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Abstract

Background A lack of fine, spatially-resolute case data for the U.S. has prevented the
examination of how COVID-19 infection burden has been distributed across
neighborhoods, a key determinant of both risk and resilience. Without more spatially
resolute data, efforts to identify and mitigate the long-term fallout from COVID-19 in
vulnerable communities will remain difficult to quantify and intervene on.
MethodsWe leveraged spatially-referenceddata from21states collated through theCOVID
Neighborhood Project to examine the distribution of COVID-19 cases across
neighborhoods and states in the U.S. We also linked the COVID-19 case data with data on
the neighborhood social environment from the National Neighborhood Data Archive. We
then estimated correlations between neighborhood COVID-19 burden and features of the
neighborhood social environment.
Results We find that the distribution of COVID-19 at the neighborhood-level varies within
and between states. Themedian case count per neighborhood (coefficient of variation (CV))
in Wisconsin is 3078.52 (0.17) per 10,000 population, indicating a more homogenous
distribution of COVID-19 burden, whereas in Vermont the median case count per
neighborhood (CV) is 810.98 (0.84) per 10,000 population. We also find that correlations
between features of the neighborhood social environment and burden vary in magnitude
and direction by state.
Conclusions Our findings underscore the importance that local contexts may play when
addressing the long-termsocial andeconomic fallout communitieswill face fromCOVID-19.

In the United States (U.S.), the COVID-19 pandemic has affected nearly
everyAmericanandnearly everypart ofAmerican life.However, theburden
ofCOVID-19hasnot been equally distributedacross theU.S andglobally.A
recent study by Bollyky et al. provides compelling evidence for the stark
differences in the distribution of COVID-19 cases and deaths across states
within the U.S., as well as the link between those state-level differences and
socioeconomic and demographic state characteristics. The authors reported
up to a four-fold difference in age- and comorbidity-standardized COVID-
19death rates across states in theU.S.1Moreover, infections anddeathswere
disproportionately clustered in states with lower levels of education, higher
levels of poverty, limited access to healthcare, and lower levels of self-
reported trust in one another1. This report follows a 2021 study that found
that individuals living inU.S. stateswithhigh levels of pre-pandemicpoverty

and a greater proportion of non-Hispanic Black individuals experienced a
greaternumberofCOVID-19hardships including food insufficiency, lossof
income, unemployment, and housing instability, and that racialized
minorities had a slower recovery from these hardships than their white
counterparts2.

While variation in disease risk and post-pandemic socioeconomic
repercussions between states has been well documented, a growing number
of studies have demonstrated such heterogeneities also exist within states,
and specifically between neighborhoods within states3–15. Understanding
local trends is essential for not only quantifying but intervening on the
growing social and economic inequities that are a consequence of the
uneven burden of COVID-19. Neighborhoods are a source of both risk and
resilience to COVID-19 and its long-term sequelae due to their social and
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Plain language summary

A lack of data on the geographic location of
COVID-19 cases in the U.S has limited our
ability to examine how COVID-19 burden has
been distributed across neighborhoods
within U.S. states. It may be that certain
neighborhoods have borne a dispropor-
tionate burden of COVID-19 and are more
likely to experience greater long-term social
and economic consequences from the pan-
demic. We used data from 21 states to
examine the distribution of COVID-19 cases
across neighborhoods and states in the U.S.
We find that the distribution of COVID-19
varies widely both within neighborhoods in a
state, and between states. We also find that
the features of the neighborhood social
environment that are correlated with neigh-
borhoodCOVID-19 burden vary by state. Our
findings show that the local neighborhood
may play an important role in addressing
long-term social and economic con-
sequences from COVID-19.
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economic characteristics (e.g., crowding, housing density, affluence, busi-
ness types, and political partisanship)16–22. Since the start of the COVID-19
pandemic, socioeconomically disadvantaged neighborhoods have faced
substantially greater population losses, economic hardships, and business
closures compared to less disadvantaged neighborhoods, particularly those
neighborhoods with a greater share of working-aged adults. For example, in
the early months of the pandemic, a multi-state study of COVID-19 pre-
valence by ZIP code found a higher burden of disease in socioeconomically
disadvantaged ZIP codes in Illinois and Maryland3.

Despite initial evidence indicating neighborhood and state contexts
play an important role in shaping COVID-19 risk and resilience, twomajor
gaps in both data availability and research have hampered efforts to fully
understand neighborhood variation within states in the U.S. First, there has
been lack of fine-scale, spatially-resolute COVID-19 case data made avail-
able publicly for analysis across the U.S. The national efforts to collate
spatially-referenced data have largely focused on the county- or state-level
(e.g., Centers for Disease Control and Prevention COVID-19 Data Tracker
or the Johns Hopkins University Coronavirus Resource Center, or the
Institute forHealthMetrics andEvaluation’s (IHME)COVID-19modelling
database)1,23–27. There have been several initiatives that seek to understand
neighborhood trends but have focused on select cities only. For example,
The Big Cities Health Coalition (BCHC) created a dashboard where the
distribution of COVID-19 cases across neighborhoods (i.e., ZIP code
tabulation areas) could be examined and linked with relevant social indi-
cators for 35 U.S. cities28. In another example, the City Health Dashboard
initiative provided small-scale, spatially-referenced data on a range of
health, social, and demographicmetrics for over 750 small and large cities in
the U.S.29, which at one point included a neighborhood-level COVID-19
risk index30.

Second, while some studies have examined neighborhood variation in
COVID-19 burden, they are limited to cities, thereby omitting data from
geographic areas beyond the chosen urban settings. For example, studies
that have examined finer spatial levels (e.g., ZIP code and/or census tract)
have been limited to a single city, region, or state3–5,8–14,31–47. Some of these
studies have examined a group of cities, regions, or states, including the
BCHC initiative noted above but nonehave employed an expansive effort to
look at trends across diverse regions of the U.S.3,10,31,36,38,45 As a result of both
the data and research gaps described above, the analyses that have been
conducted examining neighborhood-level variation and state differences in
neighborhood-level variation have been biased towards cities lending little
insight into what is happening among rural populations. Several studies
conducted early in the pandemic documented temporal and spatial differ-
ences inCOVID-19burdenbetweenurban and rural areas48with rural areas
continuing to experience spikes in COVID-19 cases when cases were
receding in urban areas49. Further, these trends extend beyond the U.S.
setting; studies in both the U.S. and U.K. have documented the unequal toll
the pandemic and its aftermath continue to have on rural communities
compared to urban communities50–52. Taken together, these studies high-
light the need for rural communities to be included in both our data and
models to understand the predictors of COVID-19 burden and its
consequences.

