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Abstract

Background The identification of suitable biomarkers is of crucial clinical importance for the
early diagnosis of treatment-resistant schizophrenia (TRS). This study aims to
comprehensively analyze the association between TRS and blood and urine biomarkers.
Methods Candidate TRS-related single nucleotide polymorphisms (SNPs) were obtained
froma recent genome-wide association study. TheUKBiobank cohort, comprising 376,807
subjects with blood and urine biomarker testing data, was used to calculate the polygenic
risk score (PRS) for TRS. Pearson correlation analyses were performed to evaluate the
correlation between TRSPRS and each of the biomarkers, using calculated TRSPRS as the
instrumental variables. Bidirectional two-sample Mendelian randomization (MR) was used
to assess potential causal associations between candidate biomarkers with TRS.
Results Here we identify a significant association between TRS PRS and phosphate
(r = 0.007, P = 1.96 × 10−4). Sex subgroup analyses identify seven and three candidate
biomarkers associated with TRS PRS in male and female participants, respectively. For
example, total protein and phosphate for males, creatinine and phosphate for females.
Bidirectional two-sample MR analyses indicate that TRS is negatively associated with
cholesterol (estimate =−0.363, P = 0.008). Conversely, TRS is positively associated with
total protein (estimate = 0.137, P = 0.027), mean corpuscular volume (estimate = 0.032,
P = 2.25 × 10−5), and mean corpuscular hemoglobin (estimate = 0.018, P = 0.007).
ConclusionsOur findings provide insights into the roles of blood and urine biomarkers in the
early detection and treatment of TRS.

Schizophrenia is a complex cognitive and behavioral syndrome that ser-
iously affects the quality of life. It is characterized by emotional, cognitive,
perceptual, and thought disorders1,2. Some individuals with schizophrenia
experience treatment-resistant symptoms characterized by severe dys-
function inwhich symptoms do not completely respond to at least two first-

line antipsychotic drugs3. Treatment-resistant schizophrenia (TRS) is a
complex clinical condition that affects approximately 30% of people living
with schizophrenia4. Studies suggest that TRSmay have a higher heritability
compared to schizophrenia, indicating that TRS may be a more familial
phenotype and distinguishable from non-TRS cases based on its genetic
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Plain language summary

People with schizophrenia experience
periodsof timeduringwhich theymisperceive
reality. Some people with schizophrenia do
not respond well to the usual drugs that are
used to relieve their symptoms. This type of
schizophrenia is known as treatment-
resistant schizophrenia (TRS). We looked at
differences in the genes (inherited character-
istics), blood and urine of a group of people in
the UK with schizophrenia to see if people
with TRS have particular characteristics that
would enable them to be distinguished from
patients with schizophrenia who tend to
respond to usual treatment.We found several
differences in the blood that could be used to
predict which people might get TRS, includ-
ingsome thatwere specific tomenorwomen.
These discoveries are important because
they can help doctors identify peoplewho are
more likely to develop TRS earlier, enabling
them to avoid using treatments thatmight not
work well for them.
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underpinnings5. Patients with TRS have poorer prognosis and worse
functional outcomes compared to patients with other severe psychiatric
disorders6. By elucidating the genetic predisposition to specific biomarkers
associated with TRS, it may be possible to developmore accurate predictive
models for identifying individuals at risk of developing TRS. This could
ultimately lead to earlier interventions and improved outcomes.

Peripheral blood and urine biomarkers are frequently measured to
diagnose and evaluate chronic disease conditions7. Many biochemical
indicators in peripheral blood and urine have been found to be abnormal in
patients with mental diseases, such as schizophrenia8, major depressive
disorder9,10, autism spectrum disorder11, and anxiety12. A recent large
observational study demonstrated that higher concentrations of tau protein
in peripheral blood were associated with cognitive degeneration in patients
with Alzheimer’s disease (AD)13. It is noteworthy that peripheral blood
biomarkers hold promise as a substitute for the central nervous system in
characterizing psychiatric disorders, although their role has yet to be widely
applied in clinical practice. Urine is also a convenient and appropriate
substance for use in diagnostic or predictive tests for disease, as subtle
changes in urine are accumulated in the blood and are unaffected by
homeostasis mechanisms14.

