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Abstract

Background Injection drug use (IDU) can increase mortality and morbidity. Therefore,
identifying IDU early and initiating harm reduction interventions can benefit individuals at
risk. However, extracting IDU behaviors from patients’ electronic health records (EHR) is
difficult because there is no other structured data available, such as International
Classification of Disease (ICD) codes, and IDU is most often documented in unstructured
free-text clinical notes. Although natural language processing can efficiently extract this
information from unstructured data, there are no validated tools.
Methods To address this gap in clinical information, we design a question-answering (QA)
framework to extract information on IDU from clinical notes for use in clinical operations. Our
framework involves two main steps: (1) generating a gold-standard QA dataset and (2)
developing and testing the QA model. We use 2323 clinical notes of 1145 patients curated
from the US Department of Veterans Affairs (VA) Corporate Data Warehouse to construct the
gold-standard dataset for developing and evaluating the QA model. We also demonstrate the
QA model’s ability to extract IDU-related information from temporally out-of-distribution data.
Results Here, we show that for a strict match between gold-standard and predicted
answers, theQAmodel achieves a 51.65%F1 score. For a relaxedmatch between the gold-
standard and predicted answers, the QA model obtains a 78.03% F1 score, along with
85.38% Precision and 79.02% Recall scores. Moreover, the QA model demonstrates
consistent performance when subjected to temporally out-of-distribution data.
Conclusions Our study introduces a QA framework designed to extract IDU information
from clinical notes, aiming to enhance the accurate and efficient detection of people who
inject drugs, extract relevant information, and ultimately facilitate informed patient care.

Injection drug use (IDU) is a critical health concern in theUnited States and
internationally1. Most people begin using illicit drugs through other modes
of administration, such as smoking, intranasal absorption, or oral ingestion.
As dependence grows, individuals tend to prefer the intravenous (IV) route
of drug administration, injecting drugs directly into the veins, as it offers
stronger and more immediate effects2. The number of people who inject
drugs increased almost fivefold from 2011 to 2018, according to estimates
in3, whereas the number of IDU-related overdoses increased eightfold from
2000 to 20184.

IDU can lead to complicatedmedical conditions such as abscesses and
cutaneous infections, scarring and needle tracks, endocarditis, HIV/AIDS,
Hepatitis C, overdose, and death1,5–8. An increase in IDU is also associated
with an increase in morbidity and mortality9–11.

Accurately identifying IDU behaviors in people who inject drugs is
crucial for risk assessment and detection of patients who can benefit from
harm reduction interventions to potentially prevent IDU-relatedmorbidity
and mortality12,13. In the literature, the study of IDU-related information
extraction has been performed along with other socio-behavioral
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Plain language summary

There are many health risks associated with
injection drug use (IDU). Identifying people
who inject drugs early can reduce the
likelihood of these issues arising. However,
extracting informationaboutanypossible IDU
from a person’s electronic health records can
be difficult because the information is often in
text-based general clinical notes rather than
provided in a particular section of the record
or as numerical data. Manually extracting
information from these notes is time-
consuming and inefficient. We used a com-
putational method to train computer software
to be able to extract IDU details. Potentially,
this approach could be used by healthcare
providers to more efficiently and accurately
identify people who inject drugs, and there-
fore provide better advice and medical care.

Communications Medicine |            (2024) 4:61 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-024-00470-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-024-00470-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s43856-024-00470-6&domain=pdf
http://orcid.org/0000-0002-3422-9650
http://orcid.org/0000-0002-3422-9650
http://orcid.org/0000-0002-3422-9650
http://orcid.org/0000-0002-3422-9650
http://orcid.org/0000-0002-3422-9650
http://orcid.org/0000-0002-4056-0737
http://orcid.org/0000-0002-4056-0737
http://orcid.org/0000-0002-4056-0737
http://orcid.org/0000-0002-4056-0737
http://orcid.org/0000-0002-4056-0737
http://orcid.org/0000-0002-2173-3663
http://orcid.org/0000-0002-2173-3663
http://orcid.org/0000-0002-2173-3663
http://orcid.org/0000-0002-2173-3663
http://orcid.org/0000-0002-2173-3663
mailto:mahbubm@ornl.gov


determinants of health (SBDH). Considering and including SBDH such as
prior incarceration, substance use (regardless of administration mode),
treatment attitude, psychological distress, and interpersonal violence
improve patient mortality and enhance the prediction of medication
adherence, hospital readmission, and suicide attempts14,15.

Despite the growing interest, SBDH such as IDU is not identifiable in
patients’ electronic health records (EHRs) through ICD codes; although not
systematically assessed, it can be documented in clinical notes16,17. While
structured data fields derived from EHRs may provide some amount of
information about risky drug use behaviors andmorbidities related to IDU,
the clinical note is the only place it can be explicitly documented12. Despite
being clinicallymeaningful and having the potential to identify patients that
canbenefit fromharmreduction interventions, care providers often struggle
to retrieve these data points from EHRs, and evidently, the exclusion of this
data may result in an overall reduced quality of care18,19.

Natural language processing (NLP) can help extract SBDH-related
information from clinical notes and expand the utility of such information
in patient care20–22. NLP is a branch of computer science that involves
automated learning, understanding, and generation of natural languages,
enabling the interactions between machines and human languages.
AlthoughNLP deals with a variety of tasks involving unstructured text data
(e.g., event prediction23, entity recognition24, question-answering (QA) for
information extraction25, and relation extraction26), in this article, we use
extractive question-answering (extractive QA) task to automatically extract
information related to IDU from clinical notes in EHRs. To avoid redun-
dancy, for the rest of the paper, we use QA in place of extractive QA. In this
QA task, given a query and a clinical note, a QA model would return the
relevant answer verbatim from the note as the extracted information. Thus,
a QA system is tasked with learning to read and comprehend the clinical
note provided a query and then extract information consisting of con-
secutive words from the notes relevant to the query from that note (Fig. 1).

We use QA to address the information extraction problem for the
following reasons. The texts in the clinical notes are very unstructured in
nature. For example, the information regarding injectiondrug names can be
presented in the notes in multiple forms, such as—opioids: denies recent
use, hx ivdu, claims last use years ago. other drugs: hx methamphetamine
use, has been using daily via injecting since a relapse in December; ivdu
(cocaine/methamphetamine); reports using iv meth; iv cocaine mixed with
heroine use; used meth by iv drug use; or history of daily heroine use, prior
ivdu. Here, ivdu refers to intravenous drug use. Given the demonstrated
success of QA models in extracting information of diverse forms from
clinical notes27, we chose to focus on the QA task in NLP. Moreover, one
potential implementation of this work would be to incorporate the devel-
oped model into a chatbot framework, enabling clinicians to inquire about
IDU behavior in people who inject drugs at the point of care by posing
questions with various syntactic structures. It would help clinicians identify
people who inject drugs and pinpoint related status.

