkers, gene expression signatures, and
molecular subtypes from histopathological images. Some of these highly
predictable targets have already been adopted as actionable biomarkers in
clinical practice. This correlation is reasonable since alterations that fun-
damentally impact tumor biology also often coincide with changes in
morphology, making these biomarkers valuable targets for effective treat-
ment strategies. Our findings largely align with those obtained in the recent
pan-cancer study conducted by ref. 12. The similarities between the two
studies enable us to corroborate their findings, and our results offer addi-
tional evidence for the feasibility of detecting molecular biomarkers from
histology.

Classification of residual tumors is a critical stage for the course of
treatment and is considered an important prognostic biomarker36. In our
analysis, we found that DL could potentially detect the occurrence (or lack
thereof) of residual tumors in multiple cancers, which might indicate that
some visual clues correlated with complete remission after treatment are
likely to be present in histomorphology at the time of diagnosis.While other
clinical outcomes, such as OS and disease-specific survival (DSS), were also
predictable to a certain extent, one should note that the definition of clinical
outcomes may not always be accurate, especially for the cancer types that
need longer follow-up times, have a small cohort size or have a limited
number of events35. This study assessed the predictability of drug responses
from H&E-stained images and revealed that the complete response to
several drugs such as cisplatin, temozolomide, and paclitaxel could poten-
tially be detected with DL. These findings suggest that DL approaches hold
promise for precision medicine, enabling oncologists to select treatments
that may work best for patients by analyzing routine histology slides.

One of the limitations of our study is that we placed specific limitations
on biomarker acquisition to maintain a manageable scope for the research.

For instance, we restricted the computation of multi-omic biomarker pro-
files to driver genes and limited our analysis to single variant mutations
when considering genomic alterations. Consequently, comparing the pre-
dictability of biologically different targets is not possible, as the analysis
focused on only a subset of alterations rather than examining all possible
variations. Another limitation of the study comes directly from the data
itself. While we compared predictability across multiple cancers and omic
types, all biomarkerswere testedunderdifferent sample sizes andprevalence
conditions. Many potential biomarkers were simply discarded during data
acquisition, as they did not contain enough positive samples. It is important
to acknowledge that TCGA is known to have site-specific fingerprints
inherent in digital slides, which could bias the accuracy of predictivemodels.
To mitigate this concern, more sophisticated splitting techniques may be
considered59. We assessed the model performance with AUC, the most
commonly used evaluation metric in the presence of class imbalance.
However, in scenarios where only a few examples are available for the
minority class (such as rare mutations), AUC values can be less reliable.
Performance as estimated by AUC can drastically change based on correct
and incorrect predictions of the minority class. One should note this
inherent drawback when interpreting the results of biomarkers with very
small sample sizes and low prevalence. AUC values, class prevalence, vali-
dation sample size, corrected p-values, andother relevant information for all
models are given in Supplementary Data 1.

Exploring the black-box representation of DL models can be useful in
revealing the morphological patterns that may be linked to certain altera-
tions or phenotypic outcomes11,14. One way to visualize the spatial regions
that are critical for inferring a biomarker status is superimposing the tile-
level prediction scores (i.e., probabilities) onto WSIs to create spatial heat-
maps (Fig. 6). The highest-ranking tiles within these heatmaps represent the
visual characteristics learned by theDLmodel to solve the prediction task at
hand. For instance, different types of breast tumors may show distinct
differences in morphology, which can be identified by DL and utilized to
differentiate specific subtypes (Fig. 6a, b). Similarly, top-ranked tiles from

