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Abstract

Background Lung cancer is associated with the greatest cancer mortality as it typically
presents with incurable distributed disease. Biomarkers relevant to risk assessment for the
detection of lung cancer continue to be a challenge because they are often not detectable
during the asymptomatic curable stageof thedisease. A solution topopulation-scale testing
for lung cancer will require a combination of performance, scalability, cost-effectiveness,
and simplicity.
MethodsOne solution is tomeasure the activity of serum available enzymes that contribute
to the transformation process rather than counting biomarkers. Protease enzymes modify
the environment during tumor growth and present an attractive target for detection. An
activity based sensor platform sensitive to active protease enzymes is presented. A panel of
18 sensors was used to measure 750 sera samples from participants at increased risk for
lung cancer with or without the disease.
Results A machine learning approach is applied to generate algorithms that detect 90% of
cancer patients overall with a specificity of 82% including 90% sensitivity in Stage I when
disease intervention is most effective and detection more challenging.
Conclusion This approach is promising asa scalable, clinically useful platform tohelpdetect
patients who have lung cancer using a simple blood sample. The performance and cost
profile is being pursued in studies as a platform for population wide screening.

Lung cancer is associated with the greatest mortality of all cancers world-
wide. In the United States (US), over 230,000 new cases are reported
annually.Once thedisease is advanced, the 5-year survival rates are 6%1.The
National Lung Cancer Screening Trial (NLST), a large prospective rando-
mized screening trial in the US demonstrated a 20% decrease in mortality
using chest low dose computed tomography (LDCT)2. Based on the US
Preventative Services Task Force (USPSTF) guidelines, there are 15.5M
individuals in the US who require screening for lung cancer based on age
and smoking related risk factors3. However, less than 5% of this at risk
population was successfully screened in 20154. Compounding this com-
pliance problem, LDCT screening methods present with large numbers of

false positive screens. The NLST initially reported a 73.4% specificity
highlighting the challenge of identifying lung cancer by imaging alone5. The
burdensome 96% false positive rate was addressed by instituting Lung-
RADSclassification criteria to standardizeanalysis in theUS.This improved
baseline specificity to 87.2% with an attendant decrease in sensitivity to
84.9%6. So there remains a serious unmet clinical need for additional tools to
identify lung cancer in the large at-risk population across all stages of the
disease process.

Technological improvements in imaging, next generation sequencing
and protein quantitation have added many more data points to the search
space for clinically relevant biomarkers. Despite this, there has been little
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Plain language summary

Lung cancer is responsible for more deaths
worldwide than all other cancers. It is often
detected with the appearance of symptoms
when treatment is limited and outcomes for
the patient are much worse. While imaging
chest scans can detect disease, they are
poorly used even in theUnitedStateswhere it
is an approved screening method. When
cancer is present, protease enzymes are
responsible for making space and modifying
the lung tissue for the growing tumor. This
report describes a panel of 18 sensors that
release a fluorescent signal when these
enzymes are present in a blood sample. The
signal acts like a fingerprint of activity that can
be used to identify people with lung cancer.
This sensor platform can detect patients with
curable lung cancer and could provide a
platform for screening very large populations
of at-risk individuals.
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overall improvement in patient outcomes for several reasons: It is during the
earliest stage of lung cancer that intervention results in a significant
reduction in mortality7. Confounding this, there are few examples of bio-
markers that are present in sufficient quantities to be specifically detected in
the earliest stages of cancer when overall survival can be successfully
influenced8 and compliance for lung cancer screening programs has been
challenging9.

Activity based sensors (ABS) rely on measuring enzyme activity from
the biomarker rather than enumeration10. Protease enzymes are particularly
good targets for ABS as they are a large family of enzymes involved inmany
biological processes and they have a well-defined role in cancer. Being
irreversible modifiers, proteases are carefully regulated with impact on
tumor cell invasion, angiogenesis, epithelial tomesenchymal transition, and
ultimately malignancy11,12. We hypothesize that a panel of protease targets
selective for a range of protease enzymes can build a “fingerprint” of activity
characteristic of the disease process associated with lung cancer. This
approach, termed Lung Enzyme Activity Profile (LEAP), is comprised of a
panel of ABS that responds to the presence of activated protease enzymes in
a blood sample selected by a machine learning approach to classify signal
distinguishing patients with or without lung cancer. The nature of the assay
makes this technique a possible solution for population scale testing
unrestricted by traditional risk definitions.

Methods
Manufacture of sensors
A solution of 2.0 g graphene (HydroGraph FGA 0.3, produced under GMP
conditions) was dissolved in 20ml dimethylformamide (DMF, Fisher Sci-
entific, Hampton NH). The solution was then dispersed using a probe
sonicator (Fisherbrand FB705 SonicDismemberator) using 20 s on and 10 s
off pulses at intensity level 35 for 60min. The dispersed graphene was
converted to carboxygraphene (CG) by warming 2.0 g dispersed graphene
in 40ml DMF in a 250ml Erlenmeyer flask suspended in a room tem-
perature silicone oil bath with a magnetic stir bar. The temperature of the
reaction was raised to 40 °C and 1.0 g of 5-bromovaleric acid (Sigma-
Aldrich)was added to the graphene suspension followedby slowaddition of
0.36 g sodium azide crystals (Fisher Scientific). Once all the reagents were
dissolved, the temperature was ramped linearly at 1 ˚Cperminute to 75 ˚C,
incubated for 1 h and then allowed to cool to room temperature. The sus-
pension was washed 3-times by centrifugation at 10,000 × g for 5min with
100% ethyl alcohol (Sigma Aldrich) and once with DMF before sto-
rage in DMF.