Todirectly address these gaps,we launched theCOVIDNeighborhood
Project (CONEP) in 2021. CONEP is a repository of locally-referenced
(census tract or ZIP code tabulation area (ZCTA)) COVID-19 case data
fromApril 2020 toApril 2022 for theU.S. The repository currently includes
cumulative case data for 21 states in all five regions of the U.S. (West,
Southwest, Midwest, Northeast, and Southeast). Data collation for the
remaining states is ongoing.Thenovelty of this resourcehas enabled a closer
examination of both state- and neighborhood-level variation in COVID-19
burden across a more expansive portion of the U.S., including both urban
and rural areas. These local patterns, including in both rural andurban areas
across the U.S., are critical to our understanding of which communities will
continue to face short-term and long-term health, social and economic
consequences from COVID-19, while laying the groundwork for future
pandemic preparation.

In this paper, we leverage data from CONEP to illustrate how
neighborhood-level COVID-19 infection burden varies between states
and examine the neighborhood social characteristics that are corre-
lated with infection burden. We address a critical gap in the literature
with the following research questions: (1) How is COVID-19 dis-
tributed across neighborhoods (i.e., ZCTAs or census tracts) within
states, and is the neighborhood distribution of COVID-19 burden
similar between states? (2) Within each state, what features of the
neighborhood social environment are correlated with neighborhood
COVID-19 burden? We find that the distribution of COVID-19 at the
neighborhood-level varies both within and between states. Some states
have a more homogenous distribution of COVID-19 compared to
other states in which there is a wide variation in COVID-19 burden
within the state. We also find that the neighborhood social factors that
are correlated with neighborhood COVID-19 burden vary both in
magnitude and direction by state.

Methods
The COVID Neighborhood Project
We launched CONEP in 2021 to address the need for fine-scale spatially
resolute COVID-19 case data for the entire U.S. We contacted health
departments in all 50U.S. states. Initial contact consisted of calls, emails, and
data portal requests asking for fine-scale COVID-19 case data. For some
states, census tract or ZIP code data were publicly available. Others required
a Freedom of Information Act (FOIA) request. Following request edits,
resubmissions, and the eventual approval, we were sent data through a
secure email.

COVID-19 case data and neighborhood data
WeusedCOVID-19 cases at theZIP-code level for sixteenstates, and census
tract-level for five states. Data were collected from state health departments
throughout the summer and fall for both2021 and2022.Datawere collected
in a cumulative format. State COVID-19 cases were defined as they were by
each respective state health department,most commonly as the sumof both
laboratory confirmed and probable cases (1–3). Most states did not dis-
aggregate their case data by time period.

We collected both census tract and ZIP code level data. For those states
with ZIP code level data, we used a cross-walk to merge ZIP codes into ZIP
Code Tabulation Areas (ZCTA)s. ZIP codes are designated by the U.S.
Postal Service and used to identify postal delivery routes. Therefore, they do
not represent a spatial area. ZCTAs are generated by theU.S. Census Bureau
and are generalized representations of ZIP codes. Methods used to create
ZCTAs are detailed elsewhere53. Of note, ZIP-code level data were not
available in Florida past 23 June 2021.

The study was approved by the Health and Behavioral Sciences
Institutional Review Board at the University of Michigan (IRB Approval
Number: HUM00202190). Data use agreements were done on a state-by-
state basis (see Data and Materials availability statement below). As this
study involves only the secondary analysis of de-identified data, informed
consent was not required.

Estimates of the neighborhood social and physical context from the
National Neighborhood Data Archive (NANDA)

The primary aim of the current investigation was to report state-
level patterns in the distribution of COVID-19 burden at the neighbor-
hood level. However, the ultimate goal of CONEP is to examine how
features of the social and physical environment have shaped COVID-19
burden throughout the pandemic, providing a roadmap for addressing
the long-term consequences certain communities will face. As previous
studies of both COVID-19, as well as many other infectious diseases,
have consistently demonstrated the importance of neighborhood SES in
determining the distribution of infectious disease burden3,24,54–56, we
focused on two specific measures of neighborhood SES: neighborhood
disadvantage and neighborhood affluence. We also employed measures
of neighborhood-level rurality, population density, and county-level
political partisanship.
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We obtained measures of the neighborhood context from NANDA, a
publicly available repository of curated measures of social and physical
environment context across the US.57.

Neighborhood disadvantage is an analytically derived index and is
the mean of four variables collected as part of the American Community
Survey (ACS): proportion of female-headed households with children,
proportion of households receiving public assistance income or food
stamps, proportion of families with income below the federal poverty
level, and proportion of the population aged 16 years and older that are
unemployed57. Mean scores range from 0-100. Disadvantaged neigh-
borhoods tend to have fewer resources (e.g., healthy food stores, well-
maintained parks, good schools, quality medical care)20,58 and are often
vulnerable to disinvestment and environmental hazards59. These mea-
surements were based on 2017 ACS data with the exception of New
Mexico which was based on the 2020 ACS.

Neighborhood affluence is the mean of three variables from the ACS:
percent of householdwith incomegreater than $75Kper year, percent of the
population over the age of 16 employed in professional or managerial
occupations, and percent of the population with a Bachelor’s Degree or
higher57. Mean scores range from 0-100. Higher values indicate a more
affluent neighborhood. Affluent neighborhoods are likely to attract a set of
institutions (e.g., food stores, places to exercise, well-maintained buildings,
and parks) that foster a set of norms (e.g., an emphasis on exercise and
healthy diets) conducive to good health60. Both from a theoretical and
analytical standpoint, neighborhood affluence is distinct from neighbor-
hood disadvantage57. Neighborhood affluence is associated with higher
levels of social control and leverage over local institutions that can foster
social environments that facilitate health16. Thesemeasurements were based
on 2017 ACS data with the exception of New Mexico which was based on
the 2020 ACS.

