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Abstract

Background Intraoperative pathology consultation plays a crucial role in tumor surgery. The
ability to accurately and rapidly distinguish tumor from normal tissue can greatly impact
intraoperative surgical oncology management. However, this is dependent on the
availability of a specialized pathologist for a reliable diagnosis. We developed and
prospectively validated an artificial intelligence-based smartphone app capable of
differentiating between pituitary adenoma and normal pituitary gland using stimulated
Raman histology, almost instantly.
Methods The study consisted of three parts. After data collection (part 1) and development
of a deep learning-based smartphone app (part 2), we conducted a prospective study that
included 40 consecutive patients with 194 samples to evaluate the app in real-time in a
surgical setting (part 3). The smartphone app’s sensitivity, specificity, positive predictive
value, andnegativepredictive valuewere evaluatedbycomparing thediagnosis renderedby
the app to the ground-truth diagnosis set by a neuropathologist.
Results The app exhibits a sensitivity of 96.1% (95%CI: 89.9–99.0%), specificity of 92.7%
(95% CI: 74–99.3%), positive predictive value of 98% (95% CI: 92.2–99.8%), and negative
predictive value of 86.4% (95% CI: 66.2–96.8%). An external validation of the smartphone
app on 40 different adenoma tumors and a total of 191 scanned SRH specimens from a
public database shows a sensitivity of 93.7% (95% CI: 89.3–96.7%).
Conclusions The app can be readily expanded and repurposed towork on different types of
tumors and optical images. Rapid recognition of normal versus tumor tissue during surgery
may contribute to improved intraoperative surgical management and oncologic outcomes.
In addition to the accelerated pathological assessments during surgery, this platformcan be
of great benefit in community hospitals and developing countries, where immediate access
to a specialized pathologist during surgery is limited.

Pituitary adenomas, accounting for 10–20% of all intracranial neoplasms,
are the second most common intracranial neoplasm, with a 17% incidence
in autopsy studies of the general population1. The majority of pituitary
adenomas are benign and non-life threatening. While many tumors are
initially observed, surgery is the first-line treatment for tumors

demonstrating large size, fast growth, neurovascular compression, or hor-
mone secretion, with the exception of prolactinomas2. One of the key
principles in pituitary surgery is to maximally preserve normal gland tissue
while resecting tumor. Resection of normal gland tissue can result in con-
siderable hormonal deficiencies3. Distinguishing normal gland from
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Plain language summary

In tumor surgery, precise identification of
abnormal tissue during surgical removal of
the tumor is paramount. Traditional methods
rely on the availability of specialized
pathologists for a reliable diagnosis, which
could be a limitation in many hospitals. Our
study introduces a user-friendly smartphone
app that quickly and precisely diagnoses
pituitary tumors, powered by artificial intelli-
gence (AI), which is the simulation of human
intelligence inmachines for tasks like learning,
reasoning, problem-solving, and decision-
making. Through data collection, app devel-
opment, and validation, our findings demon-
strate that the app can rapidly and accurately
identify tumors in real-time. External valida-
tion further confirmed its effectiveness in
detecting tumor tissue collected from a dif-
ferent source. This AI-driven app could con-
tribute to elevating surgical precision,
particularly in settings lacking immediate
access to specialized pathologists.
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abnormal tumor is especially relevant in surgery for functioning adenomas,
where any residual disease is associatedwith higher recurrence rates andhas
the potential to shorten quantity and quality of life4–6 With gross total
resection rates of only 75% for functioning adenomas, surgeons utilize a
variety of tools, ranging from intraoperative MRI to 3D image guidance, to
improve intraoperative resection rates7,8. Furthermore, a range of patholo-
gies present as a sellar mass, and adenomas can present ectopically within
the sphenoid sinus9. In the case of Cushing’s disease, surgeons often target
very small tumors in the order of a fewmillimeters in diameters, and in the
case ofMRI-negativeCushing’s, the surgeon explores and biopsies the gland
without the benefit of a definitive target identified onMRI imaging10.Hence,
recognition of adenoma pathology is a valuable tool for intraoperative
decision-making11–15. The Raman effect, discovered by Sir Chandrasekhara
Venkata Raman in 1928, is a phenomenon in which light undergoes scat-
tering by molecules, resulting in a change in frequency and wavelength,
earning him the Nobel Prize in Physics in 1930. Stimulated Raman
histology (SRH) is a method of 3D imaging that uses laser spectroscopy to
analyze the chemical composition of samples. This method, described by
Orringer et al.11, is an advancement of a new approach to stimulated Raman
scattering (SRS) microscopy using high-repetition rate picosecond pulse
trains, described by Freudiger et al.12. Unlike traditional hematoxylin &
eosin (H&E) techniques that require freezing, sectioning and staining, SRH
enables imaging of fresh tissue with minimal preparation, making it a
valuable tool for studying raw specimens. SRHwas shown to be comparable
to traditional H&E, with the high contrast of the pink/purple color scheme
similar to traditional stains, particularly in regard to highlighting nuclear
features13,14.