For manufacture of the polyethylenimine (PEI)-derivatized carboxy-
graphene (CGP) intermediate, 1.0 g of CGwas dispersed in 30mlDMF in a
flask with a stir bar. 0.54 g 1-ethyl-3-(3-dimethylaminopropyl)-carbodii-
mide (EDC) and 0.53 g 4-dimethylaminopyridine (DMAP)were added and
stirred until dissolved at room temperature. 1.2 g PEI (10,000MW bran-
ched, Sigma-Aldrich) was added and the reaction stirred for 2 h. The CGP
particles were washed 3-times with ethyl alcohol using centrifugation as
above and once with DMF. The CGP particles were stored in DMF.

The last step is the conjugation of the sensor peptide-tetrakis-
carboxyphenyl-porphyrin (TCPP). 103mg of CGP was dispersed in 16ml
DMFusing a sonicatingwater bath for 1min. 10.5 mg of EDC and 11mg of
DMAPwas added to the CGP with stirring at room temperature. 7.0mg of
TCPP labeled peptide (Aapptec, Louisville KY) was then added and the
reaction stirred for 2 h at room temperature. The resulting biosensor was
washed 3-times with ethyl alcohol and once with ethyl ether (Fisher Sci-
entific) before being dried at 40 ˚C under vacuum. The final biosensor
product was stored at−20 ˚C under argon.

DLS and Zeta potential measurements
Dynamic light scattering (DLS) and Zeta potential measurements were
takenusing aMalvern InstrumentsZetasizer. For this, a 10 µg/ml solutionof
sensor at each stage of manufacture was prepared using highly pure water
for Zeta potential (>18 MΩ-cm HPLC water, Fisher Cat#: W7-4) or 2-(N-
morpholino)ethanesulfonic acid (MES) buffer at pH 6 for DLS.

Biosensor assay
For biosensor measurements using wet chemistry, solutions of graphene
nanosensors were prepared as working solutions at 25.0 µg/ml in 10mM
MESpH7.4 containing 155mMNaCl and 10 µM final concentrations each
of MgCl2, CaCl2 and ZnCl2. The working solutions were sonicated for
10min in a sonicating water bath. 125.0 µl biosensor working solution was
dispensed in replicates in a black 96 well plate. 5.0 µl serum or control was
added to each well and the plate was incubated for incremental periods of
time in a VarioSkan Lux plate reader (Thermo Fisher). Fluorescence was
measured with 422 nm± 5 nm excitation and 650 nm± 12 nm emission at
defined intervals throughout the experiment. The chamber temperaturewas
maintained at 37, 41, or 45 ˚C as indicated.

For biosensor stimulations, 4x working solutions were prepared for
each biosensor (100 µg/ml) in 40mM MES containing 40 µM final con-
centrations each of MgCl2, CaCl2 and ZnCl2 and sonicated. Duplicate 20 µl
aliquots of all 18 biosensors supplemented with excipient were dispensed in
an array on a 384-well black plate and lyophilized. Plates were heat sealed
and stored at room temperature inmylar bagswith desiccant until used. For
use, eachwell was resuspendedwith 30.0 µL 0.9%NaCl solution for 2min at
room temperature. Then 8.0 µl of sera diluted into 42.0 µl of 0.9%NaCl was
added to eachwell in a panel of replicated biosensorwells for an 80.0 µL and
1:10 sera diluted final volume. Samples were mixed by pipetting and the
plates were incubated at the indicated temperature in the VarioSkan Lux
plate reader for 60min. Fluorescence was measured with 422 nm± 5 nm
excitationand650 nm± 12 nmemissionat 10-min intervals throughout the
experiment.

Serum samples
Blood samples from volunteers with confirmed absence of lung cancer or
presence of pathologically confirmed untreated lung cancer were col-
lected at The University of Kansas Medical Center (KUMC)(Human
Research Protection Program IRB#: STUDY00144465), Marmara Uni-
versity (Istanbul, Turkey)(Clinical Research Ethics Committee Decision
number 898 and the Turkish Medicines and Medical Devices Agency
E-68869993-511.06-570065), and the University of Southern Denmark
(Vejle, Denmark)(University of Southern Denmark Ethics Committee
IRB S-2022014) using a standard clinical protocol. All collections were
approved by IRB at the individual institutions and informed consent was
obtained from each patient in accordance with the Declaration of Hel-
sinki. Blood samples were collected in a BD Serum Separator Tube (BD
Cat # 367981). After collection, the blood tube was maintained in an
upright position for 30–60 min at room temperature before being cen-
trifuged for 10 min at 1300 r.c.f. After serum separation, sera were
recovered using a transfer pipette to freezer vials which were placed at
−80 ˚C within 4 h of sample harvest.