Neighborhood rurality was defined based on the 2010 rural-urban
commuting area (RUCA) codes61. The RUCA was defined at both the
census tract and ZCTA level. In the correlation analyses, we used an ordinal
RUCA code in which higher values indicate more rural areas. In the uni-
variate analyses, we used a four-level variable classifying neighborhoods
according to theirRUCAcode asmetropolitan,micropolitan, small town, or
rural. Of note, the 2010 RUCA was not available for New Mexico as they
used 2020 geography to define their census tracts and the 2020RUCAcodes
are not available yet.

Neighborhood population density is an indicator of the number of
persons per square mile in the census tract and/or ZCTA57. We included
neighborhood population density to proxy the potential for exposure to the
SARS-COV-2 pathogen within a given neighborhood with the hypothesis
that thoseneighborhoodswithhigherpopulationdensitywouldhavehigher
COVID-19 case counts. Given that contact with an infectious pathogen is a
necessary cause of infectious disease, we use neighborhood population
density as an imperfect proxy of the probability of encountering an infec-
tious case of COVID-1955.

We defined county-level political partisanship with a continuous
measure that indicates the mean percent of votes cast for Republican can-
didates in presidential and senate races from 2012 to 201862. In univariate
analyses, we categorized the variable such that a one-unit increase in the
political partisanship variable was equivalent to 10% increase in Republican
votes. We linked ZCTAs and census tracts to the respective counties in
which they resided. For ZCTAs that spanned two counties, we chose the
county that had the greatest proportion of the ZCTA. Further, we use a
measure of county-level political partisanship to begin to understand the
complex role that political ideology has had in shaping COVID-19 testing,
vaccination access, and mitigation strategies in the US63,64.

Statistical analyses
We first calculated the cumulative COVID-19 case count per 10,000
population for each state. We then calculated the median case count per
10,000 and coefficient of variation (CV) for ZCTAs or census tracts within
states cumulatively for the entire time period for which the state reported

data. The CV is calculated by taking the standard deviation and dividing it
by the mean in each state.

We estimated the correlation between each neighborhood variable and
COVID-19 burden for each state.We then constructed a series of univariate
Poisson regression models to estimate the association between each
neighborhood factor and the incidence rate ratio (IRR) of COVID-19 cases
for neighborhoods within each state. The total population of the neigh-
borhood served as the offset term in the models. We used generalized
estimating equationswith robust standard errors to account for clustering of
census tracts and ZCTAs in counties.

All statistical analyses were carried out in Stata/mp 17.0 and 18.0.

Results
Cumulative case counts are heterogenous between states
Of the spatially-referencedCOVID-19 case data from21 states, 5 states have
data at the census-tract level and 16 states have data at the ZIP code level
(Table 1). We used a cross-walk to convert the ZIP codes to Zip Code
Tabulation Areas (ZCTAs) which is further described in the methods. Case
data generally span 2021-2022, although there is state variability in the

Table 1 | States for which data was obtained, the corre-
sponding spatial resolution, and cumulative COVID-19 case
counts per 10,000 population (April 2020-April 2022)

State Spatial
resolution

Cumulative
case count

Cumulative
case count
per 10,000
population

Median (CV)
by spatial
resolution
per 10,000
population

Northeast

Delaware Census
tract

279,643 2589 3071.00 (0.19)

Maine ZCTA 263,135 1978 1692.88 (0.53)

Maryland ZCTA 1,137,968 1898 1785.71 (0.32)

New York ZCTA 4,971,935 2511 2325.12 (0.39)

Pennsylvania ZCTA 2,351,193 1838 1718.27 (0.5)

Rhode Island Census
tract

289,854 2744 2701.03 (0.24)

Vermont ZCTA 101,968 1632 810.98 (0.84)

Southwest

Arizona ZCTA 1,972,243 2896 2520.20 (0.5)

New Mexico Census
tract

499,280 2381 2237.81 (0.44)

Oklahoma ZCTA 1,035,202 2657 2491.10 (0.33)

West

Nevada ZCTA 686,165 2376 2008.01 (0.49)

Oregon ZCTA 738,732 1835 1826.76 (0.3)

Southeast

Florida ZCTA 2,246,928 1108 966.55 (0.45)

Louisiana Census
tract

1,037,714 2225 2200.34 (0.21)

North Carolina ZCTA 2,701,403 2687 2444.22 (0.21)

Virginia ZCTA 1,743,838 2084 2052.05 (0.43)

Midwest

Illinois ZCTA 3,454,346 2687 2774.27 (0.26)

Indiana ZCTA 1,542,971 2333 2354.78 (0.21)

Minnesota ZCTA 1,584,267 2885 2695.07 (0.25)

Ohio ZCTA 2,722,140 2345 2268.35 (0.25)

Wisconsin Census
tract

1,815,699 3142 3078.58 (0.17)

CV coefficient of variation.
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specific temporal reporting coverage (Table S1). We calculated the cumu-
lative case count (census-tract or ZCTA) per 10,000 population for the
entire time period (Table 1). Florida has the lowest cumulative case count of
1108 cases per 10,000population andWisconsin the highestwith 3142 cases
per 10,000population for the two-year period (Table 1).Multiple states have
spatial units with sub-populations that aremissing case data (Table S1). See
Supplementary Figs. S1–3 for depictions of the distribution of COVID-19
across neighborhoods within states.

