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Detection of COVID-19 features in lung
ultrasound images using deep neural
networks
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Abstract

Background Deep neural networks (DNNs) to detect COVID-19 features in lung ultrasound
B-mode images have primarily relied on either in vivo or simulated images as training data.
However, in vivo images suffer from limited access to requiredmanual labeling of thousands
of training image examples, and simulated images can suffer from poor generalizability to
in vivo images due to domain differences.We address these limitations and identify the best
training strategy.
Methods We investigated in vivo COVID-19 feature detection with DNNs trained on our
carefully simulated datasets (40,000 images), publicly available in vivo datasets (174
images), in vivo datasets curated by our team (958 images), and a combination of simulated
and internal or external in vivodatasets. SevenDNN training strategieswere testedon in vivo
B-mode images from COVID-19 patients.
Results Here, we show that Dice similarity coefficients (DSCs) between ground truth and
DNN predictions are maximized when simulated data are mixed with external in vivo data
and tested on internal in vivo data (i.e., 0.482 ± 0.211), compared with using only simulated
B-mode image training data (i.e., 0.464 ± 0.230) or only external in vivo B-mode training data
(i.e., 0.407 ± 0.177). Additional maximization is achieved when a separate subset of the
internal in vivo B-mode images are included in the training dataset, with the greatest
maximization of DSC (and minimization of required training time, or epochs) obtained after
mixing simulated data with internal and external in vivo data during training, then testing on
the held-out subset of the internal in vivo dataset (i.e., 0.735 ± 0.187).
Conclusions DNNs trained with simulated and in vivo data are promising alternatives to
training with only real or only simulated data when segmenting in vivo COVID-19 lung
ultrasound features.

Multiple groups have demonstrated the potential of deep learning to aid
COVID-19 diagnosis based on lung ultrasound image features1–4, including
A-lines5, B-lines6, and subpleural consolidations7. Among these features,
B-lines are the most commonly seen features in lung ultrasound images of
COVID-19 patients8, appearing as laser-like vertical lines extending from
the pleural line to the edge of the screen9.

While most of the previous deep learning models implemented to
detect COVID-19 features in lung ultrasound B-mode images primarily

relied on in vivo labeled B-mode images as the training data, these datasets
are difficult to obtain, and manually annotating in vivo data can be time
consuming. Unlike in vivo data, simulated data can be generated on
demand, in large quantities, with known ground truths. Previous work
demonstrated that a training set containing a mixture of simulated and
in vivo B-mode images enabled deep neural networks (DNNs) to achieve
better performance when segmenting in vivo bone surface features and
vessels10,11. In addition, when trained only on simulated raw ultrasound
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Plain Language Summary

Computational tools are often used to aid
detection of COVID-19 from lung ultrasound
images. However, this type of detection
method can be prone to misdiagnosis if the
computational tool is not properly trained and
validated to detect image features associated
with COVID-19 positive lungs. Here, we
devise and test seven different strategies that
include realpatientdataandsimulatedpatient
data to train the computational tool on how to
correctly diagnose image features with high
accuracy. Simulated data were created with
software that models ultrasound physics and
acoustic wave propagation. We find that
incorporating simulated data in the training
process improves training efficiency and
detection accuracy, indicating that a properly
curated simulated dataset can be used when
real patient data are limited.
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channel data, DNNs can detect cyst-like features in both phantom and
in vivo B-mode images12.

Recent work implemented simulation-trained DNNs to identify
in vivoB-line features in lungultrasound images fromCOVID-19patients13.
The simulation-trained network found more B-line features than a human
observer, which is promising for training less experienced users and triaging
the most problematic cases in an emergency setting. In addition, with
data augmentation included during the training process, Dice similarity
coefficients (DSCs) between ground truth and DNN predictions were
maximized14. Despite this promise, an automated post-processing algo-
rithm was applied to remove false positives above the pleural line13, which
poses a limitation to real-time deployment. In addition, although previous
workdemonstrated that a training set containing amixture of simulated and
in vivo B-mode images enabled DNNs to achieve better performance when
segmenting in vivo bone surface features and vessels10,11, it is unclear whe-
ther or not this approachwill improveDNNperformancewhen segmenting
lung ultrasound imaging features.

Generally, multiple self-supervised learning strategies have been
investigated to address the challenge of limited labeled datasets in medical
imaging. One strategy involves the application of self-supervised pre-
training15–19. These investigations indicated that by pretraining neural net-
works with unlabeled images with self-supervised learning strategies, the
network performance could be improved in downstream tasks, including
brain tumor segmentation in 3D MRI18, multi-organ segmentation in CT
scan19, and fetal standard scan plane classification in ultrasound imaging16.
However, self-supervised pre-training also has limitations, including the
need for large amounts of unlabeled data and substantial computational
resources.