Machine learning analysis
We use Emerge, a quantitative artificial machine learning tools set (Liquid
Biosciences, Inc., Aliso Viejo CA). Briefly, the software has seven key
features:

i. Candidate algorithms are randomly assembled from a variety of
mathematical primordia, including variables and functions, such as
trigonometric functions (e.g., c+ sine x, where c is a constant and x is a
variable).

ii. Candidate algorithms are placed within S subpopulations of size ni,
with a total population size of sigma ni.

iii. At the start of each generation, from each subpopulation ni/2 pairs are
randomly chosen. From each pair, the algorithm with the greatest
fitness is chosen to survive, the other being discarded. Fitness is
determined according to the formal nature of the algorithm task. That
is classification accuracy in the case of this classification application.

iv. Surviving algorithms either make a copy of themselves, where that
copy is mutated, or they undergo recombination with other surviving
algorithms to create two new offspring. The parental algorithms are
retained in the population in both cases.
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v. After an initial period of w generations, every g generations the best
algorithms within a subpopulation (e.g., the best p percent) migrate to
their nearest neighbor subpopulation in a toroid pattern with a uni-
directional flow. Such migration is without replacement.

vi. After w+ gS generations, the remaining algorithms are evaluated on
the Selection data subset with respect to both accuracy and reliability.
Accuracy is reflected by a combination of sensitivity and specificity as
measured in the Selection subset. Reliability measures consistency of
this Accuracy between training and selection data subsets. A single
algorithm is automatically selected based on a combination of these
two measures. The accuracy of this algorithm is then measured in the
out-of-sample Test data subset, not for any further selection but to
provide an estimate of performance on future prospective samples
from patients under the same assay process, and under approximately
the same patient selection criteria.

vii. A third subset of data is used to test the resultant winning algorithm
with respect to its fitness and consistency. The results of this final test
are taken to provide an estimate of algorithm performance on sub-
sequent novel bodies of data.

This methodology uses predictive or classification fitness in an evo-
lutionary setting to evolve by mutation, cross-over or migration, and then
naturally select Turing machines selecting for improved algorithmic pro-
geny with each generation. By evaluating on the order of 1015 algorithms,
Emerge effectively replicates natural selection in silico using Turing
machines to capture biological aspects of the relationship between the
biosensor activity and the presence or absence of disease. Each algorithm is
comprised of a sequence of instructions. Each instruction applies a single
mathematical or logical function to one or more operands, then stores the
resulting value in a memory register that is used by at least one subsequent
instruction. The Emerge platform has a broad palette of 48 mathematical
and logical functions that are available to the evolutionary process. This
approach of evolutionary computing emerged from John Holland and
colleagues13. While neural networks, deep learning and other forms of
machine learning andartificial intelligenceare frequently cited, evolutionary
computing methods are emerging as superior to such mainstream tech-
nologies in complex quantitative problem domains characterized as inverse
problems14–16.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Graphene biosensor assembly
Detectionof protease enzymeshas traditionally reliedonexpression systems
such as ELISA based affinity methods17. Numerous approaches to mea-
suring the endogenous activity of protease enzymes using more sensitive

fluorescence based activity assays have been developed18,19. However, the
ability to detect endogenous protease activity in a complex medium such as
serum has been more complicated20. While graphite derivatives are attrac-
tive as efficient broad spectrum quenchers of fluorescent dyes, the stringent
chemical modification required to convert graphite to graphene is difficult
to standardize with the product producing varied noise backgrounds21.

We have developed a biosensor using a graphene based backbone that
relies on the reproducible structure of explosion-synthesized turbostratic
graphene22. The Raman spectra of the core particle show characteristic
graphene features with D, G, and 2D peaks centered at 1340, 1575, and
2680 cm−1 respectively (Supplementary Fig. 1). For particle assembly,
explosion-synthesized graphene was prepared by deagglomeration of tur-
bostratic fractals (HydroGraph, Toronto, Canada) using sonication. The
deagglomerated few-layer graphene n = 7.2+ /− 2.3 layers, (Supplemen-
tary Table 1 and Supplementary Fig. 2) was surface-carboxylated and then
coatedwith awater soluble polyethyleneimine (PEI) skin. ThePEI-modified
carboxygraphene was further functionalized with peptide labeled with the
fluorescent dye tetrakis-carboxyphenyl-porphyrin (TCPP) (Aapptec,
Louisville, KY) (Fig. 1). The biosensor particle size, by DLS, averaged
473 nm (s.d. = 77 nm) in the initial graphene particles to 239 nm (s.d. =
40 nm) in the completed biosensor (Supplementary Table 2). The particle
size was also measured using a microfluidic resistive pulse sensing Spec-
tradyne nCS1 platform. In agreement with the DLS observations, the
weighted average of the biosensor particles measured between 87 and
212 nm in diameter (Supplementary Fig. 3). The Zeta potential surface
charge decreased as the surface was modified first with carboxylic acid
(−14mV average Zeta potential) followed by PEI tethering (41mV aver-
age) and then the addition of the dye-peptide moiety (31mV) (Supple-
mentary Table 2) consistent with the additional charge added to the surface.
Furthermore, elemental analysis of the biosensors during fabrication
showed incremental inclusion ofHydrogen andOxygen after carboxylation
of the graphene backbone. Addition of Nitrogen was observed only after
addition of the PEI skin (Supplementary Table 3). The biosensors so pro-
duced maintained stable colloidal solutions for up to nine months (Sup-
plementary Table 4).