Artificial intelligence (AI) is a field of computer science that trains
computers to perform tasks by observing trends and rules in large
datasets15. AI-based models have been shown to identify abnormalities in
radiographic and pathologic images with accuracy approaching or
exceeding expert physician specialists16–18. In pioneering work, Hollon
et al. showed that SRH coupled with AI can play a major role in intrao-
perative cancer diagnosis18. They showed how SRH images obtained
intraoperatively can be rapidly and accurately classified into different
classes of brain tumors. Here we sought to develop a portable and spe-
cialized AI platform capable of accurately differentiating between pitui-
tary adenoma and normal pituitary gland using SRH images during
surgery. This platform, installed on a smartphone, for example, can then
be used offline to capture a picture of an SRH image, instantly rendering a
diagnosis. This would help guide surgical decision-making by providing
confirmation of diagnosis and distinction between normal gland and
abnormal tumor tissue, and improving the likelihood of a safe and
complete tumor. This tool would have the advantage of being a binary
classifier specialized in accurate tumor margin identification, in addition
to the portability of the device on which it would be installed. This would
also allow the repurposing of the model to different types of histology
images, depending on the local availability of a particular technology or
histology tools.

Expert intraoperative diagnostic interpretation for pituitary surgery is
limited for several reasons. Most importantly, expert neuropathologists are
unevenly distributed both within the United States and globally19. An esti-
mated 40% of neuropathology fellowships in the US are vacant, leaving
many neurosurgical centers without subspecialty expertise20. Additionally,
when available, turnaround times for intraoperative frozen specimens may
require 30minutes or more to complete, with some surgeries requiring
multiple samples during the same procedure to establish tumor-free mar-
gins. Lastly, many AI-based models face computational requirement hur-
dles that limit widespread adoption, especially in developing nations.

In this paper, to the best of our knowledge, we provide a detailed
description of the development of a novel platform that uses a lightweight
convolutional neural network (CNN) to accurately and instantly differ-
entiate between pituitary adenoma and normal pituitary gland using SRH
images. The use of lightweight CNN requires substantially less processing
power and memory and makes it embeddable on a smartphone. We also

describe the results of a prospective validation study conducted at our
institution.

Methods
Patient selection and study design
We performed a prospective study developing and deploying an offline
smartphone-based app using intraoperative SRH to distinguish between
normal pituitary gland and pituitary adenoma. We included consecutive
patients from August 2019 through December 2022 who underwent
endoscopic transsphenoidal surgery to remove a pituitary adenoma at a
single, tertiary referral center, by the same surgeon.We included all patients,
regardless of tumor size, previous operation, or hormone secretory status, to
more closely mimic a real-world environment. Data from this study were
not used for clinical purposes. Our study was conducted in three phases:
Phase 1—data collection; Phase 2—building a deep learning-based smart-
phone app; Phase 3—prospective study to evaluate the smartphone
app (Fig. 1).

We followed the Standards for Reporting Diagnostic Accuracy Studies
(STARD)21 andTransparent Reporting of aMultivariable PredictionModel
for Individual Prognosis or Diagnosis (TRIPOD)22. The study was non-
interventional and purely diagnostic in nature. Furthermore, the results
from our app diagnosis tests did not alter patient care or influence clinical
decision-making.

Phase 1: Image and Dataset Creation
To trainourdeep learningmodel,we collecteda largedataset of bothnormal
pituitary gland and adenoma pathology images using intraoperative SRH
from August 2019 to August 2021. SRH generates a color image by
obtaining spectroscopic measurements at each pixel. (Fig. 2).