Another approach to address limited label datasets is to use simulated
B-mode images to train deep learning models. Multiple groups have
investigated using simulated B-mode images to train deep neural networks
for segmentation tasks. Nair et al.12,20 first proposed the use of simulated raw
channel data to train DNNs to output B-mode images and segmentation
maps of cysts. Training and testing datasets were simulated using the open-
source Field II21 ultrasound simulation software. Simulations included
singular, water-filled, anechoic cysts surrounded by tissue. The transducer
was modeled after an Alpinion L3-8 linear array transducer. Plane wave
imaging was implemented with a single isonification angle of 0∘. Results
demonstrate the feasibility of employing deep learning as an alternative to
traditional ultrasound image formation and segmentation with simulated
datasets. Similarly, Behboodi et al.22, Bhatt et al.23, and Seoni et al.24 used
simulated B-mode images to train DNNs and test the simulation-trained
DNNs on tissue-mimicking phantom data22,24 and in vivo data23. Simulated
B-mode images were generated with Field II21, consisting of various
combinations of hyperechoic lesions22,24, anechoic lesions22–24, lines23, and
point targets23.

These initial findings collectively demonstrate that simulated B-mode
images can be considered an alternative training dataset when real datasets
are unavailable12,20,22–24. Despite the variety of shapes and structures included
(e.g., circles20,22,23 ellipses22, lines23, point targets23), Behboodi et al.22 and Seoni
et al.24 only tested the resulting simulation-trained networks on phantom
data,whileNair et al.12 andBhatt et al.23 demonstrated that simulation-trained
DNNs successfully segment structures in both phantom data and in vivo
B-mode images of cysts surrounded by breast tissue.

Rather than using only simulated datasets in the training process, Patel
et al.10 investigated how simulated ultrasound data can be combined with
in vivo data to improve the accuracy of DNNs in segmenting bone struc-
tures. A combination of 3D Slicer, SlicerIGT, and PLUS were used in order
to obtain simulated US images and corresponding segmentations25. Results
demonstrate that a DNN trained on a mixture of large-scale simulated
datasets and limited in vivo datasets outperformed a network trained only
on in vivo datasets when comparing the average Euclidean distance values.
However, the in vivo training datasets had the same distribution as the
in vivo test datasets, potentially limiting real-world generalization of the
conclusions.

Our group is the first to implement simulation-trained DNNs
to identify in vivo A-line, B-line, and consolidation features in lung
ultrasound images from COVID-19 patients13,14, demonstrating that
simulation-trained DNNs can detect COVID-19 features in publicly
available B-mode images from COVID-19 patients. The work presented
herein integrates a new in vivo dataset that was acquired at the Johns
Hopkins Hospital, from December 2021 to May 2022, containing differ-
ences in parameter distributions (e.g., image depth, image resolution,
transducer frequency) relative to existing publicly available datasets26.
As far aswe are aware, nopriorwork investigatesDNNperformancewhen
segmenting B-line features in COVID-19 patients with multiple training
strategies, under multiple domain shift examples. Our investigated
domain shifts combine simulated datasets with in vivo datasets, whether
ornot in vivodatasets fromsimilar distributions as the test distribution are
available.

This paper extends our simulation-trained approach13,14 by incorpor-
ating multiple possible training strategies to ultimately identify the most
suitable strategy for patient data. First, we train networks to segment B-line
features with multiple combinations of training and testing strategies.
Network performancewas then testedwithB-mode lungultrasound images
from COVID-19 patients. Finally, we compare the test DSCs of each net-
work and determine the most suitable approach with respect to prediction
accuracy and the number of required training epochs. This approach has
implications forCOVID-19detection and formonitoringpatientswith long
COVID and post-COVID syndrome27–29.

When compared with our initial simulation-trained DNNs13,
employing data augmentation improves DSC scores by 20%, 165%, and
39%, respectively, when detecting in vivo A-line, B-line, and consolidation
features. Follow-up strategy investigations demonstrate that when datasets
from the same distribution as the test dataset are unavailable in the training
process, including simulated B-mode images improves test DSC scores by
14% (Strategy 1) to 18% (Strategy 3) compared with including in vivo
B-mode images only (Strategy 2). On the other hand, when datasets from
the same distribution as the test dataset are available in the training process,
combining simulatedB-mode images and/or in vivo B-mode images from a
different distribution improves test DSC scores by 1.5% (Strategy 5) to 3.3%
(Strategy 6) comparedwith including in vivo B-mode images from the same
distribution as test dataset only (Strategy 4). However, Strategy 4 required
more epochs to train, indicating that the combination with simulated data
remains as the more optimal solution. Our findings are promising for the
development of future deep neural networks with simulated datasets
included in the training process, regardless of the availability of in vivo data
from the same distribution as test data.

Methods
Simulated data
Data augmentation investigations. To investigate the influence of data
augmentation, a total of 30,000 lung phantoms were simulated with
MATLAB based on publicly available in vivo lung ultrasound B-mode
images with A-line, B-line, and consolidation features (10,000 phantoms
per feature)26,30. The positions and the echogenicity of the features were
changed to increase the variability. The specific type of B-line feature
simulated for this task was discrete B-lines. To create each phantom,
scatterers were randomly distributed in pre-defined regions to create
A-line, B-line, or consolidation features, as well as background features
including skin layers,muscle layers, pleural lines, and ribs. The amplitude
of each scatterer was randomly chosen from a pre-defined range for each
feature. Locations of pre-defined regions for each feature in each phan-
tomwere also randomly chosen from pre-defined boundaries containing
three constraints to ensure realistic feature locations based on our
observation in publicly available in vivo lung images. First, A-line, B-line,
and consolidation features were constrained to be below pleural lines.
Second, each phantom had a bat sign30, a characteristic appearance of the
pleural line along with the adjacent ribs. Third, background features such
as skin layers and muscle layers were constrained to be above either ribs
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or pleural lines. These simulated A-line, B-line, and consolidation fea-
tures were utilized in our associated conference proceeding14.