To design peptide sequences for selection of protease activity, we
reasoned that protease enzymes, which demonstrated significantly altered
transcriptional expression between primary tumor samples and healthy
human tissuewould be productive candidates for differential activity23. Both
Non-Small Cell LungCancer (NSCLC) and Small Cell LungCancer (SCLC)
expression datasets were interrogated and compared to matched normal
lung expression to identify proteases differentially regulated in lung cancer
tissue24. Ten proteases were identified with an expression pattern that could
support differentiation of normal and lung cancer tissue (p ≤ 0.001 for all 10
markers) as well as distinguishing SCLC and NSCLC (Supplementary
Fig. 4). This list was expanded to include peptides designed in previous
studies which had shown different protease enzyme profiles in breast,
pancreatic and lung cancers (Table 1)18,25–27.We alsomanufactured a sensor

Fig. 1 | Assembly and activation of biosensors. Turbostratic graphene was deag-
glomerated using sonication (A) and subsequently modified by carboxylation using
bromovaleric acid (B). The sensors are further modified by coating with a polymer
layer of polyethylenimine (PEI) (C). Enzyme specific peptide sequences terminated

with tetrakis-carboxyphenyl-porphorin (TCPP) are added to the surface (D).
Incubation with serum containing active protease enzyme results in cleavage of the
cognate peptide allowing fluorescence detection in a fluorescent plate reader.
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for Arginase activity which responds to the post-translational deamination
of arginine to ornithine28 and contributes to regulation of anti-tumor
inflammatory responses29,30.

Biosensor mode of action
The biosensors are activated when the peptide tethering TCPP to the gra-
phene particle is severed or altered by a proteolytically active enzyme or
post-translational modification, thus removing the quenching action of the
graphene particle.This panel of 18different biosensorswere lyophilized into
a 384-well format (Argonaut Manufacturing Services, Carlsbad, CA). For
activation, the sensors were stimulated with a 1:10 dilution of sera in acti-
vation buffer with an 80 µl reaction volume (see online materials and
methods). Unexpectedly, increased protease activity was observedwhen the
assay was incubated at increased temperature. At 60min Biomarker-12
(BM12) produces 3.0-foldmore fluorescence at 45 ˚C than 37 ˚C (Student’s
t test p = 0.002). At 41 ˚C, the increment is 1.6-fold (p = 0.004). The increase
was 3.4-fold (p = 0.009) and 1.8-fold (p = 0.002) for BM08 (Supplemen-
tary Fig. 5).

A standard curve was included by diluting BM19 peptide-TCPP from
800 ng/ml to 25 ng/ml. The standard curve R2 was >0.9999 across 85 plates
(SupplementaryFig. 6, SupplementaryTable 5).As eachbiosensor releases a
peptide-TCPP fragment when activated, the standard curve was able to
calculate the TCPP released for all biosensors with a lower limit of quan-
titation of 2.98 ng/ml. Using this approach, the range of peptide-TCPP
produced by each biosensor incremented kinetically relative to the back-
ground fluorescence of diluted sera only (Supplementary Fig. 7). In the
absence of serum, the sensors displayed no significant release of TCPP-
peptide in 60min (Supplementary Fig. 8A). Sera presented the greatest
signal for all biosensors consistent with the elevated proteolytic profile
observed in serum rather than plasma (Supplementary Fig. 8)31. The intra
assay variation on triplicate determinations of 14 sera displayed an average
coefficient of variation (CV) of 6.0% across the panel (Supplementary
Table 6).

Clinical samples
Samples were collected at two sites (KUMC andMarmara University) in
prospective cohorts from participants who were defined by the USPSTF
criteria as at increased risk for lung cancer based on age (between 50 and

80 years of age) and smoking history (current smokers with greater than
20 pack years or cessation within the last 15 years). Participants without
lung cancer underwent chest CT screening and necessary follow up
review to confirm negative status. Patients with lung cancer all had
pathologically confirmed disease and were treatment naïve. A third site
(Vejle Hospital) collected prospective samples from donors identified
clinically as at risk for lung cancer so included some number outside the
USPSTF age and smoking limitations. Patients at Vejle Hospital were
followed to diagnostic resolution as negative for lung cancer by chest CT
scans and necessary follow up to confirm the absence of disease. Patients
positive for lung cancer all had disease pathologically confirmed
(Table 2). 450 unique donor samples were evaluated using the LEAP
panel. In addition, a subset of 150 samples reflecting the same distribu-
tion of site and cancer, were analyzed an additional 2 times to estimate
precision for a total of 750 assays. Samples were randomized and blinded
such that samples with lung cancer and from each site were distributed
evenly. The fluorescence was converted to concentration and wells