Early detection and diagnosis of schizophrenia and TRS are crucial for
their prevention and treatment. Screening for suitable biomarkers is
essential for early diagnosis. In the past decade, considerable efforts have
been made to identify reliable biomarkers for the early detection of schi-
zophrenia. Blood biomarkers are considered as a viable option because the
dysregulation of epigenetic patterns, gene expression, metabolic and
inflammatory molecules in peripheral blood have unique patterns in indi-
viduals with schizophrenia15. Abnormalmetabolic, immune, and hormonal
alterations have been found in the blood of patients with schizophrenia16,
such as inflammatory biomarkers (C-reactive protein and interleukins)17

and neurotrophic biomarkers (BDNF protein)18. Additionally, measure-
ments of urinary bufotenine levels in patients with schizophrenia and
healthy controls without psychotic symptoms found that increased urine
levels of the endogeneous psychogenicmolecule bufoteninemay play a vital
role in schizophrenia19. Studies have also demonstrated the genetic basis of
serum and urine biomarkers and their causal effects on psychiatric
disorders7. Although the information contained in blood and urine is not
entirely comprehensive, the observed changes may still be used for diag-
nostic and monitoring purposes.

The polygenic risk score (PRS) is a powerful tool for predicting an
individual’s genetic inclination and the severity ofmental disorders20. This is
achieved by weighting and calculating the effect size of SNPs20. The PRS has
been widely used in exploring the correlations between the genetic sus-
ceptibility of multiple diseases in phenome-wide association studies21,22.

In this study, we comprehensively analyze the correlation between
blood and urine biomarkers with TRS. The TRS PRS are calculated using
genotype data from the UK Biobank (UKB) cohort. Pearson correlation
analyses are performed to investigate the correlationbetween eachblood or
urine biomarker and TRS. Bidirectional two-sample Mendelian rando-
mization analyses are performed to validate the candidate correlations
between biomarkers andTRS. In the analysis of TRS PRS-associated blood
andurinebiomarkers across the totalUKB sample, a significant association
is found with phosphate at the Bonferroni correction threshold. Six bio-
markers exhibit candidate association signals with TRS PRS. Bidirectional
Mendelian randomization analyses reveal significant associations between
TRS and various biomarkers. TRS is positively associated with mean
corpuscular volume but negatively associated with total protein according
to IVW MR analyses. MR-Egger analyses suggest an opposite causal
direction between TRS and total protein and reveal a causal relationship
between TRS and cholesterol. Weighted median MR analyses confirm the
associations observed in IVW analyses and reveal additional associations
with lymphocyte count and mean corpuscular hemoglobin. Our study
provides insight into the application of polygenic risk scores and highlights
the importance of blood and urine biomarkers in the early diagnosis
of TRS.

Methods
Biomarker phenotypes in serum and urine in UKB cohort
The phenotypic and genotypic data used in this study were obtained from
the UKB, which conducted a large prospective cohort study from 2006 to
201023. The UKB performed laboratory testing of commonly measured
biomarkers in serum (Category 100080) and urine (Category 100083) on a
cohort with extensive phenotype and genome-wide genotype data, includ-
ing the unrelated individuals in this study23. Health-related records of each
participant, including age and sex, were collected through either a screen-
shot questionnaire or verbal interview within the assessment center. The
urine assays category contains information on the assays that have been
performed on the UKB urine samples (https://biobank.ndph.ox.ac.uk/
showcase/label.cgi?id=100083), while the blood assays category contains
information on the assays that have been performed on the UKB blood
samples and their results (https://biobank.ndph.ox.ac.uk/showcase/label.
cgi?id=100080), including blood count (Category 100081) and blood bio-
chemistry (Category 17518). Blood count contains results of hematological
assays that were performed on whole blood before further processing,
including data on acquisition time and number of freeze-thaw cycles, such
as basophils, eosinophils, monocytes, and neutrophils. Blood biochemistry
contains a range of key biochemistry markers that were measured in blood
samples collected at recruitment and at repeat assessment. The ethical
approval of UKB was granted by the National Health Service National
Research Ethics Service (reference 11/NW/0382). All participants gave
informed consent for participation in the UKB. Permission to access and
analyzeUKBdatawas approvedunderUKBproject 46478.Theneed to seek
additional ethical approval for our study from our University was waived
because the study involved the secondary use of data.