The image produced by SRH displays light absorption of CH2 mole-
cular vibrations, found in lipids, and CH3 molecular vibrations, found in
proteins andDNA.The systememploys a highnumerical aperture objective
with 25×magnification and a 0.5mm scan width. The automated stitching
of multiple fields of view allows for the acquisition of larger areas up to
10mm× 10mm. The new SRS approach described by Freudiger et al. uses
high-repetition rate picosecond pulse trains with low peak power12. This
approach allows for more sensitive measurements than in previous reports
and reduces low-frequency noise17,18.

If deemed safe by the attending neurosurgeon, a small intraoperative
sample measuring approximately two to three millimeters in diameter is
removed and placed on a translucent histology slide without any staining,
processing or sectioning. The specimens’ total surface area ranged from 2 to
20mm2 when smeared on the slide. We performed SRH imaging on each
slide using the NIO Laser imaging System by Invenio Imaging Inc (Santa
Clara, CA). Typically, we scanned an area of 2mm× 2mm first to have an
SRH image displayed quickly, but often expanded image size to cover the
whole specimen if applicable. The processing and scanning time for a
2mm× 2mm scan was 2min. After scanning was complete, we fixed the
scanned specimen in formalin and a board-certified neuropathologist
provided a formal diagnosis. The neuropathologists’ final permanent
diagnosis on H&E sections (and any additional immunohistochemistry
ordered by the pathologist) performed on the same specimen used for
intraoperative SRH diagnosis served as the ground-truth label.

To increase thenumberof normalpituitary gland samples,we collected
fresh pituitary glands from the LastWish Program, a rapid autopsy research
program that enables patients at the end of their life to donate their organs
for research at Memorial Sloan Kettering Cancer Center. Immediately
postmortem,wecollectednormalpituitary glands fromwholebodyor tissue
donations. The specimens were used fresh without any processing, as it is
usually done for specimens collectedand scannedduring surgery.Theywere
sliced and scanned using the same SRH technique described above.

After acquiring whole slide SRH images, pre-processing was per-
formed to develop a large database for model building and to adapt the
training image size to the corresponding model. The images were cropped
and cleaned of non-diagnostic areas using a Numpy array slicing method23,
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in Python 3.8. The images were sliced into 299 × 299 pixels patches. The
sliding step for patch creation was 299 pixels horizontally and vertically,
resulting in no overlap between patches. The no-overlap method was pre-
ferred in order to create completely distinct patches for model training,
thereby reducing internalmodel validationbias during the training.All SRH
image patches were then manually checked to confirm labels, and any
regions without visible nuclei were discarded.

Phase 2: CNNmodel creation and smartphone app development
Using our database of pathology images, we built our CNN model using
CoreML, which is Apple’s proprietary machine learning framework that is

designed to interface with Apple smartphones. This model has the advan-
tage of perfect compatibility with iOS interfaces. This allowed us to install a
lightweight CNN into an iOS smartphone. We created our CoreMLmodel
in a Swift framework using Xcode 12.0. We used common data augmen-
tation techniques including rotation and flipping to increase training data.
Themodel’s performance was evaluated using hold-out test dataset with an
80-20 split of the total number of pathology images.

We used a 32 GPU core device with a 16-core Neural Engine Apple
Silicon M1 Max for model building with 64GB of unified memory.

Our smartphoneappwasdesigned toallowusers to take apictureof the
SRH screen, implement the deep learning model, and report a diagnostic

Fig. 2 | Comparison between Hematoxylin & Eosin and Stimulated Raman Histology. A traditional H&E slide is shown on the left A and an SRH image of the same
specimen on the rightB. The specimen was confirmed as a gonadotroph adenoma by formal pathological evaluation and immunohistochemical profile. Scale bar = 100 μm.

Fig. 1 | The Three Phases of the Study.Collection of the images and creation of datasets were performed in Phase 1. The deep learningmodels and the smartphone app were
created in Phase 2. Phase 3 consisted of a prospective study to evaluate the app’s performance in a surgical setting.

https://doi.org/10.1038/s43856-024-00469-z Article

Communications Medicine |            (2024) 4:45 3



certainty in anear-instantaneousmanner.We installed our smartphone app
on an iOS14.1 device (Apple Inc., Cupertino,California,United States)with
a dual 12MP wide camera. Similar to the first model, we tested the model
performance with an 80-20 split from the dataset of pathology images.