Table 1 | Amino acid sequence of enzyme sensors

Biomarker No. Dye - Oligopeptide sequence aa 1˚ Target

BM01 TCPP-GAGVPMSMRGGAG 13 MMP-1

BM02 TCPP-GAGIPVSLRSGAG 13 MMP-2

BM03 TCPP-GAGRPFSMIMGAG 13 MMP-3

BM04 TCPP-GAGVPLSLTMGAG 13 MMP-7

BM05 TCPP-GAGVPLSLYSGAG 13 MMP-9

BM06 TCPP-GAGPSGLQTGAG 12 MMP-10

BM07 TCPP-GAGGAANLVRGAG 13 MMP-11

BM08 TCPP-GAGPKALGLAAG 12 MMP-12

BM09 TCPP-GAGPQGLAGQRGIVAG 16 MMP-13

BM10 TCPP-GAESDASQTGAG 12 MMP-15

BM11 TCPP-GAGSLLKSRMVPNFNAG 17 CTS-B

BM12 TCPP-GAGDSGLGRAG 11 CTS-D

BM13 TCPP-GAGEVALVALKAG 13 CTS-E

BM14 TCPP-GAQFVRSPSGAG 12 CTS-H

BM15 TCPP-GAGAKLKAENNAG 13 CTS-K

BM17 TCPP-GAGGEPVSGLPAG 13 NE

BM18 TCPP-GAGSGRSAG 9 uPA

BM19 TCPP-GAGRRRRRRRAG 12 Arginase

Table 2 | Demographics of participants

Individual Donors n = 450

Sex, No. (%)

Male 282 (63%)

Female 168 (37%)

Age, No. (%)

0–49 14 (3%)

50–59 170 (38%)

60–69 153 (34%)

70–79 97 (22%)

≥80 16 (4%)

Smoking Status, No. (%)

Current 238 (53%)

Former 172 (38%)

Never 40 (9%)

Site, No. (%)

KUMC 84 (19%)

Marmara University 235 (52%)

Vejle Hospital 131 (29%)

Diagnosis, No. (%)

Non-Lung cancer 318 (71%)

Lung Cancer 132 (29%)

Histology, No. (%)

Adenocarcinoma 78 (59%)

Squamous Cell 41 (31%)

Other 6 (5%)

Small Cell 1 (1%)

Large Cell 1 (1%)

Large Cell Neuro 1 (1%)

Typical Carcinoid 2 (2%)

Poorly Differentiated 1 (1%)

Unknown 1 (1%)

Cancer Stage, No. (%)

I 53 (40%)

II 23 (17%)

III 27 (20%)

IV 28 (19%)

Unknown 4 (3%)
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producing fluorescence below the lower limit of quantitation were
marked as zero.

Analysis of overall biosensor activity revealed an average decrease in
sensor activity in the context of lung cancer of 5.4% calculated as the dif-
ference between cases and controls expressed as a percent of lung cancer
signal. These differences were revealed across the kinetics of the assay
starting at 10min and continuing to 60min. Of the 108 measurements
taken between 10 and 60min, 49% demonstrated a p ≤ 0.01 (Fig. 2). Indi-
vidual timepoints for single biosensors that demonstrated the most sig-
nificant differences between lung cancer and non-lung cancer were
examined. Biosensors with timepoints (Biosensor_time) BM01_40,
BM10_40, BM13_50, BM14_50, BM17_20, BM18_30 and BM19_20
averaged a 9.5% (range 7.7% to 12.3%) decrease in activity between lung
cancer and non-lung cancer samples. The Hotelling’s T2 test for these
measurements returned a significant result (p = 3.38 × 10−5) for the differ-
ence between the lung cancer and non-lung cancer cohort.

To evaluate the diagnostic capacity of this platform, analysis was
performed using Emerge software. Emerge is a quantitative artificial intel-
ligence platform designed as an unbiased methodology to produce trans-
parent algorithms from complex biological data without prior assumptions.
Biological functions result from complex networks of molecular
interactions32. Identifying explanatory factors associated with outcomes
from a set of observations in suchmolecular data is an “inverse” problem33.
Traditional analytical approaches and mainstream artificial intelligence
technologies are not suitable for addressing inverse problems from datasets
with largenumbers of variablesbecause of the highdimensionality andnon-
linear relationships. Emerge was designed as a fusion of evolutionary
principles, signal processing functions, and information theory to address
inverse problems.

The software is agnostic to the nature of a problem in terms of
explanatory variables, dimensionality or underlying mathematical rela-
tionships. Rather, it identifies both key variables and mathematical rela-
tionships associated with outcomes of interest. The data were divided into
distinct, non-overlapping random subsets that were sequentially processed:
A Training set, a Selection set, and a Test set segregating a third of the
samples balanced for disease status, disease stage, trial site, sex, patient age,
smoking status, and histology so all are represented approximately equally
in each set. Analysis of the Training set provided the initial algorithmic
models which were randomly generated using biomarker variables and
mathematical or logical functions selected from a palette of 48 functions.
These models are iteratively selected andmutated in silico to evolve models
that identify relationships that support accurate classification. The resulting
calculations were then evaluated on the held-out Selection subset to select a
final model independent of the Training set. The performance of the final
Ensemble model was confirmed on the third out-of-sample Test set. The
Training, Selection, and Test data subsets were segregated as described, to
avoid information leakage between discrete steps in the modeling process.
As such, no resampling or cross-validation was performed to avoid over-
statement of the prospective out-of-sample performance.