B-line detection strategy investigations. To determine the most
appropriate strategy for B-line detection with data augmentation, a total
of 10,000 lung phantoms were simulated with MATLAB based on pub-
licly available in vivo lung ultrasound B-mode images26,30, using the same
phantom-creation process and associated constraints described under
the Data augmentation investigations section above. Of these
10,000 simulated phantoms, 8000 contained B-line features and 2000 did
not contain B-line features. To enhance the variety and realistic
appearance of B-line features relative to our previous work13,14, we
simulated three additional types of B-line features, resulting in four
specific types of B-line features (2000 phantoms per type): (1) discrete
B-line only, (2) discrete B-linewith attenuating artifacts below the pleural
line, (3) confluent B-line only, and (4) confluent B-line with attenuating
artifacts below the pleural line. The positions and the echogenicity of
these four features were varied to increase the data variability. For each
B-line detection strategy involving a simulated dataset, 1000 phantoms
were randomly selected from each type of B-line feature, together with
1000 randomly selected phantoms containing no B-line features,
resulting in a total of 5000 phantoms for each strategy.

Image formation parameters & open dataset access. We simulated
raw channel data with the MATLAB Ultrasound Toolbox31 using the
phantoms described above (under the Data augmentation investigations
and B-line detection strategy investigations section headings). The
simulated transducer was a convex probe with 192 elements, a field of
view of 73∘, and a center frequency of 4 MHz. The simulated imaging
depth was 10 cm, and the sampling frequency was 60MHz. The para-
meters of this simulated transducer were the same as the parameters of
the transducer used to acquire in vivo data fromCOVID-19 patients who
were examined at Johns Hopkins (more details under the In vivo
data section below). The simulated raw ultrasound channel data were
then processed with delay-and-sum beamforming, demodulation,
envelope detection, and scan conversion to generate B-mode images with
a dynamic range of 60 dB (i.e., a commondynamic rangewhen displaying
ultrasound images). To demonstrate the similarity between simulated
and real features, Fig. 1 shows real in vivo images (left) available in ref. 30,
alongside examples of simulated B-mode images (right). The simulated
B-mode images and paired ground truth segmentations described herein
are available at https://gitlab.com/pulselab/covid1932.

In vivo data
The in vivoB-mode images for training and/or testingwere derived from two
datasets. The first dataset is a public dataset including B-mode images from
COVID-19 patients worldwide (available at: https://github.com/jannisborn/
covid19_ultrasound26), which will be referred to as the POCUS dataset for
brevity. This POCUS dataset is the largest publicly available lung ultrasound
dataset (202videos+59 images), comprising samples ofCOVID-19patients,
patients with bacterial pneumonia, (non-COVID-19) viral pneumonia, and
healthy controls.We confirmed that this de-identified patient dataset follows
best practices for ethics approval and consent. To test data augmentations,we
included POCUS dataset B-mode images acquired with convex probes from
COVID-19 patients with B-line and subpleural consolidation features, and
from healthy controls with A-line features. In total, this POCUS test dataset
included 32, 107, and 27 images originally marked as having A-line, B-line,
and consolidation features by the POCUS dataset, respectively. Follow-up
training for B-line detections with data augmentations using the POCUS
dataset only included100B-mode imageswithB-line features and15B-mode
images without B-line features of COVID-19 patients as the POCUS training
dataset. As described by Born et al.26, the POCUS dataset was sourced from
community platforms, open medical repositories, health-tech companies,
and other scientific literature (e.g., butterflynetwork.com, thepocusatlas.com,
https://www.stemlynsblog.org, Northumbria Specialist Emergency Care

Hospital, theultrasoundjournal.springeropen.com, www.ncbi.nlm.nih.gov).
Our labels for this dataset are publicly shared at https://gitlab.com/pulselab/
covid1932.

The second in vivo dataset contains B-mode images with B-line fea-
tures acquiredwith a convex probe (ClariusC3HD) andClariusUltrasound
App (v8.0.1, Clarius Mobile Health Corp.) from COVID-19 patients in the
Emergency Department of Johns Hopkins Hospital, under Institutional
Review Board Protocol IRB00310999 (which is a retrospective data analysis
approval that does not allowpublic data sharing). Informedconsentwas not
required because this retrospective study made secondary use of lung
POCUS data collected as part of the standard clinical care of patients with
suspected or confirmedCOVID-19 infection. This datasetwill be referred to
as the JHH dataset for brevity. The JHH dataset included 958 B-mode
images with B-line features. These images were obtained from 82 videos of
16 COVID-19 patients. All patients in the JHH dataset tested positive for
COVID-19 through RT-PCR testing, which has a specificity of 99%33. To
demonstrate the similarity between simulated and real features with the
JHH dataset, Fig. 2 shows simulated B-mode images (left), alongside
examples of in vivo images (right) from the JHH dataset with discrete
B-lines and confluent B-lines.