Although not specific to IDU, several studies have focused on identi-
fying clinical concepts or information on substance use disorders (SUD)
using NLP22,28. In these studies, various NLP techniques have been used to
extract SUD-related information. The stemming algorithmhas beenused to
identify words and phrases associatedwithmental illness and substance use
in clinical notes29,30. Dependency structure has been utilized to capture

relationships between phrases and tokens in the substance use statement28.
Word-embedding models have been employed to identify people who use
alcohol and substance use status21. Machine reading comprehension has
been applied to extract some clinical concept categories and relation cate-
gories, such as relations of medications with adverse drug events and
SBDH22.Multi-label text classification and sequence labelinghavebeenused
to identify sentences containing labeled arguments about drug use31. Topic
modeling and keywordmatching techniques have been leveraged to extract
drug use–related information32. Techniques such as active learning33, multi-
label classification34–37, concept extraction, and joint extraction of entities
and relations have been employed to extract information about drug use38.
Researchers have also focused on identifying drug use information by using
NLP-specific techniques to detect opioid use disorder and predict
overdose39–50. In the literature, we came across one research study that has
focused exclusively on IDU. The study has utilized rule-based algorithms,
such as regular expressions (RegEx), NegEx51, and N-grams to search for
very limited IDU-related terms, with the objective of identifying peoplewho
inject drugs (PWIDs)12. In our study, on the other hand, we focus on
extracting a broad spectrum of information on injection drug use from
clinicalnotes.This encompassesdetails such asdrugnames, active/historical
use, frequency of use, risky needle-using behavior, visible signs of IDU, last
use, skin popping, harm reduction interventions, and the existence of IDU.
Since evidence of IDU cannot be found in structured EHR data and
thereforemust be inferred fromclinical notes, this study’s sole focus on IDU
aims to help understand how this phenomenon is represented in unstruc-
tured notes data and augment techniques that have used NLP techniques
less generalizable to this population. To the best of our knowledge, to date,
there has beennopublished attempt at developing aQAalgorithm to extract
IDU-related information from clinical notes.

To solve the QA task, we use transformer-based deep learning
models52,53 that are known to be one of the most streamlined ways to solve
QA tasks and achieve comparable performance in extracting targeted
information from different types of biomedical documents, such as scho-
larly articles52,54, clinical practice guidelines25, electronic medical records27,
etc. Nonetheless, evidence suggests that supervised deep learning models
require high-quality and large-scale annotated datasets to achieve good
performance in any task53,55,56, and the absence of such a dataset for our
targeted QA task poses a critical challenge. An annotated QA dataset
comprises data samples, with each sample containing a context (e.g., a
clinical note), a question, andananswer extracted verbatim fromthe context
(i.e., the extracted information). In addressing the challenge posed by the
limited availability of annotated QA data for constructing an effective QA
model, our study takes a two-fold approach. First, we built a high-quality
gold-standard QA dataset in collaboration with a subject matter expert
(SME), facilitating model training and testing. The dataset includes clinical
notes as contexts and question-answer pairs specific to IDU. Then, using
this meticulously curated gold-standard dataset, we dive into the primary
objective of this study—develop and assess the QA system for IDU-related
information extraction from clinical notes. We also perform an error ana-
lysis to identify the strengths and weaknesses of our QA system, providing
valuable insights to guide future research endeavors. The QA model
achieves noteworthy performance, demonstrated by the F1 score of 51.65%
for a strict match between gold-standard and predicted answers, as well as

Fig. 1 | A sample clinical note featuring questions
about the IDU behavior in people who inject
drugs, with extracted IDU-related information
color-coded in the note. pt patient, IDU injection
drug use, iv intravenous.

Pt X, 65 yrs old . . . has recent history of IDU . . . last used iv drugs today . . . h/o daily IDU . . . used iv heroin . . . pt 

has old track marks on his left arm. . . hx drug use via skin popping . . . confirmed that never shared needles with 

others . . . pt participated in clean syringe program. . .

Is the pt actively 

using iv drugs?

When did the pt 

last use iv drugs?

Does the pt have any 

visible signs of IDU?

Does the pt have any 

history of skin popping?

Has there been any risky needle-

using behaviors observed in pt?

Has the pt received any harm 

reduction interventions specific 

to IDU behaviors?

How frequently has 

the pt used iv drugs?

Which iv drugs 

has the pt used?
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F1, Precision, andRecall scores of 78.03%, 85.38%, and 79.02%, respectively,
for a relaxed match. These findings hold promising implications for the
precise and efficient identification of injection drug use, enabling the
extraction of relevant information from clinical notes.

Methods
In this section, we elaborate on the formulation of this study and its two
components: (i) Gold-standard dataset generation and (ii) modeling
(Fig. 2). Furthermore, we outline the specifications of the gold-standard
dataset, the experimental setup and the metrics used to assess the perfor-
mance of the QA models.

Problem formulation
We formulate the information extraction task as a QA problem in NLP in
the following manner: Given a question on patients’ behavior about IDU
and a clinical note with IDU-related information (i.e., the context), a QA
system retrieves the relevant information (i.e., the answer) from the
provided note.

For example, given the question—does the patient have a history of
IDU?—and the clinical note—pt X, 200 yrs old … he has a history of
smoking with 50 pack years, quit 10 years ago… social ethanol user… no
history of idu… remote history of marijuana use… family hx:… physical
exam:… provider: name.—the QA system is expected to return the answer
—no history of idu—verbatim from the note.

Gold-standard dataset generation
QA is a supervised NLP learning task and, as such, requires an annotated
gold-standard dataset for model development and inference. In a QA

dataset, each sample consists of the context, a question, and an answer, with
the question-answer pairs serving as annotations. To generate a gold-
standarddataset fromclinical notes, which serve as the context, we employ a
three-stage process outlined in Fig. 2: (1) question collection, (2) note
enrichment, and (3) gold-standard answer extraction.