After the Emerge analysis, the final Ensemble applied to the Test set
resulted in a 90% (95% Confidence Interval (95% CI), 80–96%) Sensitivity
and82%Specificity (95%CI, 76–88%) (Table 3). The entiredata set andTest
sets provided generally consistent performance results.With the application
of weighted bias to the Ensemble models, the Ensemble performance was
able to range from a Specificity of 86% (95% CI, 80–91%) to a Sensitivity of
97% (95% CI, 90–100%). Using the Sensitivity Max algorithm, 22 of 22
(100%) Stage IA lung cancer cases were correctly classified including 0/1
(0%), 8/9 (89%) and 11/12 (92%) of Stage IA1, IA2 and IA3 samples

Fig. 2 | Difference in sensor activity between patients with and without lung
cancer.The average biosensor signal at each timepoints for patients with lung cancer
(LC) or without lung cancer (Non-LC) is displayed for each biomarker. For clarity,
only up to 200 samples are displayed on each graph. The average signal for each

group is marked with a black line. Timepoints for each biomarker which display a
significant difference using a t test are indicated using bars annotated with the
relevant P-value.
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respectively; the setting where localized disease offers the best outcome for
patients (Supplementary Table 7). The Test set demonstrated an incre-
mental performance of 90%, 74%, 94%, and 100% Sensitivity for Stage I
through IV respectively using the Ensemble. Within these subsets, the 95%
CI were overlapping suggesting while LEAP maintains clinically relevant
performance across all stages of disease, additional data will be needed to
more clearly define performance boundaries.

Critically for the application in clinical settings, triplicate measure-
ments of 50 sera samples in theTest setwereused to estimate theprecisionof
the system. In the Test set, a precision of >90% (Range: 90–98%) was
observed for each of the algorithms (Supplementary Table 8).

The information contribution of each of the biosensors was evaluated
by factoring the number of times each sensor was picked during the selec-
tion stepand its contribution to thefinal accuracy, normalized to the average
of all the metrics measured (Fig. 3). In this approach, 100% indicates a
biosensor contribution equivalent to the average of the selection and diag-
nostic impacts. The biosensors could be separated into high (>200%),
intermediate (100–200%) and low (<100%) performance relative to the
average. There were 7 sensors which contributed greater than 200% relative
impact suggesting there is a subset of sensors that may be sufficient when
greater assay density is required. Interestingly, the sensors that demon-
strated the most significant percent difference measured by difference
between lung cancer and non-lung cancer cohorts were only overlapping
with the sensors with greatest relative impact. The best performing time
intervals for the 7 sensors that showed >200% change in relative impact
producedan average decrease in signal of−7.4% (range:−2.1% to−12.3%).
However, when these time intervals were tested using Hotelling’s T2 ana-
lysis, the p value improved to 4 × 10−6.

This assaywas evaluated here in the context of a populationwith a 29%
cancer prevalence. In a theoretical screening population of 100,000 at-risk
individuals, the NLST data predicts the prevalence of lung cancer would be
0.91%2. As screening compliance in the United States was 3.9% in 201534, a
primary impediment to identifying lung cancer by screening depends on

compliance. In contrast, it has been shown that a blood test provided for the
early detection of colon cancerwas selected 93.5%of the time illustrating the
improved compliance obtainable with a blood draw35. We considered the
setting were the LEAP assay serves as a decision support triage tool for
LDCT screening. Estimating the blood test could demonstrate 75% com-
pliance, the LEAP triaged population would result in 520 cancers being
discovered using Lung Imaging and Reporting Data System (LungRADS)
assessment and followup as practiced in theUnited States6. In contrast, with
the observed 3.9% compliance, LDCT only would detect 30 lung cancers.
Thus, inclusion of a modestly compliant LEAP test would increase lung
cancer detection 17-fold by increasing the positive predictive value of the
LDCT screen from5.7% (95%CI, 3.9–8.1%) to 23.7% (95%CI, 21.9–25.5%)
(Supplementary Table 9).

Discussion
This study describes a blood-based ABS assay that demonstrates clinically
useful detection of lung cancer across all stages. The tool relies on a fluor-
escent protease assay with a classification performance that would support
triage of an at-risk population for lung cancer screening decision support.
For the purposes of this study, the USPSTF risk criteria were used in the
selection of patients. In these cohorts, we observed a sera-based specificity of
82%and sensitivity of 90%across all stages of disease. The cancer free cohort
consists of age matched individuals with a similar smoking history. More-
over, because of the absence of radiation, the distributed nature of a blood
sample, and the performance, the assay could be deployed in a wider risk
group with the appropriate validation.