Neighborhood-level trends in COVID-19 burden differ by state
We calculated the median case count per 10,000 population and the coef-
ficient of variation (CV) by ZCTA and census tract (Table 1). The median
case count per 10,000 population at the neighborhood-level mirrors the
trends of the cumulative case count per 10,000. The CV, however, gives an
indication of the neighborhood-level variability inmean case counts within
each state, and there are notable state-level differences in the CV of the
neighborhood-level cases counts. For example, the highest CV’s are
observed in Vermont (CV = 0.84) andMaine (0.53), which demonstrates a
higher within-state variability in the mean of COVID-19 cases at the
neighborhood-level. In contrast, the low CVs for states such as Wisconsin
(CV = 0.17) and Delaware (CV = 0.19) suggest a more homogenous spread
of COVID-19 cases across neighborhoods within those respective states.

Correlations between neighborhood social factors and neigh-
borhood COVID-19 burden differ within and between states
To address the second research question, whether there are features of the
neighborhood social environment that are correlated with COVID-19
burden within a state, we used a series of univariate Poisson regression
models to estimate the incidence rate ratio (IRR) of case counts cumulatively
per 10,000population for eachneighborhoodwithin each state.Weused the
recent framework by Noppert, Hegde, and Kubale (2022) to select features
of the neighborhood environment that may be particularly relevant for
understanding COVID-19 burden, and that may also lend themselves to
intervention65. Their framework posits that infectious disease burden is a
function of two primary pathways which may operate at both the indivi-
dual- and neighborhoods-level: exposure, factors that increase the prob-
ability of exposure to an infectious pathogen, and susceptibility, factors that
increase the likelihood of being infected if exposed. See Fig. 1 for the con-
ceptual diagram used to guide the selection of neighborhood social and
physical features.

The framework describes the neighborhood environment as one
mechanism through which structural disadvantage operates to affect risk of
infectious disease65. The neighborhood environment, as described in this
manuscript, is a broad indicator that includes aspects of both the physical
and social environment. For the current investigation, we chose to oper-
ationalize the neighborhood environment by first selecting two widely used
measures of the neighborhood social environment: neighborhood dis-
advantage and neighborhood affluence. We modeled neighborhood dis-
advantage and neighborhood affluence as two separate factors given that
they capture two distinct concepts of neighborhood socioeconomic status
(SES), which is described further in the Methods section below. Briefly,
neighborhood SES is essential to understanding the burden of infectious
diseases. Low SES neighborhoods tend to have fewer health resources (i.e.,
hospitals, grocery stores, pharmacies), a higher proportion of their popu-
lations employed in lower wage jobs, or jobs classified as essential workwith
less ability to work from home or take sick leave when needed, and a higher
proportion of the population utilizing public transportation14,19,66. All of
these factors increase the probability that an individual is more likely to
come into contact with an infectious pathogen, with inadequate protections
to prevent infection67.Moreover, there is an inherent stress to living in a low
SESneighborhood thatmay itselfmake an individualmore susceptible to an
infectious disease68,69. To begin to capture these dynamics, we examined
both neighborhood disadvantage, a reflection of material access to resour-
ces, andneighborhoodaffluence, reflectionof thepower a communityhas to
advocate for resources.

We also examined correlations between case counts and rurality
(census tract or ZCTA-level) and political partisanship at the county-level.
In the current U.S. context, political partisanship has been shown to be an
indicator for thewillingness to engage in public health prevention behaviors
including vaccination64,70. We examined correlations with a rurality index
(rural-urban commuting area code (RUCA)) given that multiple recent
studies have demonstrated how rural and urban communities have fared
differently throughout the pandemic49,52. Finally, we examined correlations
with neighborhood population density as it is conceptualized as a key
mechanism that can increase the probability of exposure to an infectious
pathogen.

We observe univariate associations between neighborhood affluence
and neighborhood COVID-19 burden for many states (Tables 2–6), how-
ever, the magnitude and direction of the association differ widely between
states. In 52% of states, neighborhood affluence is statistically significantly,
negatively correlated with neighborhood COVID-19 burden (Table S2). In
these states, neighborhoods in the highest quartile of affluence (Q4; i.e., the
most affluent) have significantly lower COVID-19 burden compared to
neighborhoods in the lowest quartile of affluence (Q1). For example, in
Rhode Island neighborhoods, we observe a 30% lower (b = 0.70, 95% CI:
0.65–0.76) incidence rate of COVID-19 comparing neighborhoods in the
highest quartile of affluence (Q4) to neighborhoods in the lowest quartile of
affluence (Q1). In New Mexico, neighborhoods in the highest quartile of
affluence (Q4) have a 29% lower (b = 0.71, 95% CI: 0.62–0.82) rate of
COVID-19 compared to neighborhoods in the lowest quartile (Q1).

In 62% of states, we observe a positive, statistically significant corre-
lationbetweenneighborhooddisadvantage andCOVID-19burdenwherein
higher quartiles of neighborhood disadvantage (i.e., those more dis-
advantaged) are associated with a higher rate of COVID-19 (Tables 2–6
and S2). For example, in the highest quartile (Q4) of disadvantaged
neighborhoods inVermont, the rate is 2.86 (95%CI: 1.02–7.98) times that of
neighborhoods in the lowest quartile of disadvantage (Q1, i.e., those least
disadvantaged). In Oregon, neighborhoods in the highest quartile of dis-
advantage (Q4) have 1.40 (95% CI: 1.29–1.52) times the rate of COVID-19
compared to neighborhoods in the lowest quartile of disadvantage (Q1).

We do not see any consistent patterns among the correlations with
population density (Tables 2–6 and S2).

We also examine correlations between political partisanship and
COVID-19. For county-level political partisanship, we find that in 38% of
states, there is a statistically significant, positive correlation between county-
level political partisanship and neighborhood COVID-19 burden
(Table S2). That is, neighborhoods inwhich a greaterproportionof the votes
were cast for Republican candidates in senate and presidential races from
2012-2018 have a higher burden of COVID-19 at the neighborhood-level.
In univariate analyses, we operationalized the partisanship variable such
that a one-unit increase in the political partisanship variable is equivalent to
a 10% increase in Republican votes (Tables 2–6). For example, in Maine, a
10% increase in Republican votes cast is associated with a 12% increase in
the COVID-19 rates in neighborhoods (b = 1.12, 95% CI: 1.08–1.17). In
Illinois, a 10% increase in Republican votes cast is associated with a 7%
increase in the COVID-19 rate (b = 1.07, 95% CI: 1.05-1.08).