Training and testing dataset distributions
When investigating the influence of data augmentation, first the simulated
data described under the Data augmentation investigations section were
employed using an 80%-20% training-testing split. The resulting
simulation-trained networks were then tested on the POCUS dataset
B-mode images from healthy and COVID-19 patients described under
the In vivo data section. Table 1 summarizes the details of this training and
testing dataset with a null Strategy ID.

When exploring multiple training strategies for B-line detection with
data augmentation, we investigated seven combinations of training and
testing strategies that can be divided into two groups, using the data
described under the B-line detection strategy investigations and the In vivo
data section headings. First, for Strategies 1 to 3, the networks were trained
only on the simulated dataset and/or POCUS dataset, then tested on the
JHH dataset (i.e., the training dataset and the test dataset were drawn from
different data distributions). Second, for Strategies 4–7, the networks were
trained on 2/3 of JHH dataset, with or without various combinations of the
POCUS and/or simulated datasets, then tested on the 1/3 of the held-out
JHH dataset, which was unseen by the networks during the training
process (i.e., the training and testing datasets contained the overlapping data
distributions inherently embedded in the JHHdataset). Table 1 summarizes
the details of trainingdatasets and test datasets in each strategy. To provide a
more accurate estimate of model generalization when incorporating the
limited in vivo dataset in the training process (i.e., Strategies 2 to 7), we
employed three-fold cross-validation.

To implement three-fold cross-validation for Strategies 2 and 3, the
POCUS dataset was randomly split into three approximately equal-sized
subsets on a video level (i.e., no images from the same video were present in
multiple subsets). For each strategy, thenetworkswere then trainedon every
possible combination of two of these three subsets, with or without the
simulated dataset, resulting in three trained networks per strategy. For each
test image in the JHH dataset, we first derived a probability map averaged
across segmentation predictions from the three trained networks. We then
computed the DSC between the probability map described above and the
ground truth for each test image. To obtain the individual results for Stra-
tegies 2 and 3, the mean test DSC for the JHH dataset was obtained across
the associated test DSCs for each test image and for each training epoch
investigated.

To implement three-fold cross-validation for Strategies 4–7, the JHH
datasetwas randomly split into three approximately equal-sized subsets on a
video level (i.e., to ensure no overlap of images from the same video inmore
than one subset). For each strategy, networks were trained on every possible
combination of two of these three subsets and tested on the held-out subset,
with or without various combinations of the POCUS and/or simulated
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datasets, resulting in three trained networks per strategy and 958 total test
images per strategy. To obtain the individual results for Strategies 4 through
7, the mean test DSC of the JHH dataset was obtained across the associated
test DSCs for each test image in each held-out subset, as a function of each
training epoch investigated.

These rigorous three-fold cross-validation approaches allowed us
to average performance over different splits of the data, resulting in a
more reliable performance estimation for the limited in vivo datasets.
Due to the larger size of the simulated training datasets, we did not
employ cross-validation for Strategy 1 and for the data augmentation
investigations.

Network architecture, data augmentation, and performance
metrics
Despite the multiple training datasets, each network architecture was the
same (i.e., universal for all datasets), though the training weights for each
architecture differed. This universal architecture was based on the U-Net34

architecture and a modified version of a previously reported deep learning
architecture12. Specifically, instead of employing two separate decoders for
segmentation and reconstruction, a single decoder was used for the seg-
mentation task. Figure 3 shows the modified network architecture.

To detect features of interest, each DNN was trained for 80 epochs
using the Adam optimizer35, with a learning rate of 1e−5 and a mini-batch
size of 16. The training loss was the DSC loss, which is defined as:

DSCLoss ðθÞ ¼ 1
n

Xn

i¼1

1� 2
jSp;iðId; θÞ \ St;ij
jSp;iðId; θÞ þ St;ij

 !
ð1Þ

where Sp,i and St,i are the vectorized segmentationmasks for each training
example, and n is the total number of training examples in each mini-
batch (i.e., the mini-batch size). Data were augmented by including
horizontal flipping with a 0.5 probability, cropping and resizing with a
predefined region, contrast adjustment, and Gaussian blur with a kernel
size ranging from 3 to 25 and with a 0.8 probability. Our training was
performed on a Tesla P40 GPU, and our code was developed using the
PyTorch framework with Python 3.8. The average training time for each
epoch was approximately 578 seconds.

Statistical analyses
When comparing the impact of data augmentation, the mean ± standard
deviation of test DSC scores achieved on the held-out test sets were
measured per network per feature using the corresponding POCUS
dataset described under the In vivo data section. When comparing B-line
detections for Strategies 1 to 3, the performance of each network was
measured with the mean ± standard deviation of test DSC scores of the
entire JHH dataset, as indicated in Table 1. When comparing B-line
detections for Strategies 4–7, each network performance was measured
with the mean ± standard deviation of test DSC scores of the held-out
JHH dataset, as indicated in Table 1. We tested each network perfor-
mance on the test dataset and obtained a test DSC result after each
training epoch. This process allows us to obtain a test DSC curve along
different training epochs.