During review of the risk recommendations, theUSPSTF examined 10
randomized control LDCT screening trials for accuracy and documented a
mean 80.3% Sensitivity (range 59.0%–95.0%) and 76.4% Specificity (range
26.4%–99.2%)36. In the context of informing patient selection for LDCT
screening therefore, the balanced Ensemble has a performance that could
serve as a decision support tool for LDCT screening. The tunable nature of
the Ensemble allows consideration in other regions outside theUS thatmay
have different selection criteria and different future implementations of
LDCT screening. A bias towards Sensitivity is seen in other tests.Mathios et
al., report a combination of clinical risk, CEA protein levels, and fragmen-
tation profiles to detect 91% stage I/II patients at 80% specificity37. A four
biomarker panel evaluated on Prostate, Lung, Colorectal, and Ovarian
(PLCO)Cancer Screening Trial samples returned a Sensitivity of 85.0% and
Specificity of 71.1%38.

The participants recruited for this study used regional LDCT classifi-
cation rules that will reflect the range of specificity attributable to LDCT.
Without longitudinal sampling of a defined cohort, it is unclear if part of the
82% specificity observed with the LEAP assay may capture an overlap
between LDCT false negative and LEAP false positive signal. Longitudinal
collection of screening samples to measure LEAP sensitivity will require
future clinical trials. There is also a possibility of overlap between the LEAP
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Fig. 3 | Relative impact of biosensor panel.Each biosensor was ranked based on the
contribution of selection and diagnostic power. Results indicate performance rela-
tive to an average impact of 100%.

Table 3 | Cohort Performance: The assay performance in the
entire data set (top) or the out-of-sample Test set (bottom) are
indicated along with the 95% confidence intervals calculated
using the Clopper-Pearson interval

Entire Data Set (n = 750)

Spec Max Spec Bias Ensemble Sens Bias Sens Max

Sensitivity 61% 63% 84% 85% 96%

95% CI 55–68% 57–70% 79–89% 80–89% 92–98%

Specificity 86% 86% 81% 80% 57%

95% CI 83–89% 83–89% 77–84% 76–83% 52–61%

NPV 84% 85% 92% 93% 97%

PPV 66% 65% 64% 64% 48%

Accuracy 79% 79% 82% 81% 68%

95% CI 76–82% 76–82% 79–84% 79–84% 65–72%

Validation Set data (n = 250)

Sensitivity 62% 62% 90% 91% 97%

95% CI 49–73% 49–73% 80–96% 82–97% 90–100%

Specificity 86% 85% 82% 82% 54%

95% CI 80–91% 79–90% 76–88% 75–87% 47–62%

NPV 86% 86% 96% 96% 98%

PPV 63% 61% 66% 65% 44%

Accuracy 80% 79% 84% 84% 66%

95% CI 74–84% 73–84% 79–89% 79–89% 60–72%

The 90% and 82% sensitivity and specificity values are bolded as they are the primary out-of-
sample performance data reported in the paper.

https://doi.org/10.1038/s43856-024-00461-7 Article

Communications Medicine | (2024)4:37 6



profile for lung cancer with additional inflammatory diseases including
other cancers. However, application to a particular risk group restricts the
clinical use case to lung cancer rather than a multi-cancer detection tool.

Wenote that the sensors designwas restrictedby expression analysis of
normal and lung cancer tissue. There are classes of proteases globally
expressed that have clear impact on lung cancer that could be included in
future panel designs to improve the performance in other patient risk
groups. The Complement fragment C4d has been shown to be diag-
nostically elevated in bronchial fluids and saliva39. Analysis of peptidome
profiles in lung cancer also detected degradation products of Complement
C3 and C4 activation further implicating the inflammatory role of the
Complement cascade40. TheKallikrein (KLK) family of protease, specifically
KLK6, KLK13 and KLK14, have been implicated in a preclinical model of
protease detectors for lung cancer41. These proteasesmayprovide additional
useful targets for ABS with impact on Sensitivity or Specificity42.

Interestingly, while the biosensors were initially designed to be selective
for certain proteases, the in vitro serum activity is likely selective formultiple
different enzymes for each sensor. A simple estimation of the number of
cleavage sites using the PROSPER tool suggests this panel is digested at 2.5
different sites per peptide on average when evaluating only 24 different
proteases43. Therefore, as activity is revealed by thefirst of any active enzyme,
thediagnostic power of thepanel is challenging todissect to specific enzymes.