However, for several states (24%) we simultaneously observe a strong,
negative correlation between county-level political partisanship and
COVID-19 burden (Tables 2–6). In Nevada, for example, a 10% increase in
the percentage of votes cast for Republican candidates is associated with a
13% lower rate of COVID-19 (b = 0.87, 95% CI: 0.82–0.91). Similarly, in
Florida, a 10% increase in the percentage of votes cast for Republican can-
didates is associated with a 13% lower rate of COVID-19 (b = 0.87, 95%CI:
0.78–0.97).

Finally, we observe a statistically significant, negative correlation
between the RUCA categories and COVID-19 burden for 48% of states
(Tables 2–6, Table S2). In Rhode Island, neighborhoods classified as rural
have a 59% lower rate of COVID-19 compared to neighborhoods classified
as metropolitan (b = 0.41 95% CI: 0.36–0.47). In Arizona, neighborhoods
classified as rural have a 45% lower rate of COVID-19 compared to
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Table 2 | Results of the univariate regression results estimating the association between each neighborhood factor and
neighborhood COVID-19 burden for the Northeastern United States

Northeast

Delaware Maine Maryland New York Pennsylvania Rhode Island Vermont
IRR [95% CI] IRR [95% CI] IRR [95% CI] IRR [95% CI] IRR [95% CI] IRR [95% CI] IRR [95% CI]

Neighborhood characteristic

Neighborhood affluence

Q1 (ref.) Ref. Ref. Ref. Ref. Ref. Ref. Ref.

Q2 0.98
[0.91–1.06]

0.96
[0.86–1.06]

0.96
[0.89–1.03]

1 [0.97–1.04] 0.94 [0.85–1.04] 0.86***
[0.8–0.93]

1.67
[0.83–3.38]

Q3 0.95
[0.89–1.02]

0.91* [0.83–1] 0.92+
[0.84–1.01]

1.04 [0.97–1.11] 0.99 [0.91–1.08] 0.76***
[0.69–0.83]

1.39
[0.71–2.71]

Q4 (highest affluence) 0.9*
[0.83–0.98]

0.77***
[0.7–0.85]

0.83***
[0.78–0.89]

1.04 [0.96–1.12] 0.87** [0.8–0.95] 0.7***
[0.65–0.76]

0.63
[0.23–1.72]

Neighborhood disadvantage

Q1 (ref.) Ref. Ref. Ref. Ref. Ref. Ref. Ref.

Q2 0.97
[0.93–1.02]

1.1+ [1–1.21] 1.12***
[1.05–1.19]

0.99 [0.9–1.07] 1.09***
[1.04–1.15]

1.03
[0.95–1.12]

1.86 [0.7–4.92]

Q3 1.02
[0.98–1.06]

1.16**
[1.05–1.29]

1.21***
[1.1–1.32]

0.97 [0.88–1.06] 1.11** [1.04–1.18] 1.09***
[1.05–1.14]

2.53+
[0.89–7.14]

Q4 (highest disadvantage) 1.12***
[1.09–1.15]

1.23***
[1.13–1.35]

1.26***
[1.19–1.33]

0.96 [0.87–1.05] 1.16***
[1.08–1.24]

1.27***
[1.21–1.34]

2.86*
[1.02–7.98]

Neighborhood population density 1 [1–1] 1 [1–1] 1+ [1–1] 1 [1–1] 1 [1–1] 1*** [1–1] 1 [1–1]

Political partisanship (10% increase in
votes cast for Republican candidates in
2018 and the six years before)

1.03***
[1.03–1.04]

1.12***
[1.08–1.17]

0.98 [0.96–1] 1.01 [0.99–1.03] 1.01 [0.99–1.03] 0.81+
[0.64–1.02]

0.71
[0.33–1.55]

Rural-urban commuting area codes

Metropolitan (ref.) Ref. Ref. Ref. Ref. Ref. Ref. Ref.

Micropolitan 1.03
[0.98–1.08]

1.04
[0.92–1.19]

1.04
[0.83–1.29]

0.92** [0.86–0.98] 1.04 [0.95–1.14] 1 [1–1] 2.54
[0.65–9.89]

Small town 1.14***
[1.1–1.19]

1.05 [0.91–1.2] 1.01
[0.82–1.24]

0.85***
[0.[0.79–0.92]

0.89* [0.81–0.98] 1 [1–1] 2.29 [0.58–9.1]

Rural 1 [1–1] 1.01 [0.9–1.13] 0.98
[0.78–1.23]

0.76*** [0.7–0.81] 0.92* [0.85–0.99] 0.41***
[0.36–0.47]

1.74
[0.46–6.66]

+p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

Fig. 1 | Conceptual Diagram. Conceptual diagram describing features of the neighborhood social environment may influence the neighborhood burden of COVID-19.
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neighborhoods classified as metropolitan (b = 0.55, 95% CI: 0.4–0.74)
(Table 2). While there are several states for whom we observe a positive
correlation between the RUCA andCOVID-19 burden, the correlations are
small and not statistically significant.

Discussion
Our results are the first findings from the COVID Neighborhood Project
(CONEP), a data effort designed to collate spatially-referenced COVID-19
data at the neighborhood-level across the U.S. The findings from this study
are suggestive that the state context may matter for determining the dis-
tribution of COVID-19 across neighborhoods. For some states, there is wide
variation in the neighborhood COVID-19 burden (i.e., Maine, Vermont,
Pennsylvania), a signal that some neighborhoods account for a dispropor-
tionate burden of COVID-19 cases compared to other neighborhoods in the
same state. In contrast, for other states, the burden of COVID-19 is more
homogenously distributed across neighborhoods (i.e., Delaware, Wisconsin,
Louisiana). Though the results from the current investigation are pre-
liminary and descriptive in nature, they underscore that local neighborhood
patterns and dynamics play an underappreciated role in the distribution and
intensity of COVID-19 burden and the long-term sequalae that will be
endured. These findings also hint at the complex relationship between state-
and local-based policies, neighborhood features, and the myriad ways in
which the interaction of these area-based forces may have influenced the
COVID-19 burden felt by millions. Indeed, policy makers should be wary in
crafting a one-size-fits-all approach for pandemic mitigation and recovery
efforts. Our results suggest that among the states included in this analysis,
there may be no single, unifying story to describe how COVID-19 has been
distributed across neighborhoods within states in the U.S.