A Friedman test (two-sided) was implemented to determine statisti-
cally significant differences in the maximum DSC scores achieved for each
strategy with a degree of freedom of 2 for Strategies 1-3 and 3 for Strategies
4-7. This test method was employed because test DSC scores were not
normally distributed as indicated by the Kolmogorov–Smirnov test results.
Significance was set at p < 0.05. We additionally quantified the presence of
false positive and false negative B-line detections for each strategy investi-
gated, as there is a potential for the presence of “false positive B-lines” (i.e.,
features that look like B-lines but are not actually B-lines36) or for B-lines to
bemissed by the network (i.e., false negative). To define a true positive, each
connected component in the predicted segmentation map was considered
as an individual B-line only if it satisfied the following criteria: (1) it contains
at least 1% of the total pixels in a test image, (2) its orientation relative to
horizontal direction exceeds 40 degrees (because B-lines typically have a
vertical appearance rather than a horizontal appearance5), and (3) its
eccentricity exceeds 0.8 (i.e., the major axis of the detected shape is longer

Fig. 2 | Simulated and in vivo examples acquired at the Johns Hopkins Hospital.
Example simulated and in vivo B-mode images from the JHH dataset with discrete
B-lines and confluent B-lines.

Table 1 | Training and testing strategies for B-line detection
with data augmentation, including the data augmentation
investigations with a null Strategy ID

Strategy ID Training dataset Test dataset

null Simulated POCUS

1 Simulated JHH

2 POCUS JHH

3 Simulated, POCUS JHH

4 2/3 JHH 1/3 JHH

5 Simulated, 2/3 JHH 1/3 JHH

6 POCUS, 2/3 JHH 1/3 JHH

7 Simulated, POCUS, and 2/3 JHH 1/3 JHH

POCUS Point of care ultrasound, JHH Johns Hopkins Hospital.

Fig. 1 | In vivo and simulated examples. In vivo (adapted from ref. 30 with per-
mission from Elsevier) and simulated examples of (a) A-line, (b) B-line, and (c)
consolidation features.
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than its minor axis, which is characteristic of B-lines). We consider an
individual B-line to be successfully detected when the DSC between the
B-line, as predicted byDNNs, and the ground truth is larger than 0.4. These
analyses were performed using MATLAB R2021a software (Natick, MA,
USA). Because a clinicallymeaningful true negative definition does not exist
in the context of the true positive and false positive described herein, spe-
cificity and sensitivity were not reported.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Data augmentation benefits
Figure 4 shows example ground truth (blue) and predicted (red) segmen-
tations overlaid on the corresponding in vivo POCUS B-mode images of
each tested feature. These example results were selected from training
epochs that achieved the highest averaged test DSCs. These images
demonstrate that the predicted segmentation qualitatively achieves accep-
table agreement with the ground truth. As summarized in Table 1, the null
training Strategy ID implemented to obtain these results wasmost similar to
that of Strategy 1 (i.e., only simulated datasets were used for training net-
works, although the specific datasets utilized differed).

Figure 5 shows the mean ± standard deviation DSC as a function of
training epoch achievedwith the POCUS in vivo test datawhen segmenting
A-line, B-line, and consolidation features. In each case, the highest mean
DSC was generally improved by employing data augmentation. Without
data augmentation, the highest mean ± standard deviation DSCs were
0.40 ± 0.29 (epoch 1), 0.17 ± 0.15 (epoch2), and 0.33 ± 0.35 (epoch1) forA-
line, B-line, and consolidation features, respectively. Employing data aug-
mentation increased the highest mean ± standard deviation DSCs to
0.48 ± 0.29 (epoch 1), 0.45 ± 0.25 (epoch 20), and 0.46 ± 0.35 (epoch 75),
representing 20%, 165%, and 39% improvement, respectively, when
detecting in vivo A-line, B-line, and consolidation features. Based on these
results, our data augmentation method appears to be most influential with
respect to B-line segmentations, which supports our focus on applying this
method to this feature in our training and testing strategy investigations in
the following results.

Different training & testing dataset distributions
Figure 6 shows three examples of ground truth B-line segmentations
(overlaid in blue on the JHH B-mode images) and corresponding predic-
tionsobtainedwith Strategies 1, 2, and3 (overlaid in redon the JHHB-mode
images). In Fig. 6a, the example prediction with Strategy 1 had the fewest
false positives, whereas that predicted with Strategy 2 had the most false
positives. In Fig. 6b, Strategies 1, 2, and 3 each generated segmentationmaps
similar to the ground truth, with the segmentation map generated from
Strategy 1 being closest to ground truth. In Fig. 6c, Strategy 1 generated a
segmentation map with the most false negatives and Strategy 3 was the
closest to ground truth. In addition, despite the false negatives in Strategy 1,
the three strategies each successfully detected the presence of two B-lines, as
indicated in the ground truth.

Fig. 3 | DNN architecture implemented to segment features of interest with example input and output data. U-Net architecture for DNN segmentation with example
input B-mode image, DNN predicted segmentation, and ground truth.