UK Biobank genotyping, imputation and quality control
Genome-wide genotyping was performed in UKB individuals using either
the Affymetrix UKBAxiom array or Affymetrix UKBiLEVEAxiom, which
included 812,428 SNPs. Imputation was conducted using IMPUTE2 with
the reference panel of the UK10K projects, Haplotype Reference Con-
sortium, and 1000 Genomes23. For quality control on the genotype data, the
UKB excluded the SNPs with INFO < 0.9, Hardy–Weinberg equilibrium
(HWE) testingp values < 0.0001,minor allele frequencies (MAF) < 0.01 and
genotyping call rate <95%. A total of 488,377 individuals and 805,426 SNPs
were kept after applying quality control (QC). After removing individuals
who reported inconsistencies between self-reported sex and genetic sex, as
well as those with missing covariate information, 376,807 individuals of
white British ancestry subset (UK Biobank field ID: 21000)23 were retained
for further analysis23.

Polygenic risk score datasets of treatment resistance in
schizophrenia
The GWAS summary statistics of TRS were obtained from Pardiñas et al.4.
The study analyzed the GWAS of TRS based on a sample size of 10,501
individuals with TRS and 20,325 individuals without TRS. All individuals
with TRS were administered clozapine in the UK, in accordance with the
National Institute for Health and Care Excellence guidelines for TRS, after
the failure of at least two trials of antipsychotics24. Due to the involvement of
different datasets25 and genotyping arrays26 in this analysis, the processing of
TRS and non-TRS GWAS samples was conducted separately on data
generated from the original studies. Imputations were performed using the
SHAPEIT/IMPUTE2 workflow27,28. The combination results of non-TRS
GWAS by the Psychiatric Genomics Consortium were analyzed using the
fixed-effects program inMETAL29. The combined sampleswith SNPscalled
in <20,000 and any strand ambiguous markers with minor allele frequency
(MAF) ≥ 40% were removed. Detailed information on genotyping, impu-
tation, quality control, and statistical analysis is available in the eMethods by
Pardiñas et al.4. To generate association statistics that accurately reflect
differences between TRS and non-TRS groups, Pardinas et al. utilized the
test for interaction proposed by Altman and Bland30. This test is similar to a
fixed-effect test for moderators in the meta-analytic setting4.
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PRS calculation of treatment resistance in schizophrenia in UK
Biobank cohort
The clumping algorithm in PRSice-2 (version 2.3.5) was configured to
identify any SNPs within 250 kb in linkage disequilibrium (LD) with an r2

threshold greater than 0.1 and ‘clump’ them together to be represented by
the most significantly associated SNP within each LD block, known as the
index SNP31. PRSice-2 was employed to generate PRS for TRS, utilizing
recent large GWAS summary statistics of TRS4. Significance values and
effect sizes from the UKB cohort were used to generate the best PRSmodel.
In brief, the PRS for each individual was calculated by summing the effect
sizes from all the SNPs included in the best model. To generate the best-fit
PRS of TRS, clozapine use (UKB Data-Field 20003) was used as a proxy
measure of TRS, with the top 10 principle components (PC) of population
structure, age, and sex included as covariates. The PRS analysis was con-
ducted, comparing 45 participants using clozapine to a larger group of
376,762 participants not using clozapine, irrespective of their schizophrenia
diagnosis status.Thebestmodelwasderivedby testing the inclusionof SNPs
(401–89,618 SNPs) from a range of P value thresholds from 5 × 10−8 to 1
with an incremental interval of 0.0005 (--interval 0.0005 --lower 5e−08), to
determine which threshold gave the largest Nagelkerke’s R2 value. These
SNPs were then used to generate PRS for each individual in UKB cohorts.
The performance of the best model for the selection of SNP markers was
evaluated by the area under the receiver operating characteristic (ROC)
curve (AUC) using the pROC R package32.

Statistics and reproducibility
The PRS of TRS were initially adjusted for the PC1–PC10 using linear
regressionmodels. The rstandard function was then utilized to calculate the
standardized residual of PRS, which is obtained by dividing the residual by
its standard deviation (SD). The measurements of 59 blood and 4 urine
biomarkerswere adjusted for potential confounding variables, including sex
(excluded in sex stratification analysis) and age, through linear regression
models. The aim of this model was to extract the residual biomarker mea-
surements and eliminate the effects of these covariates from subsequent
Pearsoncorrelation analysis. The resulting residualswere thenutilized as the
phenotypic values of biomarkers for the subsequent analyses. Pearson
correlation analyses were conducted to investigate the correlation between
each biomarker and TRS phenotype, with standardized PRS calculated as
instrumental variables.Males and femaleswere divided into separate groups
to facilitate a better analysis of differences between sex stratification groups.
The significant P value thresholds of Pearson correlation should be
7.94 × 10−4 (0.05/63 independent biomarkers) after strict Bonferroni cor-
rection. All statistical analyses, including AUC, linear regression, and
Pearson correlation analyses, were performed using R software (version
R 4.3.0).