Question collection. We initialize the process of question collection for
the dataset by asking SMEs about the kind of information on IDU they
are interested in from the clinical notes. We then generate a set of
questions based on their interest. Table 1 shows the nine categories of
interest. In the rest of the paper, we use the term Query Group to imply
categories of interest. Table 1 also provides sample questions and answers
for each query group.

Each query group targets to extract one category of information from
the notes pertaining to that group. For example, the query group—drug
names—targets to extract any information about IV drug names from the
notes. In our gold-standard dataset, we include multiple variations of
questions for each query group. For example, for the query group—drug
names, we have five different variations of questions as follows: To what IV
drugs has the patient has been exposed?,Which IV drugs have the pt used?,
Which intravenous drugs has the patient used?, Which injection drugs?,
Which illicit drugs has the patient injected?.

We do this for the following reasons. We anticipate our system to be
used as a standalone application—a more user-friendly QA tool to collect
IDU evidence—and to be capable of handling different variations of ques-
tions posed by clinicians. Furthermore, we hope that different variations of
questions for each query group will help increase the QA model’s user-
flexibility, comprehensiveness, and robustness, ultimately enhancing its

Fig. 2 | Framework for a two-part study for
extracting information on IDUbehavior in people
who inject drugs from clinical notes. The first part
consists of gold-standard dataset generation in three
primary steps, and the second part consists of QA
model development from implementation to infer-
ence. SMEs subject–matter experts, IDU injection
drug use, QA question–answering.

Build gold-standard dataset in three steps

70-10-20 train-validation-

test split based on patients 

(avoid data leakage)

Model testing

Compile

Gold-standard dataset generation Modeling

Clinical 

Notes

Model training

Implement model for 

Question-Answering

Question collection:
� Collect a set of questions from SMEs

Gold-standard answer extraction:
� Extract snippets from notes using IDU-

related keywords/phrases and parsing rules

Note enrichment:
� Clean notes to enhance readability

Manual review/ 

correction of the 

QA pairs

Table 1 | Types of information about IDU that aremost likely to be inquired by clinicians from the clinical notes, categorized into
nine query groups

Query Groups Sample Question→ Sample Answer

Drug names Which iv drugs has the patient used?→ hx of iv heroin abuse, cocaine, and bnz

Visible signs of IDU Does the patient have any needle track marks?→ track marks noted over bilateral upper extremities

Risky needle-using behavior Has the patient ever shared needles?→ hx of ivdu, has shared needles in the past few weeks

Active/historical use Is the patient actively using iv drugs?→ h/o active iv drug use

Frequency of use How frequently has the patient used iv drug?→ history of ivdu (reports daily use of heroin)

Last use When did the patient last use iv drugs?→ daily use of iv heroin with last use 4 days prior to admission

Skin popping Does the patient have any history of skin popping?→ diffuse scarring from skin popping on lower extremities

Harm reduction interventions Has the patient been counseled on safe injection techniques?→ discussed the importance of using clean needles with patient should he
continue to inject drugs

Existence of IDU Does the patient have any history of IDU?→ no ivdu or h/o sharing needles

IDU injection drug use, ivdu intravenous drug use, bnz benzodiazepines, h/o history of.
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performance in real-world applications, as follows: (i) Users may pose
questions in different ways based on their preferences or understanding. A
QA model trained with diverse question variations is more adaptable and
capable of accommodating the linguistic diversity inherent in user queries.
(ii) Including variations of questions during training helps the QA model
becomemore robust by exposing it to diverseways the samequestion can be
asked, preparing the model to handle real-world scenarios where questions
may be phrased differently but still seek the same information. (iii) Varia-
tions of questions during training enable the QA model to generalize its
understanding. Instead of memorizing specific phrasings, the model learns
the underlying patterns and associations between questions and answers,
improving its ability to respond accurately to novel queries.

We use abbreviations, synonyms, and syntactical variations to intro-
duce variations in the questions for each query group, as follows: (i)
abbreviations: Is the patient actively using intravenous drugs?→ Is the pt
actively using intravenous drugs?, Is the patient actively using intravenous
drugs?→ Is the patient actively using iv drugs?. (ii) synonyms: Does the pt
have a history of using intravenous drugs?→Does the pt have a history of
using injection drugs?, Does the pt have a history of IDU?→Does the pt
have a history of IVDU?. (iii) syntactical variations: Which iv drugs has the
patient used?→To which iv drugs has the patient been exposed?, Does the
pt have a history of IVDU?→Has the pt ever used IV drugs?

It should be noted that when identifying abbreviations and synonyms
to be used in questions, we only choose terms and variants that clinicians
commonly use. Examples of these terms and variants include patient and pt,
intravenous and iv, history and hx, and IVDUand IDU.And, to ensure that
wewere able to accurately capture the nuances of possible language usage in
the questions with regard to syntactical variations, we sought the guidance
of SMEs.

Note enrichment. The contexts in the gold-standard dataset are clinical
notes that contain some IDU-related information. As such, we select a
cohort of patients whose notes have a higher chance of containing IDU-
related information, such as patients who have been diagnosed with
Hepatitis C. To guarantee that the clinical notes include information
relevant to IDU and narrow down the notes accordingly, we use a list of
keywords/phrases that are indicative of IDU (refer to Table 2) and has
been developed by SMEs. SMEs followed an iterative approach to create
this list. They began by compiling a list of common terms related to IDU,
which they then refined by reviewing the associated snippet. They
removed terms that caused excessive noise, such as—slamming and drug
paraphernalia—and added terms like—skin popping—to enhance
granularity. The experts received extensive training to sort and/or define
the snippet categories, and they validated the terms to ensure their
accuracy.

For our study, we assumed that the presence of any of these IDU-
related keywords indicates the presence of relevant information pertaining
to IDU in the note. Hence, we discard the notes that do not contain any of
the words/phrases provided in Table 2, suggesting the possible non-
existence of any IDU-related information in that note. As shown in Table 2,

this list can be categorized into the following groups: IV drug names, visible
signs of IDU, risky needle-using behavior, skin popping, harm reduction
interventions, and generic IDU terms.