Fig. 4 | Ground truth and predicted segmentations of multiple lung ultrasound
features. Ground truth (blue) and predicted segmentations (red) overlaid on lung
ultrasound B-mode images from the POCUS dataset including healthy volunteers
and COVID-19 patients: (a) A-line (healthy), (b) B-line (COVID-19), and (c)
consolidation (COVID-19) features.
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Figure 7 shows the mean ± standard deviation of test DSCs achieved
with the in vivo test data as a function of training epoch. Employing a
combination of the simulated and POCUS datasets during training (i.e.,
Strategy 3) most consistently achieved the highest test DSC.When training
with only simulated B-mode images (i.e., Strategy 1), which was the same
general approach employed in our previous conference paper14, the per-
formancewas either approximately similar for early epochs or slightlyworse
for later epochswhencompared to that of Strategy 3 (the difference between
the maximum test DSC is less than 0.02). The worst performance wasmost
consistently achieved when training with only the POCUS dataset (i.e.,
Strategy 2), which likely has a different data distribution than the test JHH
dataset. Figure 7 also reports that the training epochnecessary to achieve the
highest DSC in each training strategy varies. With the simulated training
dataset (i.e., Strategy 1), the highest test DSC was achieved with the fewest
training epochs (i.e., 20). With the simulated and POCUS training dataset
(i.e., Strategy 3), the highest test DSC was achieved with the largest training
epoch (i.e., 62). The highest testDSC for Strategy 2was achieved at an epoch
of 42, which is greater than that obtained with Strategy 1 but less than that
obtained with Strategy 3.

The first three rows of Table 2 summarize the qualitative and quanti-
tative results noted above. This table reports the maximum mean ± one
standard deviation test DSCs among all the training epochs for each strategy,
along with the training epoch at which the maximum mean test DSC was
achieved. The differences between the mean DSCs reported in Table 2 for
Strategies 1-3 were determined to be statistically significant (p = 3.2 × 10−93,
χ2 = 426). This statistical significance was achieved, even though a total of
43%,58%, and61%of the test images inStrategies1, 2, and3, respectively, had
false positive B-lines, while the corresponding percentage of false negative
B-lines was 34%, 51%, and 18%, respectively.

Overlapping training & testing dataset distributions
Figure 8 shows three examples of ground truth segmentations (blue) and
corresponding predictions (red) obtained with Strategies 4–7. In Fig. 8a,
segmentation maps generated with Strategies 5, 6, and 7 were similar to
the ground truth,whereas that predictedwith Strategy 4 had themost false
positives. In Fig. 8b, Strategy 5 generated a segmentation map closest to
ground truth, whereas that predicted with Strategy 4 had the most false
positives. In Fig. 8c, the four strategies generated segmentation maps
similar to ground truth, with Strategy 7 producing a segmentation map
that was closest to ground truth. In addition, the four strategies each
successfully detected thepresence of oneB-line,whichwas consistentwith
the ground truth.

Figure 9 shows the mean ± standard deviation of test DSCs achieved
with the in vivo data as a function of training epoch. The combined simu-
lated, POCUS, and JHH training datasets (i.e., Strategy 7)most consistently

Fig. 5 | Test DSC results obtained formultiple lung ultrasound features.Mean test Dice similarity coefficient (DSC) per training epoch ± one standard deviation shown as
shaded error bars (i.e., colored bands) when segmenting in vivo (a) A-line (n = 32 images), (b) B-line (n = 107 images), and (c) consolidation features (n = 27 images).

Fig. 6 | Ground truth and predicted segmentations obtained with Strategies 1 to
3. a–c Three examples of ground truth (blue) and predicted (red) B-line segmen-
tations obtained with Strategies 1 to 3.

Fig. 7 | DSCs obtained with Strategies 1 to 3.Mean test Dice similarity coefficient
(DSC) per training epoch ± one standard deviation shown as shaded error bars
(i.e., colored bands) when segmenting B-line features with Strategies 1 to 3 (n = 958
images per strategy).
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achieved the highest test DSC, particularly at the earlier epochs. When
trainingwith only the JHHdataset (i.e., Strategy 4), the performancewas the
worst for early epochs or similar for later epochs when compared to that of
Strategy 5, 6, or 7. In addition, Strategy 5 (i.e., combined simulated and JHH
training datasets) achieved better performance for early epochs when
compared to Strategy 6 (i.e., combined POCUS and JHH training datasets).
Figure 9 also reports that the training epoch necessary to achieve the highest
DSC in each training strategy varies. The combined simulated and JHH
training dataset (i.e., Strategy 5) achieved the highest test DSC with the
fewest training epochs (i.e., 57). The JHH training dataset and the combined
JHH and POCUS training datasets (i.e., Strategies 4 and 6, respectively),
achieved the highest test DSCwith the largest training epoch (i.e., 72).With
the combined simulated, POCUS, and JHH training datasets (i.e., Strategy
7), the epoch achieving the highest DSC was greater than that of Strategy 4
but less than that of Strategies 4 and 6 (i.e., 66).

The last four rows of Table 2 summarize these strategy results when
there is an overlap of dataset distributions among the training and testing
data. The maximum mean ± one standard deviation test DSCs among the
80 training epochs for each strategy are also reported. This approach gen-
erally achieved better performance than Strategies 1-3, which utilized
completely separate training data distributions from the JHH test data. The
differences between the mean DSCs reported in Table 2 for Strategies 4–7
weredetermined tobe statistically significant (p = 2.2 × 10−32, χ2 = 150),with
the exception of the difference between Strategies 6 and 7 (p = 0.0565,
χ2 = 3.6). This statistical significance was achieved with false positive B-line
detections in 14%, 12%, 12%, and 10%of the test images in Strategies 4, 5, 6,
and 7, respectively, while the corresponding percentage of false negative
B-lines was 11%, 11%, 10%, and 12%, respectively.