Bidirectional two-sample Mendelian randomization analyses
To validate potential causal associations between blood and urine bio-
markers with TRS, we performedbidirectional two-sampleMR analyses for
significantly correlated blood and urine biomarkers. The present study
utilizes candidate blood and urine biomarkers derived from GWAS sum-
mary statistics, which are publicly available at https://gwas.mrcieu.ac.uk/.
The GWAS summary statistics dataset of TRS was obtained from the
GWAS data by Pardiñas et al.4. Initially, we extracted SNPs that showed
genome-wide statistical significance in association with exposure pheno-
types. Subsequently, two-sample MR analyses were carried out using R
(version 4.3.0) and the TwoSampleMR package33. Exposure and outcome
GWAS summary statistics were harmonized by aligning summary statistics
to infer positive strand alleles using allele frequencies for palindromes to
ensure that the effect of an SNP on the exposure, and the effect of that same
SNP on the outcome, corresponds to the same allele.

We performed fixed-effects analysis of genetic instruments using
inverse variance-weighted (IVW)MR34. The MR-Egger regression analysis
andweightedmedianMR approachwere utilized to evaluate the robustness
of our findings35,36. To assess horizontal pleiotropy, we tested for the

presence of statistically significant (P < 0.05) heterogeneities in MR-Egger
analyses using the Cochran Q statistic37. In assessing consistency and
robustness, we sought estimates that substantially agreed in direction and
magnitude (overlapping confidence intervals) across complementary MR
methods.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Descriptive characteristics of study participants
This cross-sectional study included a total of 376,807 participants aged
between 39 and 73 years, with a mean age of 56.99 years and a standard
deviation of 7.93 years. The study population consisted of 202,434male and
174,373 female subjects. Biomarker test results from blood and urine assays
were obtained from all 376,807 study participants and were utilized for
further analysis. The detailed statistical information on serum and urine
biomarkers in this study is presented in Supplementary Data 1.

PRS Nagelkerke R2 and AUC
The PRS models suggest that a stricter cutoff may result in the missing of
informative SNPs, while a looser cutoff may introduce noise by including
SNPs with spurious TRS association (Supplementary Data 2). The best-fit
PRS at a P value threshold = 0.0015 (R2 = 0.007) was utilized for down-
stream analysis (Supplementary Fig. 1A). A screening test is considered
better than pure chance if the AUC value is >0.538. Using the PRS of the best
model as the predictor and the TRS participant group as the outcome, the
AUCwas 0.61 (95%CI: 0.48–0.74).With the threshold of PRS cutoff 0.252,
the sensitivity (true positive rate, TPR) forTRSprediction is 52.17%, and the
specificity (true negative rate, TFR) for TRS prediction is 78.26% (Supple-
mentary Fig. 1B).

TRS PRS-associated blood and urine biomarkers in total, male
and female population
Uponanalyzing theUKB total sample,we identified a significant association
between TRS PRS and phosphate (r = 0.007, P = 1.96 × 10−4) at the Bon-
ferroni correction threshold (Fig. 1). Furthermore, we identified six bio-
markers that have candidate association signals with TRS PRS, such as
gamma-glutamyltransferase (r =−0.005, P = 0.002), reticulocyte percen-
tage (r = 0.004, P = 0.008), and total protein (r =−0.004, P = 0.021).
Detailed information on Pearson correlation results for the total population
is presented inSupplementaryData3.Upon testing for associationwithTRS
PRS inmale and female participants, no blood or urine biomarker exhibited
statistical significance after strict Bonferroni correction (Fig. 1). However, in
the male participants of the UKB cohort, we identified seven biomarkers
that were potentially associated with TRS PRS at the general P threshold
(Supplementary Data 4), such as total protein (r =−0.008, P = 0.003),
gamma-glutamyltransferase (r =−0.006, P = 0.012), and phosphate
(r = 0.006, P = 0.018). In the female participants, we observed three candi-
date biomarkers for TRS PRS (Supplementary Data 5), including creatinine
(r =−0.007, P = 0.001), phosphate (r = 0.007, P = 0.004), and reticulocyte
percentage (r = 0.005, P = 0.029).