To enhance the readability of clinical notes and make them more
suitable for automated processing, we conduct rigorousmanual exploration
of the final set of notes, identifying some common patterns that can help
clean them using RegEx. It is important to note that to preserve crucial
information in the clinical notes, we perform minimal data cleaning, as
follows: (i) Remove newlines followingwithin-sentence punctuationmarks,
such as commas, semicolons, or colons. For instance, removing the newline
(\n) highlighted in the sentence—Veteran reported using iv meth,\n iv
cocaine, and etoh. (ii) Remove newlines appearing before punctuation
marks, such as period, comma, or semicolon. For example, removing the
newline (\n)highlighted in the sentence—Veteran reportedusing ivmeth, iv
cocaine, and etoh\n. (iii) Removenewlinespositionedbetweenwordswithin
the same sentence. For example, removing the newline (\n) highlighted in
the sentence—Veteran reported\n using iv meth, iv cocaine, and etoh.
(iv)Consolidatemultiple consecutive occurrences of newlines, white spaces,
or punctuations into single instances. For example, replacing multiple
periods with a single period in the sentence—Veteran reported using iv
meth, iv cocaine, and etoh.............. We perform these steps to clean all the
notes used for training, validation, and testing.

Gold-standard answer extraction. The next step in our dataset gen-
eration process is to extract gold-standard answers (i.e., information
related to IDU) from the clinical notes. Clinical notes are inherently
lengthy, and manually extracting the gold-standard answers from them
requires a substantial amount of time, rendering the process unfeasible.
Therefore, we devise a pre-annotation strategy involving an automated
step-by-step answer extraction process that integrates rule-based NLP
techniques. The primary objective of this phase is to substantially reduce
the manual annotation/review effort. Nevertheless, to ensure the utmost
quality of the gold-standard dataset, the outputs from this pre-annotation
phase, along with the associated questions, underwent subsequent
manual review and correction by a subject-matter expert with a Ph.D. in
Psychology and an extensive background in substance use disorder,
counseling, and treatment. Our pre-annotation strategy is based on three
assumptions:

Assumption 1. Our QA task only tackles information extraction (i.e.,
answeringquestions) fromone single place (a sentence) in thenote at a time.

Assumption 2. The inquired information can be found in a single sentence
in the note. This assumption stems fromour rigorousmanual explorationof
the notes during the note enrichment step, where we find RegEx patterns.
Our observation indicates that, in most instances, a single sentence per
question suffices to capture the relevant answer. Nonetheless, we
acknowledge that this straightforward sentence selection process may not
always be optimal. Unstructured clinical notes often deviate from gram-
matical rules. Additionally, information presentation in these notes may

Table 2 | A list of IDU keywords/phrases provided by SMEs

Keyword Groups Keywords/phrases

IV drug names iv/intravenous/inject(s/ed) heroin/meth/cocaine/crack, speedball

Visible signs of IDU track marks, skin popping

Risky needle-using behavior sharing/shared/dirty needle

Skin popping skin popping

Harm reductioninterventions community/clean/safe syringe service/program, ssp, ris4e, counseled on safe(r) injection, safe injection technique

Generic IDU terms ivdu, idu, ivda, iv/intravenous/injection drug use/abuse, inject/injected drug, drug(s) by injection, iv/intravenous drug injector/injection, illicit
iv/intravenous drug, iv/intravenous drug paraphernalia, suspect injecting, pwid

IDU injection drug use, ivdu intravenous drug use, ssp syringe services programs, ivda intravenous drug abuse, ris4e resists infection by sterile syringe safe sex and education, PWID people who
inject drugs.
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vary, adopting styles such as questionnaires or bulleted lists. As a result, a
single sentence in the traditional sense occasionally leads to either a larger
text segment or a fragmented part of a single piece of information. These
instances lead to the inclusion of irrelevant or incomplete information in the
answers, and we address and rectify these issues during our manual
review phase.

Assumption 3. If the note contains IDU-related information in multiple
locations, each is considered a separate answer string. Furthermore,multiple
answer strings from the same note are expected to contain different kinds of
information that should be answered by different questions. For example, in
the note snippet—pt has a history of smoking with 50 pack years, quit 10
years ago … social ethanol user … has h/o ivdu … remote history of
marijuana use… last used iv meth 2 years ago…—there are two locations
where IDU-related information can be found—has h/o ivdu and last used iv
drugs 2 years ago. In such cases, we consider them as separate answers that
are retrieved when asked the following questions: Does the pt have a history
of IDU? and When did the pt last use IV drugs?.

Given clinical notes, we extract the automated gold-standard answers
using rule-based NLP techniques as follows:

Step 1: Tokenize the sentences in the notes. Here, we define a sentence in
the traditional sense, ending with a period. Therefore, for the sentence
tokenization, we use periods to indicate the end-of-sentence.
Step 2: Identify sentences that contain any of the IDU keywords from
Table 2 using regular expression string matching and discard the rest.
Step 3: At this point, the sentences containing the IDU keywords can be
ideally considered gold-standard answers (i.e., extracted information
relevant to IDU). Nonetheless, our primary aim is to extract IDU-related
information from the notes, but we also want the extracted information
to be as precise as possible containing lesser nonessential information. A
full-sentence answer is most likely to include nonessential information,
which canbe further reducedbyusing parsing rules. Parsing rules refer to
NLP techniques that can identify specific patterns of text within a string
that represent the concepts of interest while ignoring the remaining text.
An example of removing nonessential information from the answer can
be transforming the sentence—social history: pt lives with family in
[location], quit smoking 10 y ago, occ etoh, .... hxmethamphetamine use,
has been using daily via injecting since a relapse in December.—into the
phrase—hx methamphetamine use, has been using daily via injecting
since a relapse in December.

To create the parsing rules in this study, we randomly sample a set of
sentences and focus on identifying specific phrases that occur together
before or after the IDUkeywords andmodify or provide information that is
crucial to the IDU-related history of the patient (refer to Table 1). These
phrases can be adjacent to or distant from the keywords. For example, pt
lives with family, denies ivdu—versus—pt lives with family, denies any
tobacco, etoh or ivdu In this example, the phrase—denies—provides crucial
information on the IDU behavior of the patient.

In Supplementary Table 1, we provide a detailed list of these phrases
alongwith the targetedpattern type, parsing rules, and examples of how they
help reduce the nonessential information from the answers. The parsing
rules mainly focus on identifying patterns stating negative IDU mentions,
temporal information, opioid use disorder specific to IDU, and status of
track marks.

Although these parsing rules can extract the correct concise gold-
standard answers from the clinical notes in numerous cases, manual review
reveals instances where the rules failed to accurately identify these answers.
This discrepancy was primarily attributed to the unstructured nature of
information within the notes.