In our analysis of the impact of each of the biosensors (Fig. 3), all the
sensors were selected by Emerge to have contributed positively to the diag-
nostic performance. Allowing for the promiscuity of protease activity44, the
literature does support a role for many of the selected targets. Both MMP2
and its inhibitor TIMP are elevated in bronchial alveolar lavage fluid45 and
serum46 from lung cancer patients. Cordes et al., examined the expression of
all 13 Cathepsins in the context of lung cancer and found over expression of
both CTSB and CTSK were significantly associated with poorer 5-year
survival47. Previous observations by Werle et al., demonstrated significantly
altered expression of CTSB and uPA and unfavorable prognosis associated
with increased tissue activity of CTSB48. CTSH interestingly shows little
change inprotein expression in tissue samples but increased detection in sera
maybe reflecting increased secretion, especially in smokers49. Arginase 1 and
2 expression is increased in lung cancer tissue50. Arginine depletion is sug-
gested to alter T cell responses in vitro50 but it is not associated with worse
prognosis unless cancer associatedfibroblastARG2 expression is examined51

possibly consistent with the boundary region expression of Arginase activity
in a preclinical model28. Both MMP7 and MMP12 protein expression is
increased in both tissue and matched serum samples52. MMP9 has been
shown to be both over-expressed53 and show elevated tissue activity in
NSCLC tissue54. Conversely, ABS showed elevated MMP1 and MMP2
activity but notMMP9activity relative to control tissue samples emphasizing
the necessity of repeatable standardized measurement tools55.

This study observed that the level of protease activity was generally
decreased in lung cancer samples. Thismust be interpreted in the context of
numerous studies describe above that measure increased expression of
zymogens. That activity is decreased by 2–12% in serum samples from
cancer patients suggests the cascade of zymogen activation is efficientwithin
the proteolytic network at the tumor site, and this is reflected in a distance
serum sampling event. This efficiency is not unexpected given the irrever-
sible nature of protease activity. Alternatively, protease inhibitor ratios may
be altered outside of the tumor site53,56. In addition, due to mutations, epi-
mutations and misfolding events in cancer, the activity of proteases may be
different than in healthy tissue. For instance, proteases which require acidic
pH for activation (e.g., cathepsins), show different activity at neutral pH.
Consequently, the network of proteases is disturbed, which can be detected
with a panel of proteases using serum from healthy patients as standard57.

The existing evidence for in vivo cancer associated protease activity has
relied on preclinical models41,58 and the library of proteolytically derived
peptides found in human serum40. Analysis of the serum peptidome
demonstrated tumor specific patterns of proteolytic degradation that sup-
port adiagnostically useful signatureofpeptide generating enzymes. Inmass
spectrometry approaches, significantly greater signal was observed in serum

than in plasma consistent with our observations (Supplementary Fig. 8).
Thus, there appears to be a direct link between patterns of proteolytic
activity and disease status. In this setting, artificial protease substrates can
usefully serve as surrogate biomarkers to the serum peptidome for the
detection and classification of cancer59.

There are numerous efforts to develop additional biomarkers with
utility in the detection of lung cancer. These approaches include mod-
ifications to the risk group classification6,60 or blood based biomarkers.
Biomarkers are typically related either to the inflammatory process asso-
ciated with the onset of cancer61,62 or circulating free nucleic acids (cfDNA).
The cfDNA space has progressed from an analysis of mutations associated
with disease63 to patterns ofmethylation64 or fragment characteristics37. The
challengewith all these approaches is that they are fundamentally biomarker
counting technologies. As such, they are limited by the tumor volume and
there are very real biological limitations to the number of biomarkers that
can be counted. These results compare favorably with results published for
other validated blood tests designed for lung cancer detection. The validated
Galleri test (Grail,MenloParkCA)has a sensitivity for Stage I lung cancer of
22%65. Similarly, the EarlyCDT lung test produced an overall sensitivity of
33% in ahigh risk cohort studywith 21% sensitivity in Stage I–II lung cancer
patients66. Somalogic reported79% sensitivity and 71% specificity in Stage II
to IV validation samples from the Early Detection Research Network
biobank52. Nucleix validated a 87% sensitivity and 64% specificity using a
PCRbasedmethylation assay67. The advantage of using anABS is that single
molecule events, being enzymes, can generate multiple signals from a bio-
sensor resulting in amplified signal and performance.

This study has some limitations being addressed by ongoing data
collection. Being designed primarily around cohort samples, the real-world
performance in an all-comers LDCT screening setting is limited to a subset
of the samples. Despite this, the non-lung cancer control group is drawn
from age and smoking matched patients. Further, the machine learning
tools have been focused on the presence or absence of disease. To draw
accurate boundaries between pulmonary inflammation and cancer, more
samples will have to be examined. For instance, SCLC is only represented at
1% in this cohort. These data have been restricted to a defined clinical risk
population so afinding of abnormal activitymay be assigned to lung cancer.
However, as a platform technology, the definition of activity changes
associated with disease will need to be further elaborated to use protease
activity in multiple different cancers.

In summary, serum-based ABS are suitable tools to detect protease
activity associated with the presence of lung cancer. To define this system,
we identified targets selective for proteases most differently regulated in
patients with or without lung cancer and used machine learning to distin-
guish normal and abnormal enzyme activity. This approach results in an
assay with high performance in the context of detecting lung cancer and a
cost effective and rapid turnaround. Ongoing validation studies focused on
all comers screening studies andother cancers could result in a tool verywell
suited to population wide screening.

Data availability
All source data for all the figures in the main manuscript is available in the
Supplementary Data 1.xlsx file available online. Requests for access to the
Ensemble Excelmodelwill undergo a prompt review to ensure the request is
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to Ensemble Excel model data will be subject to a data transfer agreement.
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