Our findings are not only consistent with other investigations con-
ducted in the U.S. but in various global settings as well. For example, in a
study of the spatiotemporal dynamics of the spread of COVID-19 in Brazil
in 2020, Castro et al, found a diverse array of factors explained how the virus

was distributed across various states within Brazil. There were complex
interactions between state- and local-level policy, socioeconomic, and
political environments that shaped the distribution of COVID-19 both
within- and between states71. In a study examining trends inCOVID-related
intensive care unit admissions in Sweden, Kawalerowicz et al. found that
individuals living in neighborhoods that were classified as rural and dis-
advantaged had a higher risk of ICU admission72. Studies in the United
Kingdom (U.K.) have also reported findings that neighborhood deprivation
has indeed shaped the distribution of COVID-19 burden but cannot be
divorced from individual-level attributes of racial and ethnic identification
and socioeconomic conditions73,74. The studies above demonstrate that the
complex social and environmental dynamics shaping the COVID-19 pan-
demic have been observed across multiple country contexts. We resonate
with Bollyky et al. in that inequities on the basis of race/ethnicity and
socioecomic status and political polarization including politicizing of the
pandemic are not unique to the U.S. context1. Collectively, therefore, find-
ings frommutiple countries, including our own, may begin to shed light on
how the increasingly complicated socioeconomic, political, and environ-
mental context shapes infectious disease spread.

Historically, there have been numerous studies relating aspects of the
social and built neighborhood environment to infectious disease in the
U.S.56,75–79. For many of these studies, a traditional paradigm prevails in
which more disadvantaged neighborhoods experience a higher burden of
disease55,56,76. While our study did not apply a causal framework, our initial
findings support the paradigm of an association between disadvantage and
higher infectious burden but only for some states. Historically accepted
patterns of the relationship between the neighborhood environment and
infectious disease burden are challenged in other states; this paradigm is
more nuanced and complex thanpreviously imagined.Whilewe are limited
by the data we have been able to collect thus far both in geographic scope
(i.e., not all 50 states) and other key confounding variables (e.g., neighbor-
hood vaccination rates, access to vaccination sites, access to health facilities,

Table 3 | Results of the univariate regression results estimating the association between each neighborhood factor and
neighborhood COVID-19 burden for the Southwestern United States

Southwest

Arizona New Mexico Oklahoma
IRR [95% CI] IRR [95% CI] IRR [95% CI]

Neighborhood characteristic

Neighborhood affluence

Q1 (ref.) Ref. Ref. Ref.

Q2 1.01 [0.92–1.1] 1 [0.87–1.13] 0.99 [0.94–1.05]

Q3 0.93 [0.83–1.06] 0.86* [0.75–0.99] 1.05 [0.98–1.12]

Q4 (highest affluence) 0.91 [0.78–1.05] 0.71*** [0.62–0.82] 1.09** [1.02–1.17]

Neighborhood disadvantage

Q1 (ref.) Ref. Ref. Ref.

Q2 1.09 [0.97–1.22] 1.12*** [1.05–1.2] 0.92*** [0.89–0.96]

Q3 1.15*** [1.07–1.23] 1.25*** [1.16–1.34] 0.89*** [0.85–0.94]

Q4 (highest disadvantage) 1.16* [1.03–1.31] 1.31*** [1.18–1.44] 0.88*** [0.82–0.95]

Neighborhood population density 1 [1–1] 1 [1–1] 1* [1–1]

Political partisanship
(% of votes cast for Republican candidates in
2018 and the 6 years before)

1.04 [0.94–1.16] 1.06*** [1.03–1.09] 1 [0.97–1.04]

Rural-urban commuting area codes

Metropolitan (ref.) Ref. Ref. Ref.

Micropolitan 1.11 [0.95–1.28] 0.99 [0.93–1.06]

Small town 0.66** [0.51–0.86] 0.97 [0.91–1.04]

Rural 0.55*** [0.4–0.74] 0.92* [0.86–0.98]

+p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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and test positivity rates at the local area level), these broad signals offer a
window into the complicated relationship that exists between aspects of the
social and built neighborhood environment, state and local policy, and
COVID-19 burden. As shown in other studies, there are state-specific
behaviors and policies that have shaped the variation in the COVID-19
burden across the U.S.64,80–83. Our findings lay the groundwork for future
work that canbuild off of our results tomore explicitly examine and test how
state-specific behaviors interact with local area-level concentrated dis-
advantage or affluence.

One such example of this interaction is with regards to rural popula-
tions. In oneof the few studies that focused exclusively onunderstanding the
impacts of COVID-19 on rural populations in the U.S., Mueller et al. found
extensive reports of the negative consequences from COVID-19 among
rural populations including in unemployment rates, perceptions of the local
economy, and impact on their overall lives and mental wellbeing52. They
reported a 9.7 percentage point increase in the 2020 unemployment rate in
the rural communities included in their sample compared to the year before
the pandemic52. This contrasts with a national increase in the unemploy-
ment rate of only 7.4 percentage points.With increasing urbanization, rural
populations represent a unique, and diverse community in the U.S., one
particularly vulnerable to long-term social and economic consequences
from COVID-19 and whom have often been overlooked in the pandemic
response84–86.