Question-to-answermapping. Finally, to generate the labels (question-
answer pairs) of our gold-standard dataset, we create mappings between
the questions from Section Question collection and the gold-standard
answers from Section Gold-standard answer extraction. We achieve this

by considering the query groups in Table 1. For each query group, we
identify a group of words in the gold-standard answers that are most
likely to provide the information inquired by that query group. To
compile this group of words, we engage in meticulous manual explora-
tion, reading sentences containing IDU keywords. Depending on the
kind of information we are interested in (reflected by the query groups),
these words can be either the keywords in Table 2 or the words (Sup-
plementary Table 1) that co-occur with the keywords and can help
convey the information inquired by the user. For example, co-occurring
words—daily and last—describe the frequency of use and the last use of
IDU, respectively.

Thus, for each query group, we decide on a group of words that are
most likely to help convey the inquired information and map the answers
that contain these words to the questions in that query group (Table 1). The
resulting compilation is presented in the—Words in Gold-standard
Answers Most Likely to Provide Inquired Information—column of Sup-
plementary Table 2. It is important to note, however, that this list is not
exhaustive and represents onlywhat we observe during our exploration, not
an all-encompassing collection of potential phrases indicating the inquired
information. Considering this, in our manual review phase, we manually
correct annotations that are overlooked or mislabeled by these rules.

In SupplementaryTable 2, we present themappings between the query
groups and the words in gold-standard answers that are most likely to
provide inquired information. We also demonstrate sample answers for
eachmapping.Note that the answers in one query group and the answers in
a different query may not be mutually exclusive. This is because if we find
words in an answer that belong tomultiple query groups, then that answer is
mapped to all questions from these query groups. For example, the first
sample answer from Supplementary Table 2—recent ivdu with meth and
heroin—contains the words—recent and heroin/meth—fromquery groups
active/historical use anddrugnames, respectively.Hence, this answerwill be
mapped to all questions in these two query groups.

The well-known ConText rules57 in the literature use a similar rule-
based approach to identify the negation or temporality of a condition. They
used a specific set of words tailored to the types of notes used in their study.
On the contrary, although the words utilized in our study share some
commonalities, they exhibit notable differences from those employed in the
ConText algorithm. This distinction arises from variations in the notes used
inour experiments and the specific informationwe target to extract from the
notes. Our study exclusively focuses on injection drug use. In contrast, the
error analysis of ConText indicates its unsatisfactory performance in
identifying temporality related to chronic conditions and risk factors, i.e.,
alcohol, and drugs in clinical notes. Additionally, while ConText explicitly
identifies historical versus recent conditions, our question-answering sys-
tem concentrates on extracting any temporal information regarding injec-
tion drug use, leaving the determination of whether the status is recent or
historical to clinicians.

Regarding the query group—last use, it is crucial to note that a patient
may havemultiple note entries, eachwith its own last use.Given our study’s
emphasis on extracting information from one clinical note at a time, the
definition of—last use—is confined to—last use per note.

After generating the labels (i.e., question-answer pairs), we manually
review the whole dataset in collaboration with a subject-matter expert to
ensure that our gold-standard dataset is of high quality and accuracy.

Modeling with question–answering system
In the next step of our study, we develop the QAmodel for extracting IDU-
related information using the gold-standardQAdataset fromSectionGold-
standard dataset generation.We use Bidirectional Encoder Representations
from Transformers (BERT)53-based deep learning QA models where the
feature extractor is a trainable pre-trainedBERT-based languagemodel, and
the QA task layer is a single-layer feed-forward neural network.

We experiment with four state-of-the-art pre-trained languagemodels
—BERT53, BioBERT52, BlueBERT58, and ClinicalBERT59—as trainable fea-
ture extractors and develop four QA models.
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Provided a sequence of tokens (words or pieces of words) in a question
and a clinical note, the QA model returns the start and end token of the
answer span. Any text between the start and end tokens included is then
considered as the answer (i.e., the extracted information). Togetherwith the
question and the note, the maximum allowable number of input tokens in
these BERT-basedQAmodels is 512. Tohandle sampleswith longer clinical
notes, we follow a widely known technique in QA modeling—sliding
window with a document stride53.

Below we provide a brief description of this technique: Given an input
question consisting of 20 tokens, the remaining allowable number of input
tokens for the note is limited to 492 (which is 512minus the 20 tokens in the
question). If the note exceeds this limit, we employ a sliding window
technique to split it into multiple chunks using a document stride of 128
tokens. The document stride determines the starting token of each sub-
sequent chunk. After this preprocessing step, each chunk prepended with
the original question tokens is considered a separate data sample.

Dataset statistics
We use clinical notes sourced from the VA Corporate Data Warehouse
(CDW) to construct the gold-standard dataset. The clinical notes in the VA
CDW are fully identified. The selected notes correspond to the period of
January 2022 and belong to patients with the Hepatitis C diagnosis. The
identification of Hepatitis C-positive patients is performed using ICD-10
codes.We select the cohort of patientswithHepatitisC as their clinical notes
are more likely to include information related to IDU. As explained in
Section Note enrichment, we narrow down the clinical notes using a list of
keywords/phrases indicative of IDU (refer to Table 2).

To reduce computational overhead during training and because
unusually large notes (determined by the outliers in the distribution of note
lengths) may contain templated nonessential information that is not rele-
vant to any specific patient, we remove some outlier notes based on the
interquartile range of the note lengths. We later show in Section Error
analysis that note length does not affect the performance of themodel at the
time of inference.

We also analyze the types of notes included in this study. Our analysis
reveals that there are 411 different types of notes. Supplementary Fig. 1
displays the 20 most frequently encountered note types in this study.
Notably, internal medicine notes and primary care notes emerge as the two
most prevalent types. We also find that addendum notes rank third in
frequency. Addendum notes serve as supplements to notes of other types.

Supplementary Table 3 shows the statistics of our gold-standard
dataset. Our cohort consists of 1145 patients with a total of 2323 notes that
have an average length of 1013 words. Words are identified based on
whitespace. In addition, we examine the distribution of the query groups
outlined in Table 1 and Supplementary Table 2 within the gold-standard
dataset. This analysis is illustrated by the pie chart depicted in Supple-
mentary Fig. 2. The dataset is dominated by QA pairs related to active/
historical use, as demonstrated. Following closely behind areQApairs about
the existence of IDUanddrugnames,whereas the least frequentQApairs in
the dataset are those pertaining to skin-popping and harm reduction
interventions.