Phase 3: Prospective Study
To test our app, we performed a prospective, blinded study to evaluate the
diagnostic accuracy of consecutive suspected pituitary adenomas from
October 2021 through December 2022. The app operator was not provided
with any information or feedback from a pathologist, thus ensuring that the
operator’s observations were independent and unbiased. We scanned the
specimen using SRH as described above. The operator visually scanned
the image for an area with nuclei and took a landscape picture using the
smartphone app, with the device at approximately 20 cm from SRH image
(Fig. 3). Similar to the data collection in Phase 1, the SRH tissue slide was
then fixed in formalin and sent to neuropathology for the permanent
diagnosis, which was considered the ground-truth for that specific
specimen.

For our study, we considered a certainty score above 70%as diagnostic.
We chose this cutoff based on a survey reported byBracamonte et al. among
board-certified pathologists that showed that a “consistent with” diagnosis
by a pathologist corresponded to a certainty of approximately 70%24. Lower
scores were considered non diagnostic, and we repeated the app evaluation.
In all cases, improving the focus and picture quality improved certainty
above 70%.

We further tested ourmodel by running an analysis on the raw images
directly, without using a smartphone or camera.

External validation
For greater confidence in the app, we also performed an external validation
using OpenSRH (https://opensrh.mlins.org) which is the only publicly
available dataset of clinical SRH images sourced from different brain
tumors, including pituitary adenomas25. We downloaded 191 SRH images
originating from 40 cases of pituitary adenomas, then used our smartphone
app for diagnosis based on the entire SRH image with the same technique
used in our Phase 3 study.

Statistical methods
To assess model performance in discriminating between normal pituitary
and abnormal gland, we reported the following metrics: accuracy, F1 score,

precision, and recall. The F1 score is a commonly used metric in binary
classification tasks and is defined as the harmonic mean of precision and
recall. Precision is the ratio of true positive predictions to the total number of
positive predictions,while recall is the ratio of truepositive predictions to the
total number of actual positive samples. The F1 score provides a balance
between precision and recall, and it is particularly useful when the class
distribution is imbalanced. A high F1 score indicates that the model has a
good balance of precision and recall, meaning that it can accurately identify
both positive and negative samples. To assess app performance dis-
criminating between normal pituitary gland and pituitary adenoma, we
reported the following metrics: sensitivity, specificity, positive predictive
value (PPV), and negative predictive value (NPV). Given that our data was
clustered, with some patients having multiple pathology specimens per
surgery, we estimated 95% confidence intervals (CIs) accounting for intra-
patient variation using the Taylor series method estimates for variance
among clusters.

We displayed the histogram of the certainty for each prediction
when classified by ground truth (i.e., normal gland or adenoma) to
demonstrate the degree of certainty for each class. The floor for our
certainty histograms is 70% as we repeated any sample with a reported
certainty below 70%. The certainty score distribution was compared by
ground truth using the t-approximation of the Wilcoxon Two-Sample
test. We performed all analysis using SAS version 9.4 (The SAS Institute;
Cary, NC) and R version 4.2.2 (The R Foundation for Statistical Com-
puting; Vienna, Austria).

Ethical considerations
Our studywas determined to be exempt from IRB review atMemorial Sloan
Kettering Cancer Center under the regulations governing research with
human subjects (45 CFR 46.104). Therefore, a specific written consent was
not required for this biospecimen diagnostic study, and no clinical decisions
were based on its results.

Results
Dataset creation formodel training (Phase 1) went fromAugust 2019 to
September 2021. It included 56 cases where adenoma tissue was sam-
pled and 25 cases where normal pituitary gland was sampled. We
supplemented our normal gland dataset with five normal whole pitui-
tary glands collected from fresh autopsies, described in the methods
section.

Fig. 3 | The Four-StepWorkflow Ivolved inUtilizing the Application. Step 1 shows themainmenu of the app. In step 2, the user focuses with a tap on the screen on an area
with visible nuclei. In step 3, the user has the option to confirm or to retake a new picture. In step 4, the app renders a diagnosis with a certainty score.
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After splitting into training and testing datasets, and the preprocessing
described in the methods section, a total of 32,051 unique training images
(16,694 adenoma images and 15,357 normal pituitary gland images). The
testing dataset consisted of 8,013 images (4174 adenoma images and 3839
normal pituitary gland images). The CoreMLmodel had a 95.2% accuracy,
precision of 93% and recall of 93%, with an F1 score of 0.93.