There were multiple strengths to the current study. To the best of our
knowledge, we are among one of the first data collation efforts to attempt to

collect in-depth, spatially-referenced case data at the neighborhood-level for
the entireU.S., and the only to link these spatially-referenced case data at the
census tract or ZIP code level with features of the neighborhood built and
social environment from the NANDA repository. Our results have impli-
cations for both public health practice and policy and for how we under-
stand the health of the U.S. population going forward. They also lay the
groundwork for developing effective prevention andmitigation strategies to
address continuing inequities in pandemic-related consequences. These
data provide the foundation for future studies focused on the impacts of
pandemic-related changes to the neighborhood environment and popula-
tion health trends, and highlight the need to gather robust neighborhood-
level disease, long-term sequelae, and environmentalmetrics forCOVID-19
across the U.S. given the heterogeneity we observed by state.

While this study currently advances our understanding of how
COVID-19hasdifferentially impactedneighborhoods across 21 states in the
U.S., there are limitations that should be consideredwhen interpreting these
results and that may also guide future investigations. Given the emergency
nature of the pandemic and the independence of state public health insti-
tutions from federal jurisdiction, each state set up surveillance systems
differently, including defining different inclusion criteria and methods for
counting cases, and in the selection of the types of health facilities surveilled
(22-23). For example, if a state only included laboratory-confirmed cases,
their case counts were likely an underestimate of the true case counts in a
population, however, this was not standardized. Laboratory-confirmed case
counts may miss cases identified through at-home testing which increased
in the later stages of the pandemic. Further, state case data often differed in
geographic and temporal coverage, also in part due to the rise in at home
testing beginning from late 2021 onwards and other advances or policy
changes, which made more nuanced comparisons by state difficult. While
examining trends in the aggregate may mitigate some of the state-to-state
differences, comparisons across states should still be made with caution;
accounting for the decrease in case count accuracy over time is difficult even
for the most robust surveillance teams.

Moreover, we only have data on incident infections. Thus, the case data
could reflect repeat infections occurring in the same person. However, we
nonetheless can detect neighborhoods that have had the highest COVID-19
burden. Additionally, we do not have information on co-morbid conditions
that occurred with COVID-19 infections, which may serve as important
underlying drivers of COVID-19 infections and occur more frequently
among structurally disadvantaged populations87. Future analyses should
incorporate data on the prevalence of key co-morbid conditions into sta-
tistical models.

Importantly, as state case counts reflect not only the availability of
testing facilities and infrastructure in place to report positive test results but
access to such facilities as well, the current results may best be viewed as a
proxy indicator of the true underlying trends in COVID-19 case data. In
future studies, we plan to collate data on testing sites, test positivity rates,
other indicators of the burden of COVID-19 (e.g., wastewater surveillance),
and mitigation strategies (e.g., vaccination history) over time to create a
more accurate indicator of COVID-19 burden.

Despite the limitations, these findings outline the necessary steps
towards a more comprehensive data collation effort and possibly the
foundation for a concerted surveillance system across theU.S. Compared to
other U.S. spatially-referenced COVID-19 datasets like the Centers for
Disease Control and Prevention COVID-19 Data Tracker or the Johns
Hopkins University Coronavirus Resource Center, which are both limited
to county-level data, harnessing a repository like CONEP will allow
researchers and the public to examine more local level trends, while
simultaneously accounting for the heterogeneity that exists within counties
and across the urban to rural expanse.

As this is the first investigation in a series of studies stemming from
CONEP, we will continue to build the CONEP repository to cover all
50 states and build in more contextual data at the state, county, and local
levels. Also, it is critical to note that obtaining local-level, finer-scale spatial
data is difficult and should involve a deeper discussion of ethics. Calling on

Table 4 | Results of the univariate regression results estimat-
ing the association between each neighborhood factor and
neighborhood COVID-19 burden for the Western United
States

West

Nevada Oregon
IRR [95% CI] IRR [95% CI]

Neighborhood characteristic

Neighborhood affluence

Q1 (ref.) Ref. Ref.

Q2 1.02 [0.98–1.05] 0.9* [0.83–0.98]

Q3 0.97 [0.9–1.05] 0.83***
[0.77–0.89]

Q4 (highest affluence) 0.91***
[0.88–0.95]

0.73***
[0.65–0.81]

Neighborhood disadvantage

Q1 (ref.) Ref. Ref.

Q2 1 [0.94–1.06] 1.12+ [1–1.25]

Q3 1.09***
[1.04–1.15]

1.25***
[1.17–1.34]

Q4 (highest disadvantage) 1.15***
[1.07–1.22]

1.4***
[1.29–1.52]

Neighborhood population density 1 [1–1] 1** [1–1]

Political partisanship
(% of votes cast for Republican can-

didates in 2018 and the six years before)

0.87***
[0.82–0.91]

1.1***
[1.04–1.16]

Rural-urban commuting area codes

Metropolitan (ref.) Ref. Ref.

Micropolitan 0.72***
[0.62–0.83]

1.19**
[1.05–1.36]

Small town 0.51***
[0.42–0.62]

1.08 [0.89–1.31]

Rural 0.51**
[0.32–0.83]

1.01 [0.84–1.21]

+p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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Table 6 | Results of the univariate regression results estimating the association between each neighborhood factor and
neighborhood COVID-19 burden for the Midwestern United States

Midwest

Illinois Indiana Minnesota Ohio Wisconsin
IRR [95% CI] IRR [95% CI] IRR [95% CI] IRR [95% CI] IRR [95% CI]

Neighborhood characteristic

Neighborhood affluence

Q1 (ref.) Ref. Ref. Ref. Ref. Ref.

Q2 1.08* [1.01–1.16] 1.12** [1.04–1.21] 1.05+ [1–1.1] 1.08*** [1.03–1.12] 0.95*** [0.93–0.98]

Q3 1.07* [1–1.14] 1.11** [1.03–1.19] 1.05+ [1–1.1] 1.09*** [1.05–1.13] 0.98 [0.95–1.01]

Q4 (highest affluence) 1.02 [0.96–1.09] 1.19*** [1.09–1.3] 1.02 [0.97–1.07] 1.07*** [1.04–1.1] 0.97 [0.93–1.02]

Neighborhood disadvantage

Q1 (ref.) Ref. Ref. Ref. Ref. Ref.