Ethics: This project was conducted as a national quality improvement
effort to improve care for Veterans with substance use being treated in the
Veterans Health Administration (VHA). Models were designed to be
implemented intoVHAdecision support systems and arenot expected to be
generalizable or valid for application outside of notes from the VHA
Computerized Patient Record System (CPRS). As such, this work is con-
sidered non-research by VHA (as per ProgramGuide-1200-21-VHA-
Operations-Activities.pdf (va.gov)). However, Oak Ridge National
Laboratory (ORNL) required additional oversight of this VHA clinical
quality improvement project as local standard practice for all uses of patient
medical record data within their institution, with approval of the project by
the Oak Ridge National Laboratory IRB. The need for the veterans whose
medical records were used in the study to give informed consent for the
study was waived by the ORNL IRB.

Experimental setup
For experimentation, we divide our gold-standard dataset into train, vali-
dation, and test sets using a 70-10-20 split based on patients to avoid any
data leakage. To implement the QA models, we use PyTorch60. We use the
pre-trained language models from the huggingface API61.

Based on the statistics of our gold-standard dataset, we choose 512 as
themaximumsequence length, 20 as thequery length, and100as the answer
length. After reviewing the hyperparameters utilized in various QA tasks as
outlined in25,52,53,58,62–67, we set the document stride to 128 and opted for a
batch size of 32, a learning rate of 3e−5, anda training epoch countof 5 for the
training configurations. We performed all experiments using a single GPU
on a Linux virtual machine with two GRID V100-32C GPUs.

Metrics
To assess the performance of QA models in extracting IDU-related infor-
mation, we utilize strict matching criteria to compute the F1 score68. It
involves verifying if the prediction precisely matches the gold-standard
answer character by character, resulting in a strict F1 score per sample that
can be either 1 or 0. Additionally, we use relaxed matching criteria to
measure the F1, precision, and recall scores68. A relaxedmatch determines if
there is any overlap between the prediction and the gold-standard answer.
The recall or sensitivity score per sample reveals the proportion of words in
the gold-standard answer that is identified correctly in the predicted answer.
Precision or positive predictive value (PPV) score per sample informs us
about the proportion of words in the predicted answer that are actually
correct. In the context of QA problem, when calculating these metrics, true
positive refers to the count of tokens that both the predicted answer and the
gold-standard answer share, false positive represents the number of tokens
found solely in thepredictedanswer, and falsenegative indicates thenumber
of tokens only in the gold-standard answer andnot in thepredicted one.The
relaxed F1, precision, or recall scores per sample can range from 0 to 1.
Following55, we report the macro-averaged F1 score, accompanied by
macro-averaged precision and recall scores on the test sets.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results and discussion
In this section,we report anddiscuss thefindings from the experimentswith
QA models. Furthermore, we conduct a comprehensive error analysis to
demonstrate the capabilities and limitations of the QAmodels in extracting
information related to IDU from clinical notes.

Results on gold-standard test set
This section focuses on examining the experimental outcomes of the QA
models and demonstrates their performance on the test set of our gold-
standard dataset. As shown in Table 3, ClinicalBERT outperforms other
BERT-based QAmodels. A strict F1 score of 52% for ClinicalBERT implies
that the QA model can extract IDU-related information 52% of the time
with a strict match to the gold-standard answers. A relaxed recall score of
79% on the test set suggests that overall there is a substantial degree of word
overlap between the predicted answers and gold-standard answers. We
further analyze the recall score in Section Analysis of recall score. On the
other hand, a relaxed precision score of 85% in the test set indicates that a
higher percentage of terms retrieved as answers by the QA model are
included in the gold-standard answers. A relaxed F1 score of 78% indicates
that the ClinicalBERT model can extract a high percentage of correct
information while achieving high precision in those extracted answers.

Temporal out-of-distribution testing
The writing style of clinical notes may change over time because of changes
in clinicians, health care facilities, patients, etc.69. Given the purpose of our
QAmodel, it is imperative to examine whether the performance of our QA
models is retainedover time. Therefore, we performadditional testing of the
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models from Table 3 on unseen data. We examine the QA models’ short-
termand long-term information extraction capabilities by testing on clinical
notes from two additional cohorts. For testing the short-term capability, we
randomly select 100 patients and use their notes from February 2022.
Similarly, for testing the longer-term capability, we randomly select 100
patients and use their notes fromNovember 2022. Due to the limitations in
our data availability at the time of this study, we were unable to include
clinical notes beyond November 2022 for testing the longer-term infor-
mation extraction capability of the QAmodels. In future endeavors, we aim
to assess the performance of QA models on more recent notes as part of
ongoing research.

To avoid data leakage, we use patients and their notes that did not
appear in the gold-standard dataset generated by using notes from January
2022. We use the method described in Section Gold-standard dataset
generation for building the test datasets using these notes. Similar to the
gold-standard dataset, we manually review these test datasets in colla-
boration with a subject-matter expert. For the rest of the paper, we use the
terms Cohort-Short and Cohort-Long to represent temporally out-of-
distribution notes in February and November, respectively. Supplementary
Table 4 shows the statistics of the test datasets built using Cohort-Short and
Cohort-Long. We also show the distribution of query groups in these test
datasets in Supplementary Fig. 3. As shown, the distribution of the query
groups is similar for the additional test sets and our original gold-standard
dataset (refer to Supplementary Fig. 2).

Table 4 shows the performance of the QAmodels. As shown, for both
test datasets, the ClinicalBERT model performs with overall high scores,
reflecting its competence in extracting information over time.

Error analysis
In this section, we provide a comprehensive analysis of the strengths and
weaknesses of our best-performing model, which is the ClinicalBERT QA
model, in extracting IDU-related information. We perform a fivefold ana-
lysis as follows: Examine the (i) confidence intervals of the performance
scores, the effect of (ii) note length, (iii) question length, and (iv) gold-
standard answer length on the performance of the QA model, and (v) the
performance of the QA model for each query group. Furthermore, by
analyzing the recall scores, we showcase the proficiency of the QAmodel in
retrieving IDU-related information. For our error analysis, we consider all
three of our test sets—the test set in our gold-standard dataset and the test
datasets from Cohort-Short and Cohort-Long.

Confidence intervals of performance scores. We calculate the con-
fidence intervals (CI) for strict F1 score and relaxed F1, precision, and
recall scores achieved by the best-performingQAmodel to represent how
good these estimates are and thus quantify their uncertainty. Smaller
confidence intervals demonstrated in Table 5 indicate that our estimates
are precise with a high level (95%) of confidence.