Discussion
This paper is the first to investigate multiple possible training strategies for
automated DNN segmentation of in vivo features in lung ultrasound ima-
ges. Multiple possible training strategies previously included purely simu-
lated or only in vivo data1,13,14. We now have a better understanding of
appropriate combinations of these two classes of training strategies. When
compared with our initial simulation-trained DNNs13, employing data
augmentation improved DSC scores by 20%, 165%, and 39%, respectively,
when detecting in vivo A-line, B-line, and consolidation features. Without
data augmentation, testing performance decreased after 1 or 2 epochs for
A-line, B-line, and consolidation features (Fig. 5), suggesting substantial
differences between the training and testing set. However, after applying
data augmentation, an increase in test DSC in later epochs was observed for
B-line and consolidation features (Fig. 5), suggesting that the previously
noted differences between the training and testing set were mitigated. In
addition, the proposed simulation-trained approach is not limited to the
initially demonstrated B-line detections, as acceptable performancewas also

obtained for A-line and subpleural consolidation features. However, the
greatest benefits of data augmentation were achieved for B-line detections
(Fig. 5), which are therefore the primary focus of our follow-up strategy
investigations, yielding the following four insights.

First, when datasets from the same distribution as the test dataset (i.e.,
JHHdataset) are available in the training process (Strategies 4–7), including
simulated data in the training process (Strategies 5 and 7) consistently
improved test DSC scores (compared to Strategy 4, which did not combine
data). In addition, this approach reduced the necessary training epochs to
achieve the highest test DSC, as shown in Fig. 9 and Table 2.While an even
higher DSC was achieved by combining two types of in vivo data (i.e.,
Strategy 6), it took a greater number of epochs to reach this achievement.
This group of approaches (i.e., overlapping training and testing dataset
distributions) produced more favorable results than using completely dif-
ferent dataset distributions, as expected10.

Second, when datasets from the same distribution are limited or
unavailable (i.e., Strategies 1–3), combining simulateddata with in vivo data

Fig. 9 |DSCs obtainedwith Strategies 4–7.Mean test DSCper training epoch ± one
standard deviation shown as shaded error bars (i.e., colored bands) when seg-
menting B-line features with Strategies 4–7 (n = 958 images per strategy).

Fig. 8 | Ground truth and predicted segmentations obtained with Strategies 4–7.
a–c Three examples of ground truth (blue) and predicted (red) segmentations
obtained with Strategies 4–7.

Table 2 | Performance of investigated training and testing
strategies

Strategy ID Training dataset Test
dataset

Maximum
test DSC

Achieved
at epoch

1 Simulated JHH 0.464 ± 0.230 20

2 POCUS JHH 0.407 ± 0.177 42

3 Simulated,
POCUS

JHH 0.482 ± 0.211 62

4 2/3 JHH 1/3 JHH 0.717 ± 0.185 72

5 Simulated, 2/
3 JHH

1/3 JHH 0.728 ± 0.186 57

6 POCUS, 2/3 JHH 1/3 JHH 0.741 ± 0.185 72

7 Simulated,
POCUS, and 2/
3 JHH

1/3 JHH 0.735 ± 0.187 66

DSC Dice similarity coefficient, JHH Johns Hopkins Hospital, POCUS point of care ultrasound.
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from a different distribution (i.e., Strategy 3) appears to be most effective
based on Fig. 7 and Table 2. In addition, including only simulated B-mode
images (i.e., Strategy 1) in the training process appears to be more effective
than including only in vivo B-mode images (i.e., Strategy 2). For example,
Strategy 1 improved testDSC scores by 14%when comparedwith Strategy 2
(i.e., 0.464 ± 0.230 vs 0.407 ± 0.177, p = 2.6 × 10−39). In terms of training
epoch, 52% lower values were necessary for Strategy 1 to achieve its best
performance when compared to that of Strategy 2 (i.e., 20 vs 42). Therefore,
Strategy 1may lead to amore efficient and cost-effective training approach.
In addition to higher test DSC scores and fewer required training epochs to
achieve the highest test DSC, another advantage of including simulated
B-mode images as training data is the absence of required manual labeling
(unlike in vivo B-mode images), which is tedious and time-consuming.

Third, in both classes of approaches described above, simulated data-
sets were combined with in vivo data from a different distribution than the
test dataset (i.e., Strategies 3 and 7). This combination appears to improve
test DSC scores when compared with including only the simulated dataset
(i.e., Strategies 1 and 5) in the training process whether or not in vivo
datasets from the same distribution as the test dataset are available for
training. For example, when the JHHdatasetwas not present in the training
process, combining the simulated dataset with the POCUS dataset (i.e.,
Strategy 3) improved test DSC score by 4% when compared to results
obtained with the simulation-only training used in Strategy 1 (i.e.,
0.482 ± 0.211 vs 0.464 ± 0.230, p = 3.3 × 10−7), as shown in Fig. 7 and
Table 2. Similarly, when the JHH dataset was available in the training
process, combining the simulated dataset with the POCUS dataset (i.e.,
Strategy 7) improved test DSC sore by 1% when compared to only com-
bining with simulated data as in Strategy 5 (i.e., 0.735 ± 0.187 vs
0.728 ± 0.186, p = 0.0049) basedonFig. 9 andTable 2. It isworth noting that
the network performance achievedwhen combining the in vivo datasetwith
the simulated dataset (Strategies 3 and 7) may be limited by the amount of
available in vivo data. Therefore, we suggest a training approach that
incorporates simulationdatawhenever possible, balanced by considerations
of the limited availability of in vivo data. The extent to which the incor-
poration of simulated data depends on the availability of in vivo data
remains to be determined. This open question is a possible area of investi-
gation if in vivo data availability and access to associated hand-labeled
annotations expand in the future.