Bidirectional Mendelian randomization analyses
Table 1 presents fundamental information on the GWAS summary data
used in bidirectional two-sample MR. The sample size, number of sig-
nificant SNPs, andheritability are provided for each trait analyzed.The traits
investigated in this study include TRS, phosphate, gamma glutamyl-
transferase, reticulocyte percentage, total protein, mean corpuscular
volume, mean corpuscular hemoglobin, reticulocyte count, glycated
hemoglobin (HbA1c), lymphocyte count, cholesterol, red blood cell (ery-
throcyte) count, and creatinine. The number of genome-wide significant
independent loci for each trait is indicated by SNPs (n), with SNPs within
10,000 kilobase pairs and R2 ≥ 0.001 removed.
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Figure 2 presents the significant bidirectional MR results for TRS and
candidate biomarkers. The IVW MR analyses indicated that TRS was
positively associated with mean corpuscular volume (estimate (SE) = 0.025
(0.010), P = 0.009), while TRS was negatively associated with total protein
(estimate (SE) =−0.027 (0.009), P = 0.002) (Fig. 2). In contrast, MR-Egger

analyses showed an opposite causal direction betweenTRS and total protein
(estimate (SE) = 0.137 (0.058), P = 0.027). Notably, MR-Egger analyses
demonstrated a causal relationship between TRS and cholesterol (estimate
(SE) =−0.363 (0.122), P = 0.008). The weighted median MR analyses
showed the same causal direction as IVW analyses for the associations

Fig. 1 | The significant correlations between biomarkers and treatment-resistant
schizophrenia in total, male and female populations. The error bars indicate 95%
confidence intervals (CIs); Dots indicate for specific Pearson correlation coefficient

(r) of biomarkers; Horizontal lines represent 95% CI. An asterisk (*) indicates the
biomarker that has reached the significant threshold of Bonferroni correction
(7.94 × 10−4).

Table 1 | The basic information of GWAS summary data used in two-sample Mendelian randomization validation

Traits (Ref code) Sample size (n) Significant threshold SNPs (n) Heritability (SE)

TRS (/) 30,826 5 × 10−6 9 0.013 (0.006)

Phosphate (met-a-364) 7789 5 × 10−5 19 0.107 (0.010)

Gamma-glutamyltransferase (ukb-e-30730_CSA) 8422 5 × 10−5 93 0.197 (0.025)

Reticulocyte percentage (ukb-d-30240_irnt) 344,728 5 × 10−8 288 0.179 (0.014)

Total protein (bbj-a-56) 113,509 5 × 10−8 36 0.137 (0.009)

Mean corpuscular volume (ukb-d-30040_irnt) 350,473 5 × 10−8 378 0.234 (0.026)

Mean corpuscular hemoglobin (ukb-d-30050_irnt) 350,472 5 × 10−8 366 0.229 (0.028)

Reticulocyte count (ukb-d-30250_irnt) 344,729 5 × 10−8 291 0.180 (0.013)

Glycated hemoglobin (HbA1c) (ukb-e-30750_CSA) 8329 5 × 10−8 5 0.188 (0.016)

Lymphocyte count (ukb-d-30120_irnt) 349,856 5 × 10−8 343 0.171 (0.011)

Cholesterol (ieu-a-301) 187,365 5 × 10−8 88 0.222 (0.028)

Red blood cell (erythrocyte) count (ukb-d-30010_irnt) 350,475 5 × 10−8 358 0.196 (0.016)

Creatinine (ieu-a-1105) 133,814 5 × 10−8 47 0.094 (0.007)

SNPs (n) indicates the number of genome-wide significant independent loci (we removed SNPs within 10,000 kilobase pairs and R2 ≥ 0.001) under a significant threshold.
TRS treatment-resistant schizophrenia, Ref code reference code.
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between mean corpuscular volume, total protein and TRS (Fig. 2). Addi-
tionally, the weighted median MR analysis showed a slightly weaker causal
relationship between TRS and lymphocyte count (estimate (SE) = 0.015
(0.007), P = 0.019), and mean corpuscular hemoglobin (estimate (SE) =
0.019 (0.007), P = 0.007). Supplementary Data 6 provides detailed MR
estimates of genetic instruments for TRS and candidate biomarkers based
on Pearson correlation results.