Effect ofnote length. Clinical notes have varying lengths—they can be as
short as 30 words up to as long as 5747 words, based on the statistics of
our test datasets. Therefore, we want the QA model to perform con-
sistently well for all lengths of clinical notes. To identify the effect of note
length on the QA model’s performance, we calculate the length of the

contexts (i.e., notes) in the three test sets and bin them into four quartiles
based on their ascending lengths. Supplementary Data 1 and the x-axis in
Fig. 3a show the length range of these bins, whereas the green bars with
the right y-axis show the sample count for each bin. We find that note
length does not have any notable effect on the model’s performance
scores, demonstrated in Supplementary Data 1 and on the left y-axis
of Fig. 3a.

Effect of question length. We also examine the effect of question length
on the performance of theQAmodel. For this analysis, we adopt the same
binning approach as the one on note length. Figure 3b and Supple-
mentaryData 1 show that, similar to note length, question length also has
no effect on the model’s performance scores.

Effect of gold-standardanswer length. In our test sets, we have varying
lengths for the gold-standard answers (i.e., extracted information). For
successful implementation, it is essential for the QA model to be able to
extract different lengths of information from the clinical notes. Using the
binning approach described earlier for the analysis on note length, we
find that the QAmodel struggles to extract longer gold-standard answers
with a strict match—demonstrated by the strict F1 score in Fig. 3c and
Supplementary Data 1. Nevertheless, higher relaxed metric scores
demonstrated by the QA model indicate its capability to identify the
location of the correct answers. To improve the QA model’s proficiency
in extracting longer answers with a strict match, additional research is
required.

Performance for query groups. Based on the information we are
interested in extracting from the clinical notes, we create nine query
groups, as shown in Table 1. Supplementary Data 1 and the green bars
along with the right y-axis in Fig. 3d show the sample count (in log scale)
for the query groups in the test sets. The query group active/historical use
dominates the datasets, followed by the query group existence of IDU and
drug names. Interestingly, wefind that themodel performs the best on the
query group visible signs of IDU and existence of IDU. Presumably, the
query group visible signs of IDU has an overall higher performance
despite having the third lowest sample count in the test sets and fifth
lowest sample count in the gold-standard dataset because the informa-
tion queried by this query group usually has some consistent terms in
them such as track marks or needle track marks along with some other
limited relevant information, for example, fresh track marks on his
forearms. We hypothesize that the information extracted by this query

Table 4 | Performance scores of the QA models on the addi-
tional test datasets built using Cohort-Short and Cohort-Long

Model Test dataset (Cohort-Short)

Strict match Relaxed match

F1 F1 Precision Recall

BERT 47.10 74.14 77.32 76.97

BioBERT 46.95 74.25 77.36 79.12

BlueBERT 41.76 71.71 76.47 76.18

ClinicalBERT 55.31 76.12 81.34 76.63

Model Test dataset (Cohort-Long)

Strict match Relaxed match

F1 F1 Precision Recall

BERT 48.38 74.38 79.57 78.99

BioBERT 50.63 73.89 84.44 74.15

BlueBERT 51.53 73.46 81.17 78.52

ClinicalBERT 53.42 75.16 81.32 80.20

*The bold font highlights the best scores.

Table 3 | Performance scores of QA models on the test set

Model Strict match Relaxed match

F1 F1 Precision Recall

BERT 48.10 75.88 81.57 78.82

BioBERT 46.49 74.99 81.09 76.74

BlueBERT 43.03 71.21 79.14 73.77

ClinicalBERT 51.65 78.03 85.38 79.02

*The bold font highlights the best scores.
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group may be easier for the QAmodel to comprehend. However, further
evaluation of the QA model is necessary to corroborate this hypothesis.
Figure 3d also shows that theQAmodel struggles themost with the group
harm reduction interventions. It may happen because harm reduction
interventions have the least number of samples in the gold-standard
dataset, possibly causing difficulty for the model to learn from training
samples. It also has the least number of samples in the test sets to obtain a
comprehensive overview of the model’s performance.

Analysis of recall score. In this part of the discussion, we analyze the
recall scores of the QA model to shed light on its overall capability to
extract gold-standard answers. In cases where the strict F1 score for the
predicted answer is 0, the recall score can demonstrate the overlap
between the gold-standard and predicted answers. For the test set in our
gold-standard dataset, our QA model achieved a strict F1 score of

approximately 52%. For the remaining 48%, we examine the recall scores
by binning them into 12 intervals (shown in Table 6). We also perform
similar analyses for cohort-short and cohort-long. As indicated in
Table 6, 14% of the predictions for the gold-standard test set, although
lacking a strict match, exhibit a 100 Similarly, for Cohort-Short and
Cohort-Long, respectively, 7% and 15% of the predicted answers have a
100% overlap with the gold-standard answers while not having a strict
match. One potential issue while considering 100% overlap without a
strict match is the predicted answer being the entire context. To address
this concern, we compare the ratio of the predicted answers (that do not
have a strict F1 score of 1) to the contexts with the ratio of the gold-
standard answers to the contexts. Figure 4 and Supplementary Data 2
show that the distribution of the percentage ratios of the predicted
answers to the contexts is similar to that of the gold-standard answers to
the contexts.

Table 5 | Performance scores (with 95% confidence intervals) of the best-performing ClinicalBERT QAmodel on the test set in
the gold-standard dataset and test datasets from cohort-short and cohort-long

Model Strict match Relaxed match

F1 (95% CI) F1 (95% CI) Precision (95% CI) Recall (95% CI)

Gold-standard 51.65 (49.92–53.39) 78.03 (76.99–79.08) 85.38 (84.40–86.37) 79.02 (77.89–80.15)

Cohort-Short 55.31 (53.10–57.10) 76.12 (74.75–77.48) 81.34 (80.01–82.67) 76.63 (75.19–78.06)

Cohort-Long 53.42 (50.45–56.35) 75.16 (73.29–77.03) 81.32 (79.50–83.14) 80.20 (78.28–82.12)

Fig. 3 | Error analysis of the QAmodel. Blue bars refer to the sample count. Effect of context (note) length (a), question length (b), and gold-standard answer length (c) on
QA model’s performance. d Performance of QA model for each query group. IDU injection drug use.
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Examples of predicted answers. We demonstrate the capability of the
QAmodel by showing some randomly selected examples of the predicted
answers along with the questions and gold-standard answers in Sup-
plementary Table 5.