Prospective Study Results (Phase 3)
The prospective study for the evaluation of the performance of the app in a
surgical setting included 40 consecutive patients from October 2021 to
December2022,without any exclusion.A total of 194 sampleswere tested.A
neuropathologist evaluated each sample to determine ground truth by
providingpermanent sectiondiagnosis on the same specimen.The results of
the app were compared to ground truth and the following performance
measures were obtained: sensitivity was 96.1% (95% CI: 89.9–99%), speci-
ficity was 92.7% (95% CI: 74–99.3%), PPV was 98% (95% CI: 92.2–99.8%),
andNPVwas86.4%(95%CI: 66.2–96.8%). Furthermore, the certainty score
of the app across all tests (Fig. 4A) was analyzed and the following dis-
tribution statistics were obtained: N was 194, minimum was 70%, 25th
percentile was 86.6%, median was 94.4%, mean was 91.1%, 75th percentile
was 98%, and maximum was 100%.

Supplementary Data 1 displays the study patient list with the intrao-
perative and final pathology diagnosis, the clinical presentation, and the app
errors.

The certainty score of the App across all tests where the ground truth
was normal pituitary gland (Fig. 4B) was analyzed. The following dis-
tribution statistics were obtained: N = 41, minimum was 70%, 25th per-
centile was 80.8%, median was 91.4%, mean was 88%, 75th percentile was
95.7% and maximum was 99.9%.

The certainty score of the smartphone application across all testswhere
the ground truth was tumor tissue (Fig. 4C) rendered the following dis-
tribution statistics: N = 153, minimumwas 70.5%, 25th percentile was 88%,
median was 95%, mean was 91.9%, 75th percentile was 98.2% and max-
imum was 100%.

The certainty score was statistically significantly higher when the
ground truth was tumor tissue (p = 0.0089).

The additional testing done on the transferred SRH images yielded a
92.3% accuracy (95% CI: 86.2–96.3%), 93.5% sensitivity (95% CI:
86.4–97.5%), 87.8% specificity (95% CI: 72.5–96.3%) with a PPV of 96.6%
(95% CI: 90.7–99.3%), and NPV was 78.3% (95% CI: 57.6–92.0%).

External validation
For greater confidence in the app, we tested it on entire SRH images
retrieved from a publicly available database from different institutions. We
downloaded 191 SRH images from 40 different adenoma cases from
OpenSRH and interrogated the app for diagnosis. The sensitivity of our
smartphone app accurately diagnosing adenoma was 93.7% (95% CI:
89.3–96.7%). The specificity couldn’t be determined because the dataset
does not contain normal pituitary gland images.

Discussion
We demonstrate that a deep learning, smartphone app using stimulated
Raman histology can successfully and very rapidly differentiate between
normal pituitary gland and adenoma. Pathologists play a vital role in the
diagnosis and management of diseases by analyzing tissue samples and
identifying abnormalities at the cellular level. Despite advances inmolecular
pathology, there remains a substantial need for rapid intraoperative diag-
nosis to guide surgical decision making. However, the global demand for
specialized pathologists often exceeds the supply, resulting in a shortage at
many centers with neurosurgical expertise25. This shortage of pathologists is
particularly acute in certain regions, such as sub-Saharan Africa, where the
relative number of pathologists is one tenth that of most developed
nations26. Between 2007 and 2017, in theUnited States, the number of active
pathologists decreased by 17% and the diagnostic workload per pathologist
increased by 41%27. This shortage can lead to delays in diagnosis as samples
may need to be sent to distant laboratories for analysis. One possible solu-
tion for acute shortages is utilizing AI-based technologies to extend expert
physician reach25. We propose one solution, utilizing a customized CNN
model to achieve intraoperative diagnostic pathology results that are com-
parable to historical norms.Our smartphone app, prospectively validated in
a study, could be rapidly deployed in resource-limited regions without
limited pathological expertise.

Hollon et al. demonstrated that a combination of SRH and deep
convolutional neural networks is non-inferior to traditional pathologist-
based diagnosis andmuch faster18. They showed how intraoperative cancer
diagnosis can be streamlined, creating a complementary pathway for tissue
diagnosis that is independent of a traditional pathology laboratory.