Finally, when considering the seven strategies investigated, using only
in vivo data drawn from a different distribution than the test data (i.e.,
Strategy 2) appears to present limitations with regard to test DSC scores or
required training epochs. This is particularly true when compared with the
combination of simulated and in vivo data in the training process, whether
or not the in vivo training datawere drawn from the samedistribution as the
test data. For example,when the JHHdatasetwas unavailable in the training
process, only using the POCUS dataset in the training process (i.e., Strategy
2) obtained 16% lower test DSCs when compared to Strategy 3, which
combined simulated and POCUS training data (i.e., 0.407 ± 0.177 vs
0.482 ± 0.211, p = 8.0 × 10−94), as shown in Table 2 and Fig. 7. When the
JHH dataset was available for training, combining with the POCUS dataset
(i.e., Strategy 6) required 9% more epochs to achieve the highest test DSC
scores and generally required more epochs to achieve similar DSC values
(i.e., 0.741 ± 0.185 vs 0.735 ± 0.187, p = 0.0565), when compared to Strategy
7,which combined simulated, POCUS, and JHH training datasets, as shown
in Fig. 9. Therefore, based on these results, completely different in vivo
training and testing dataset distributions should be avoided, particularly
when simulated data are available to be combined with the in vivo training
data and both training efficiency and training accuracy are desired.

The presented strategy investigations and resulting recommendations
and suggestions focus on B-line features in lung ultrasound B-mode images,
with justification based on the results in Fig. 5, which show the most gains
with data augmentation applied to B-line detections and piqued our interest
for additional investigations of this particular feature. We acknowledge that
our findings with respect to the four most common types of B-lines (i.e.,
Figs. 7 and 9)may not necessarily be applicable to other features, particularly

abnormal features in lung ultrasound B-mode images. In addition, the cur-
rent simulated dataset is not representative of all real-world clinical scenarios,
and the DNN performance may be further improved by enhancing the
diversity of simulated B-mode images and incorporating a wider range of
imaging artifacts and noise, which will be the focus of future work.

Additional future work can consider implementing Generative
Adversarial Networks (GANs), incorporating motion tracking alongside
B-line feature detection, and integrating B-line feature detection with
patient demographics and clinical information (e.g., confounding variables
such as age37). GANs were previously trained to produce both B-mode
images and segmentationmaps of cysts with raw radiofrequency data as the
input38, but they can also suffer fromoverfitting to training data39–41.Motion
tracking can facilitate the visual detection of B-lines, and detect the presence
of lung sliding, which is the movement between the two pleural layers that
occurs during respiration. The combination of B-line and lung sliding
detection can aid in the diagnosis of pneumonia and pneumothorax (in
addition to COVID-19)42. Integrating B-line feature detection with relevant
patient datamay result inmore accurate andpersonalizeddiagnosis, leading
to the development of more comprehensive networks to aid diagnosis and
monitoring of lung diseases, and ultimately providing a comprehensive
approach to lung disease assessment.

Our primary objectives were to evaluate the accuracy and training
efficiency of detecting B-line features in COVID-19 patients with multiple
deep learning strategies. Detecting B-line features is an important step for
evaluating COVID-19 or other pneumonia. In addition, amongCOVID-19
patients, there is a potential for the presence of “false positive B-lines” (i.e.,
features that look like B-lines but are not actually B-lines)36. Therefore, the
accuracy of our network was additionally evaluated based on its ability to
detect real B-lines and differentiate false positive B-lines from real B-lines.
While the presence or absence of B-lines may be most important from a
clinical perspective, an accurate segmentation is expected to increase our
accuracy to quickly and efficiently determine the presence or absence of
B-lines. Our study successfully identifies the most appropriate strategies for
B-line segmentation using various combinations of available training
datasets. We consider these contributions to be major foundational steps
toward the ultimate goal of developing an effective clinical decision model,
recognizing that a comprehensive diagnosis ofCOVID-19 relies onmultiple
factors.

Data availability
We provide public access to our simulated datasets, paired ground truth
segmentations, and segmentation labels for the in vivo POCUSdataset used
herein at https://gitlab.com/pulselab/covid1932. The POCUS dataset is
available at https://github.com/jannisborn/covid19_ultrasound26. These
datasets can be accessed by downloading them from the above two links26,32.
Source data for Figures 5, 7, and 9 are accessible in Supplementary Data 1.
All other data are available from the corresponding author upon reasonable
request.

Code availability
All code underlying this article can be accessed from https://gitlab.com/
pulselab/covid1932 (https://doi.org/10.5281/zenodo.1032404243). MATLAB
(R2010a) was used to develop code to generate simulated datasets. Python
(v3.8) was used to develop code for building, training, and testing DNNs.
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