Analysis of model’s capability to identify whether a note contains
IDU-related information or not. Our study focuses on extracting IDU-
related information from clinical notes, but ideally, we also want our QA
model to identify whether the note contains IDU-related information or
not. As such, as an additional analysis, we examine theQAmodel’s ability
to identify clinical notes that do not contain any mention of IDU key-
words (Table 2) and, as such, are assumed to have no information about
IDU.We hypothesize that given a clinical note with nomentions of IDU,
theQAmodel should return an empty string because it could not find the
information it was asked to retrieve.

To test this, we use patients from the test set in the gold-standard
dataset. Recall that in our context processing step in Section Note enrich-
ment, we remove notes that do not contain any IDU keywords. For this
analysis, we incorporate 443 notes from 226 patients with no mentions of
IDU keywords. We ensure that the notes only belong to the patients in the
test set.

To annotate these notes, we use the query group—existence of IDU—
as questions andempty strings as answers. For example, given anotewithno
mentions of IDUand the question—Has the pt ever injecteddrugs?, theQA
model should return an empty string.

To measure the performance, we consider only the strict F1 score.
Thus, if the predicted answer matches with the empty string, we consider
that a success (strict F1 score = 1) and otherwise a failure (strict
F1 score = 0).Wefind that ourQAmodel can identify approximately 88%of
the clinical notes that do not contain any IDU-related information. Inter-
estingly, we find that for 10% of the mispredicted answers, the model
returned the string—empty. Additionally, we observe that the model
returned the string with a single period, constituting the second most fre-
quently mispredicted answer, accounting for 0.5% of the predictions.
Therefore, we can say that while our QA model can extract IDU-related
information from clinical notes, it also has the potential to identify the notes
that do not contain any.

Study limitations
This study has some limitations. First, the QAmodel was trained and tested
on a dataset that had already undergone a fair amount of NLP pre-
processing. Therefore, the model’s performance may be limited when gen-
eralized to raw, source clinical notes. Further evaluation is needed to prove
otherwise. Second, in many cases, we have noticed the use of the terms—
patient denied, or veteran tells me—for IDU-related information in the
clinical notes. TheQAmodel’s capabilities are limited to the text fromwhich
it can extract the pertinent information. Therefore, the QA model must be
implemented with supervision in the clinical setting. Third, our list of IDU
keywords/phrases provided by SMEs to filter notes for generating gold-
standard datasets is not exhaustive. Notably, drug names such as fentanyl or
xylazine are absent from the list. Further assessment is required to measure
theQAmodel’s capability to extract information related to these substances.
Fourth, the datasets used in this study have been manually reviewed by one
reviewer. Including a second reviewer in the manual review process may
ensure more diverse perspectives, reducing the likelihood of individual
biases or errors.

Conclusion
Detection of injection drug use (IDU) behavior among patients is crucial for
informed patient care. In this paper, we tackle the challenging task of IDU-
related information extraction from clinical notes. We build a QA system
that takes in a clinical note and an end-user query on IDU and returns the
information on IDU extracted from the note. We hope to potentially
integrate the QA model from this study into a user-friendly chatbot fra-
mework, enabling clinicians to inquire about information related to nine
categories, as identified in this study, with a view to collecting IDU evidence
through an interactive platform. We evaluate our QA system on a gold-
standard dataset built using clinical notes from VA CDW and a combina-
tion ofmanual exploration, rule-basedNLP techniques, and subject–matter
expert validation. We also perform an additional evaluation to examine the
capability of our QAmodel to extract information from temporally out-of-
distribution notes. We then investigate the strengths and limitations of the
QAmodel and identify potential avenues for future research by performing
rigorous error analysis.

We have identified the following next steps for this research: (i)
Examine the QAmodel’s capability to extract information from temporally
out-of-distribution clinical notes by testing themodel onamore recent set of
clinical notes. (ii) Examine/enhance the QA model’s capability to handle
raw clinical noteswithout thedata-cleaning steps. (iii) Examine/enhance the
QA model’s capability to extract information on illicit injection drugs that
are not covered in this study, for example, xylazine. (iv) The extractive QA
problem may benefit from the named entity recognition (NER) task70,71.
Subsequent research could explore the integration of NER into the QA task
for further investigation. (v) Expand the applications of QA tasks to extract
other types of information fromclinical notes, suchas information related to
alcohol use disorder and substance use disorder.

This method can support the accurate and efficient identification of
people who inject drugs and relevant information extraction using their
clinical notes to facilitate harm-reduction interventions and care.

Table 6 | Analysis of recall scores for cases where the
predicted answers do not have a strict match with the
gold-standard answer

Recall (%) Sample count (%)

Gold-standard Cohort-Short Cohort-Long

(99–100] 13.76 6.65 15.32

(90–99] 0.65 0 0.45

(80–90] 2.23 0.6 0.54

(70–80] 2.81 2.62 2.43

(60–70] 1.33 3.43 2.7

(50–60] 2.38 1.76 3.87

(40–50] 5.87 3.58 2.61

(30–40] 6 16.07 1.08

(20–30] 3.37 2.87 7.39

(10–20] 4.3 1.91 4.59

(0–10] 2.07 1.56 2.61

0 3.56 3.63 2.97

Fig. 4 |Distributions of the ratios of the predicted answers to the contexts and the
ratios of the gold-standard answers to the contexts across 747 QA samples. This
analysis specifically focuses on cases where the predicted answers exhibit 100%
overlapwith gold-standard answerswithout adhering to strictmatching criteria. The
ratios here are presented in the form of percentages.
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Data availability
The dataset developed for this study is not accessible to the public under
requirements of the Health Insurance Portability and Accountability Act of
1996 and related privacy and security concerns. The underlying electronic
health record data can only be used for improving treatment for patients
receiving services from the Veterans Health Administration (VHA). Those
interested in accessing VHA EHR data extracts curated for this quality
improvement project to replicate and validate findings may contact the
corresponding author regarding access via VHA collaboration. SourceData
for Figs. 3 and 4 are provided in Supplementary Data files 1 and 2,
respectively.

Code availability
The code used to develop the QA models is a modified version of the
publicly available huggingface example for the question-answering task,
which can be found here: https://github.com/huggingface/transformers/
blob/master/examples/legacy/question-answering/run_squad.py. The
modified code is stored in a GitHub72.
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