To evaluate the potential for horizontal pleiotropy, we assessed het-
erogeneity and conducted sensitivity analyses that are more robust to
pleiotropy, including weighted median MR and MR-Egger regression.
Heterogeneity tests did not indicate heterogeneity in the IVW and MR-
Egger estimates for the association of TRS with cholesterol, lymphocyte
count, and total protein (P range, 0.089–0.960) (Supplementary Data 7).
Notably, heterogeneity was observed in mean corpuscular volume, mean
corpuscular hemoglobin, and TRS, so the weighted median method was
more accurate for these two biomarkers36. TheMR-Egger intercept analysis
indicates that horizontal pleiotropy exists between TRS and cholesterol and
total protein, indicating that the MR-Egger is more accurate in the MR
analysis of TRS and these two biomarkers36 (Supplementary Data 8).

Discussion
In this study,we conducted a large observational and genetic PRS analysis to
comprehensively evaluate the associations between blood/urine biomarkers
and TRS using the UKB cohort. We then performed bidirectional MR
analysis to validate the candidate causal relationship. Our findings revealed
several potential correlations in blood and urine biomarkers. Further ana-
lysis provided tentative evidence for sex differences in the characteristics
between TRS with blood and urine biomarkers.

Currently, there is no objective biological measurement available for
the diagnosis of TRS. Phosphate is an essential mineral for humans and
plays numerous functions in the body. The blood level of phosphate is
tightly regulated within a narrow range. Both hyperphosphatemia and
hypophosphatemia can lead to the development of diseases39. The disturbed
integrity of myelin and white matter, along with dysregulation of lipid
metabolism, may be involved in schizophrenia pathophysiology40. Previous
studies have reported increased high-energy phosphate metabolism in the
basal ganglia of neuroleptic-naive schizophrenia patients using magnetic
resonance spectroscopy (MRS)41,42. However, there are very few studies

investigating the relationship between phosphate concentration and TRS in
schizophrenia patients. Our study provides evidence for a correlation
between phosphate and TRS, suggesting that blood phosphate may be a
potential biomarker in TRS.

Previous studies have identified some biomarkers associated with TRS
or schizophrenia, but not with TRS PRS in our study, such as bilirubin and
creatinine. Bilirubin, thefinal product of hememetabolism in the body, is an
endogenous antioxidant with an anti-inflammatory effect43. Unbound
bilirubin has been studied as a promising molecule that could be used as a
possible biologicalmarker for schizophrenia44. In a prospective study, blood
levels of unbound bilirubin were higher in patients with schizophrenia than
in patients with bipolar disorder45. Serum creatinine is one of the most
commonly measured products in clinical chemistry laboratories
worldwide46 and has been linked with many neurodegenerative diseases47.
The evidence linking schizophrenia and creatinine is primarily from
observational studies. Researchers have identified multiple potential meta-
bolite biomarkers of schizophrenia, such as reduced levels of essential
polyunsaturated fatty acids and creatinine48. Additionally, an association
with schizophrenia was also found in urine. Previous studies have shown
that urinary creatinine concentrations were reduced in patients with schi-
zophrenia compared with healthy controls49,50. These studies, together with
our results, suggest that these biomarkers may not be influenced by indi-
vidual genetic inclination.

Epidemiological data has revealed sex differences in the prevalence of
schizophrenia51. Similarly, sex-specific blood biomarkers were observed in
this study.Glycatedhemoglobin (HbA1c), lymphocyte count, and redblood
cell (erythrocyte) count showed potential correlation signals in male sam-
ples, while creatinine and reticulocyte percentage showed potential corre-
lation signals in female samples. Sex-specific differences associatedwith age
of onset, duration, and antipsychotic response in schizophrenia may be
reflected in sex-related differences in the underlying molecular pathways52.
Researchers have identified the structural and neurophysiological sex
characteristics of schizophrenia by focusing on specific biomarkers53. A
study found thatmales with schizophrenia had higher glycated hemoglobin
(HbA1c), lower high-density lipoprotein, and an earlier age of onset com-
pared to females54. Neurosteroids, including DHEA, DHEA-S, and preg-
nenolone, are involved in the pathophysiology of schizophrenia in male
patients, but not in female patients55. Therefore, our results emphasize the