Our workflow, which obtained high certainty scores withinminutes, is
a substantial added tool to current workflows for intraoperative frozen
section with H&E staining and interpretation from expert pathologists.
Timely intraoperative pathology can enhance surgical effectiveness and
contribute to informed surgical decision-making, with little downtime. For
transsphenoidal pituitary surgery, difficulty differentiating between normal
pituitary gland and pituitary adenoma in situations where access to neu-
ropathologists is lacking can lead to undue damage to normal gland or
incomplete resection of viable tumor. This couldpotentially be prevented by
taking out a millimetric fragment of tissue, analyzing it almost instantly to
know if it is normal pituitary gland indicating that the resection in that area
is sufficient.On the other hand, if this tiny specimen turnedout to be tumor,
it would indicate a need to pursuing the resection. Furthermore, extending
surgical time while waiting for pathology results, sometimes several times
during a single surgery, may increase risks for infections or other intrao-
perative complications. It is estimated that every 30minutes of increased
surgical time increases the likelihood of a complication by 14%, in addition
to increased costs28,29.

Despite obtaining rapid intraoperative pathology results within min-
utes, our workflow does not sacrifice quality. Our F1 score, a common
performance marker for binary classification tasks, demonstrates that our
model works well. Similarly, we obtained a high degree of confidence,

Fig. 4 |Distribution of the SmartphoneAppCertainty Score. ADistribution of the
smartphone app certainty score across all tests. B Distribution of the smartphone
app certainty score across all tests where ground truth was normal pituitary gland.

C Distribution of the smartphone app certainty score across all tests where ground
truth was adenoma.
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typically exceeding 90%. We achieved this performance with minimal
performance loss when using machine learning frameworks designed to
work on smartphones (CoreML). Our data demonstrate that a high level of
accuracy and rapidity can be achieved with minimal technological support,
with the potential to extend pathology expertise with easy-to-use
technologies.

External validationonanewdataset, created at different institutions on
different SRH machines confirmed the high sensitivity of the smartphone
app in detecting pituitary adenoma, even when changing the work
environment.

Our work has several limitations. First, this is a single center study,
which can introduce bias. Future work should include multicenter valida-
tionof theplatform.Even thoughweperformedanexternal validationonan
adenomadataset, it is still limited by the unavailability of external datasets of
normal pituitary gland images. Second, the deep learning model presented
here is trained to specifically distinguishbetweennormalpituitary glandand
pituitary adenoma. Futuremodels can be trained to identify a large number
of different sellar pathologies and other tumors. Additionally, further work
would have to validate the value of this platform in cases where a prior
resection was performed, or radiation was administered.

Furthermore, factors like room illumination, monitor settings, and
mobile phone camera settings could introduce perturbations that might
affect the accuracy of detection. Nevertheless, the additional testing we did
on the images without going through the smartphone or camera shows
comparable results to the smartphone app. In addition, the prospective
studydone inPhase 3hasdemonstrated the effectiveness of our technique in
real-world conditions, further validating its practicality and robustness.

Another limitation of our platform is its current specificity to SRH
images, which may restrict its use due to financial or proprietary con-
siderations. Nonetheless, the versatility of our platform allows for its
potential adaptation to different optical images, such as SRS images, and
even classic H&E images. In the latter case, an affordable adapter such as
described by Liu et al. could be attached to the smartphone’s camera to
capture an image shown through a traditional microscope30. This would be
particularly relevant indeveloping countrieswhere the cost of access toH&E
preparations is substantially lower than the cost of Raman-based technol-
ogies, andwhere there is a dire need for specialized pathologists. The use of a
modified version of our platform could help address this need by providing
an accessible and affordable solution for diagnosing a variety of pathologies,
particularly in settings with limited access to specialized resources. Incor-
porating our platform in the surgicalworkflowat centerswith limited access
to high-quality intraoperative diagnosis could potentially improvemaximal
surgical resection of tumors. This, in turn, may reduce the need for repeat
surgeries and enhance oncologic care and patient-reported outcomes.

Data availability
Source data for the figures can be accessed as Supplementary Data 2. SRH
imagedatasets are available fromthe corresponding authorupon reasonable
request.

Code availability
Code to preprocess the images, train the deep-learning models, and create
the mobile app are available on our GitHub repository31.
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