Q2 1.02 [1–1.04] 0.97 [0.92–1.03] 1.02 [0.98–1.07] 1.05*** [1.02–1.08] 0.98 [0.95–1.01]

Q3 1.03 [0.96–1.11] 0.96 [0.89–1.04] 1 [0.97–1.03] 1.05** [1.02–1.09] 1.02 [0.99–1.06]

Q4 (highest disadvantage) 0.99 [0.89–1.1] 0.9** [0.84–0.96] 1.05* [1.01–1.09] 1.04* [1–1.09] 1.06** [1.02–1.1]

Neighborhood population density 1*** [1–1] 1*** [1–1] 1*** [1–1] 1*** [1–1] 1*** [1–1]

Political partisanship
(%of votes cast forRepublican candidates in 2018 and the
six years before)

1.07*** [1.05–1.08] 1.06*** [1.03–1.08] 1.03*** [1.01–1.05] 1.02** [1.01–1.03] 1 [0.99–1.02]

Rural-urban commuting area codes

Metropolitan (ref.) Ref. Ref. Ref. Ref. Ref.

Micropolitan 1.16*** [1.07–1.25] 1.06 [0.99–1.13] 1 [0.94–1.06] 1.05* [1.01–1.1] 0.97 [0.92–1.02]

Small town 1.21*** [1.13–1.3] 0.97 [0.9–1.05] 0.96 [0.92–1.02] 1.02 [0.98–1.06] 0.95** [0.91–0.99]

Rural 1.07+ [1–1.15] 0.9 [0.8–1.02] 0.9*** [0.86–0.95] 0.82** [0.7–0.95] 0.85*** [0.81–0.9]

+p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.

Table 5 | Results of the univariate regression results estimating the association between each neighborhood factor and
neighborhood COVID-19 burden for the Southeastern United States

Southeast

Florida Louisiana North Carolina Virginia
IRR [95% CI] IRR [95% CI] IRR [95% CI] IRR [95% CI]

Neighborhood characteristic

Neighborhood affluence

Q1 (ref.) Ref. Ref. Ref. Ref.

Q2 0.94 [0.88–1.02] 0.99 [0.95–1.03] 0.99 [0.96–1.03] 1.01 [0.97–1.05]

Q3 0.89* [0.8–0.99] 1.03 [0.98–1.07] 0.98 [0.94–1.03] 0.96* [0.93–1]

Q4 (highest affluence) 0.9* [0.81–1] 1.05* [1–1.11] 0.92** [0.86–0.98] 0.85*** [0.78–0.93]

Neighborhood disadvantage

Q1 (ref.) Ref. Ref. Ref. Ref.

Q2 1.08+ [0.99–1.18] 0.99 [0.96–1.03] 1.07*** [1.03–1.11] 1.1** [1.04–1.17]

Q3 1.18** [1.07–1.31] 0.93** [0.89–0.97] 1.09*** [1.04–1.15] 1.2*** [1.1–1.32]

Q4 (highest disadvantage) 1.33*** [1.14–1.56] 0.96* [0.93–1] 1.13*** [1.08–1.18] 1.2** [1.08–1.34]

Neighborhood population density 1*** [1–1] 1 [1–1] 1* [1–1] 1+ [1–1]

Political partisanship
(% of votes cast for Republican candidates in 2018 and the six years before)

0.87* [0.78–0.97] 1.01 [0.99–1.02] 1.02+ [1–1.04] 1.04** [1.01–1.07]

Rural-urban commuting area codes

Metropolitan (ref.) Ref. Ref. Ref. Ref.

Micropolitan 0.92 [0.74–1.14] 0.92* [0.86–0.99] 1.02 [0.96–1.07] 1.17*** [1.08–1.26]

Small town 1.03 [0.85–1.26] 0.95 [0.84–1.07] 0.96 [0.89–1.04] 1.12* [1.03–1.22]

Rural 1.04 [0.78–1.37] 0.81*** [0.72–0.91] 0.94 [0.87–1.01] 1.05 [0.96–1.15]

+p < 0.10, *p < 0.05, **p < 0.01, ***p < 0.001.
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public health practitioners, who are often burdened with other real-time
tasks, to collect such data may not always allow for the priority it should be
given until systems are automated. Still, gathering these data is essential for
monitoring health and social well-being in the U.S.

Conclusion
The inequitable distribution of COVID-19 across neighborhoods in
the U.S. has consequences both for the current health and economic
wellbeing of the American population as well as for the future of
population health in the U.S., and specifically population health
inequities88,89. Therefore, it is imperative that we interrogate patterns
and trends at the local neighborhood-level. Our results represent an
initial step to document the complex ways in which the neighborhood
social environment may be related to COVID-19 burden and highlight
the importance of the local-level for determining patterns of disease
risk and resilience. While the traditional paradigm in infectious dis-
ease research has long held that poverty increases infectious disease
burden, our findings highlight state-level variation, and that a one-
size-fits-all approach will not address the unique patterns observed
across states in the U.S. By leveraging fine-scale spatially-referenced
case data, our findings enhance our understanding of the neighbor-
hood social environment and COVID-19 burden and underscore the
continued need for nationwide data for neighborhoods across all states
in order to adequately improve the health of populations.

Data availability
All of the individual state-level data are publicly available.We have included
information regarding how to obtain the data for each state in the supple-
ment including the necessary links (see Table S3). Efforts are currently
underway toworkwith each individual health department, adhering to their
specific data protection procedures, to compile all of the state-level data into
a single database that will be publicly available through ICPSR. Further, in
the current investigation, we analyzed each state separately and thus
downloading each state individually will allow for replicability. For any
questions or updates on the process of building a single, national database,
please contact the corresponding author. The NANDA data are available
through ICPSR and instructions for accessing the NANDA data and the
data itself are available at https://www.icpsr.umich.edu/web/ICPSR/
series/1920.

Code availability
Thecodeused togenerate the results are available at https://doi.org/10.5281/
zenodo.1060685690.
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