Fig. 2 | Significant MR results for the causal relationship between TRS and
biomarkers. The error bars indicate 95% confidence intervals (CIs). An asterisk (*)
indicates the presence of pleiotropy in this MR analysis, which results in more
precise estimates from MR-Egger. A hashtag (#) indicates the presence of

heterogeneity in this MR analysis, which results in more precise estimates from the
weighted median. TRS treatment-resistant schizophrenia, IVW inverse variance
weighted, WM weighted median, MR Mendelian randomization.
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importance of considering sex-specific differences in TRS research and
highlight the clinical potential of these blood biomarkers for predictingTRS.
Although the TRS PRS demonstrates potential as a tool for identifying
individuals with an elevated predisposition to developing TRS, it is not a
conclusive diagnostic measure. There may be instances where individuals
with a high TRS-PRS do not ultimately develop TRS, while those with a low
TRS-PRS may indeed manifest symptoms of TRS. Thus, it is crucial to
recognize that TRS-PRS requires complementary clinical assessments for
precise diagnosis and effective treatment.

Our bidirectional MR analyses demonstrated a negative association
between TRS and cholesterol. In terms of metabolic alterations, Francesca
et al. observed lower levels of high-density lipoprotein (HDL)-cholesterol
amongmale treatment-resistant patients treatedwith clozapine56. The study
selected a total of 33 patients previously diagnosed with TRS, who were
prescribed clozapine followed by PP1M and PP3Mwhen available, and the
data showed a decrease in cholesterol57. These findings are consistent with
the results of our MR analysis. Furthermore, we found that TRS was posi-
tively associatedwith redblood cell parameters, includingmean corpuscular
volumeandmeancorpuscularhemoglobin. Studies compareddifferences in
mean corpuscular volume and mean corpuscular hemoglobin (MCH) in
patientswith schizophrenia, and founddifferences for all redcell parameters
between study groups58. Age and sex may affect various erythrocyte
parameters58. Another study investigated changes in various biochemical
parameters in schizophrenia patients using clozapine and found that MCH
and red blood cell count (RBC) levels were lower in the clozapine group
comparedwith healthy volunteers59. Future studies should verify our results
and further explore the biological confounding factors that could explain
associations between red blood cell parameters and TRS.

This study comprehensively investigates the association between
blood/urine biomarkers and TRS. Our sample size maximizes power for
genetic analyses. This study also has some limitations. Firstly, the TRS PRSs
were computed utilizing a subgroup of the UKB cohort consisting of indi-
vidualswithwhite British ancestry, primarily ofmiddle-ageddemographics.
Therefore, caution should be exercised when applying our results to young
people andother ethnic populations. Secondly, theuseof residualsmayhave
impacted the size of the effects reported, and future studies should consider
alternativemethods to further validate ourfindings. The use of independent
clinical specimens or cohorts to validate our findings and investigate the
underlying biological mechanisms of the observed association between
candidate blood and urine biomarkers with TRS will be necessary in future
studies. Thirdly, the method and accuracy of the UKB biomarker mea-
surement have potential implications for our results. Finally, due to the
highly polygenic and pleiotropic nature of the genetic architecture of psy-
chiatric phenotypes, the core MR assumptions are easily violated60. Pleio-
tropy will bias estimates by reintroducing confounding, and heterogeneity
in the outcome will reduce the precision of our causal estimates, making it
harder to identify a true causal effect should one exist61. Therefore, all
analyses should be carefully considered and cautiously interpreted.

In conclusion, our study systematically analyzed the associations
between TRS and blood/urine biomarkers usingUKB individual-level traits
and genotype data andTRSGWAS summary data.Our study highlights the
sex-related differences in the underlying blood biomarkers, identifies the
associations betweenTRSwith phosphate and cholesterol, andmay provide
insights to reveal the roles of blood/urine biomarkers in the development of
TRS. Our findings of potential blood biomarkers for TRSmay be useful for
diagnostic purposes, as well as for drug development and monitoring dis-
ease progression.

Data availability
Access to the UK Biobank data can be obtained by applying to the UK
BiobankAccessManagement System, details are at https://www.ukbiobank.
ac.uk/. We will return the derived data fields following UK Biobank policy;
in due course, they will be available through the UK Biobank Access
Management System. The source data underlying Figs. 1 and 2 are in
Supplementary Data 3–5 and 6, respectively.

Code availability
The R-based custom code for statistical analysis for this work is publicly
available at https://github.com/DrBolunCheng/PRSMR/62.
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