Fig. 6 | Visualization of predictability with deep
learning from histopathological images. Deep
learning (DL)-based predictions for the molecular
subtypes of breast cancer (i.e., Basal, HER2, Luminal
A, and Luminal B) are visualized for two selected
patients using heatmaps. The correctly-predicted
subtype in each case is enclosed with a rectangle and
the highest-ranking tiles from that class are given
alongside the original whole slide image (WSI). The
Basal type (a) shows sheets of tumor cells without
any discernible gland formation, while the Luminal
A patient’s tumor (b) is composed of well-formed
glands. Considering the heatmaps in both cases, one
can notice that DL models can identify spatial
regions that are relevant to the target class. Scale bar
for WSIs: 5 mm. Scale bar for tiles: 512 µm.
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CMS of colon cancer (Supplementary Fig. 8a) show distinct morphological
patterns that consistently alignwith thehistopathologyofCMSsubclasses as
shown in previous studies11,19. In addition, morphological traits associated
withMSI unstable cases, e.g., containing large amounts of tumor-infiltrating
lymphocytes, can be seen in the highest-ranking MSI tiles acquired from
patients with colon and gastric cancers (Supplementary Fig. 8b–c). While
DL can identify clinically-relevant morphological features, it may also be
useful to trace back the visual patterns that are associated with molecular
alterations. For instance, highly-predicted tiles fromamutatedBRAF case in
papillary THCA show distinct histological features compared to its wild-
type counterpart (Supplementary Fig. 8d). In addition, DL may be a useful
tool to explore visual characteristics with unknown links to histomor-
phology. For instance, no distinct features are known to distinguish the
mutated TP53 and its wild-type in BRCA, but DL can still pick tumor tiles
that show different visual characteristics for both classes (Supplementary
Fig. 8e). Thismay provide insights to better understand the potential impact
of this alteration on cancer cell morphology.

Showing the overall feasibility of predicting multi-omic biomarkers
with DL marks an important step in pursuit of achieving end-to-end
detection systems from histology, which can potentially assist clinicians in
patient management, accelerate diagnosis, and help develop more patient-
centric treatments. The approach also presents an opportunity to apply
multi-omic biomarkers in a rapid and low-resource setting without
requiring time-consuming and expensive biological tests. While this study
has elucidated early observations on the factors determining a biomarker’s
predictability, further understanding would be necessary before the main-
stream adoption of DL-based methods for multi-omic biomarker profiling
from standard tissue imaging in day-to-day clinical settings60.

A systematic analysis of the model’s generalizability is crucial to
comprehend the true scope of predictability. Additionally, there is still a
need for further investigation into the specific mechanisms of biomarker
detectability. The results presented in this study provide an opportunity to
identify promising biomarkers for clinical adoption and those that require
re-evaluation. For example, biomarkers with low AUC can be re-trained
with a larger dataset and customized modeling to confirm whether their
poor performance is due to limited biological signals or amodel’s inability to
capture them due to suboptimal configuration. Conversely, the biomarkers
with high AUC can undergo rigorous validation to further assess their
immediacy to clinical adoption. This may include assessment on multiple
external datasets, comparison with standard care approaches, concordance
with treatment response, prospective evaluation, and a cost-effectiveness
analysis for clinical implementation, considering potential benefits and
resource implications20.

Future work will explore the internal representations of the predictive
models to reveal potential associations between omics, tumor morphology,
and model predictions. This exploration may provide insights into under-
standing the varying performance of predictability across different omics.
While this study formulates the problem of predicting biomarker status
from H&E-stained images as a single-task classification problem, future
studies should investigate explicit multi-task methods. Considering that
certain biomarkers may be correlated with each other, employing such
methods may potentially improve predictability performance.

Data availability
TCGA whole slide images are available at https://portal.gdc.cancer.gov/.
Genetic, transcriptomic, proteomic, and clinical data used to generate bio-
marker profiles for cases in the TCGAcohorts are available at https://portal.
gdc.cancer.gov/ and https://cbioportal.org/. Clinically relevant driver genes
are available at https://cancervariants.org/. CPTAC whole slide images are
available at https://wiki.cancerimagingarchive.net/display/Public/CPTAC
+Imaging+Proteomics/. Genetic data used to generate biomarker profiles
for cases in the CPTAC cohorts are available at https://portal.gdc.cancer.
gov/. The source data used to generate the figures, including AUC values,
class prevalence, validation sample size, corrected p-values, and the other

relevant information for the models evaluated in the study, are given in
Supplementary Data 1.

Code availability
Codes used for the analysis are available in the following URL: https://
github.com/Panakeia-Technologies/Multiomics-PANCancer (https://doi.
org/10.5281/zenodo.6566146)61. The experiments and analyses in this
work were carried out with python 3.6 and the following python libraries:
torch (1.9.0), torchvision (0.10.0), google-cloud-storage (1.32.0), openslide-
python (1.1.1), pillow (6.0.0), opencv (3.4.2), tensorboard (1.15.0), numpy
(1.18.1), pandas (1.3.5), seaborn (0.11.0), scipy (1.4.1), scikit-learn (0.22.1),
statsmodels (0.11.0), and matplotlib (3.5.1).
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