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Abstract

Background Brain extraction is a computational necessity for researchers using brain
imagingdata.However, the complex structure of the interfacesbetween thebrain,meninges
and human skull have not allowed a highly robust solution to emerge. While previous
methods have used machine learning with structural and geometric priors in mind, with the
development of Deep Learning (DL), there has been an increase in Neural Network based
methods. Most proposed DL models focus on improving the training data despite the clear
gap between groups in the amount and quality of accessible training data between.
Methods We propose an architecture we call Efficient V-net with Additional Conditional
Random Field Layers (EVAC+). EVAC+ has 3 major characteristics: (1) a smart
augmentation strategy that improves training efficiency, (2) a unique way of using a
Conditional Random Fields Recurrent Layer that improves accuracy and (3) an additional
loss function that fine-tunes the segmentation output. We compare our model to state-of-
the-art non-DL and DL methods.
ResultsResults show that evenwith limited training resources, EVAC+ outperforms inmost
cases, achieving a high and stable DiceCoefficient and Jaccard Index alongwith a desirable
lower Surface (Hausdorff) Distance. More importantly, our approach accurately segmented
clinical and pediatric data, despite the fact that the training dataset only contains healthy
adults.
Conclusions Ultimately, our model provides a reliable way of accurately reducing
segmentation errors in complex multi-tissue interfacing areas of the brain. We expect our
method, which is publicly available and open-source, to be beneficial to a wide range of
researchers.

BrainMRI computes the tissue composition to create an image of the brain.
However, other parts of the body also exist within the image. Unnecessary
non-brain tissues could include the face, eyes, spine, etc. For additional
methods such as registration, tractography and tissue segmentation to work
properly, it is important to have the image of the sole brain without other
parts of the body that will disrupt the algorithm or analysis. Accurate
manual segmentation (gold standard) can be ideal, but it is very time-
consuming with in need of an expert, who can also include biases in the
mask. Thus, automatic brain extraction, also called skull stripping is a
semantic segmentation task necessary to pre-process the brain to perform

forthcoming analyses. Despite the simple explanation of the problem, dif-
ficulties arise from several factors of the MR images. Non-brain tissues can
be spatially close to the brain and have very similar intensities, especially
white matter in T1-weighted images. These issues are troublesome for
current algorithms. Artifacts and noise common in T1weighted images can
also disrupt the robustness of the methods.

Despite the fact that multiple modalities can be used for brain
extraction, in this paperwe focus onT1weightedbrainMRI, as these are the
most commonly used images for brain extraction and they are nearly always
acquired with each scan.

1Intelligent Systems Engineering, IndianaUniversity Bloomington, Bloomington, IN, USA. 2Massachusetts General Hospital, HarvardMedical School, Boston,MA,
USA. e-mail: pjsjongsung@gmail.com

Plain language summary

Computational processing of brain images
can enable better understanding and
diagnosis of diseases that affect the brain.
Brain Extraction is a computational method
that can be used to remove areas of the head
that are not thebrain from imagesof the head.
We compared various different
computationalmethods that areavailableand
used them to develop a better method. The
method we describe in the paper is more
accurate at imaging the brain of both healthy
individuals and thoseknown tohavediseases
that affect the brain than the other methods
we evaluated. Our method might enable
better understanding and diagnosis of
diseases that affect the brain in the future.
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Traditional methods
Traditional approaches in skull stripping use known priors of the brain.
They can be categorized by what type of prior the algorithm relies on:
morphology, intensity, surface structure, template matching or a combi-
nation of these1.While everymethod in any category has its ups and downs,
we will discuss a few methods that are popularly used by experts and work
on T1-weighted images. Rehman et al.1 provides a good summary of the
various methods proposed in the literature.

Brain Extraction Tool (BET)2, one of the most used methods, uses
the intensity and brain surface structure as its prior. It creates an initial
sphere using the intensity differences per tissue type. The sphere is
deformed in each direction to form the brain’s shape. Even though the
model is fast and does not need any preprocessing beforehand, it has
been known to have limitations in the segmentation results3. 3dSkull-
Strip used in Analysis of Functional NeuroImages (AFNI)4 improves
BET by adding a few modifications that help exclude the eyes and the
ventricles in the image, removing some of the false positive tissues.
Freesurfer’s method5 adds an intensity/structure prior, using the fact
that white matter has a higher intensity in the T1 modality and is one
connected segment, to create an initial volume and later deforming it to
match the brain surface. ROBEX (robust, learning-based brain extrac-
tion system)6 uses a more hybrid approach of creating an initial mask by
using a random forest classifier on extracted features, which is fit/
deformed to match a more accurate surface.

Non-deformable suface-based models are widely used as well. Brain
Surface Extractor (BSE) uses anisotropic diffusionfilters to smooth out low-
contrast edges followed by edge detection withmorphological erosion. The
edges are later expanded to match the brain. BEaST7 uses patchwise com-
parison to a set of templates pre-constructed from 80 segmented and
manually corrected brain masks as a prior. It also uses multi-resolutions of
patches to optimize the computation and reduce false negatives. ALFA
(accurate learning with few atlases)8 registers manually segmented neonatal
brain atlases to the target image, selects the few closest to the average of them
and fuses the labels using machine learning approaches to create the seg-
mentation output.

Since the use of Alexnet9 for image classification tasks, there have been
many developments in using Deep Learning models for images10–12. How-
ever, there are several reasons why it is often not optimal to implement the
model architecture and ideas directly to medical images. First is the lack of
data.While it is relatively easy to acquire computer visiondata that can come
from various input devices, cameras, satellite images, videos etc, that is not
the case for medical images. Since these contain personal information, it is
difficult to gather the data in the first place and even harder tomake the data
public due to patient protection regulations and governmental guidelines.
Hence, a lot of them cannot be used or shared among other research teams
to train and evaluate their models. Additionally, labeling the data demands
careful analysis of the images by experts, thus there are fewer public data
with true ground truth labels. Most ground truth labels provided in the
public datasets are mainly created by another machine learning method
withmanual editing13–16. The dimension of the data is another obstacle since
most of the data are 3D, and even a single T1-weighted modality image is a
few hundred computer vision images in size. Thus, models suffer from
heavier memory complexity problems, limiting the scale of the model.
Moreover, medical imaging data tend to lack some properties Computer
Vision images have (color channels, clear edge features, etc). This can limit
the usage of some image augmentation techniques and complicate transfer
learning, though these are both efficient tools when working with a limited
amount of training data.

Nevertheless, researchers have created different methods to improve
DL models and allow them to work with medical images. Especially in
segmentation tasks,while eachmodelhas its unique characteristics,U-nets17

andCascade networks18 have been the skeleton ofmost architecture types in
the field. U-net uses residual connections across multiple layers of features
using different scales to take into account features of various sizes. Cascade
networks exclude unnecessary information from the image by first creating

a mask using a coarse network, and later using a finer network to get the
exact results.

Various brain extraction-specificDeepLearning approaches have been
proposed over the years19–24. One of themajor factors that characterize these
models is the dimension the data is treated as. For Deep Learningmodels in
brain extraction tasks, it might be troublesomewhen trying to train amodel
that stores all the full 3D features in memory. Most 2D convolutional net-
workmethods use 2D slices from all planes to get segmentations from each
plane, latermerging the results21,22,25. Dismantling the 3D image into smaller
cubes has also been considered24. Other approaches have cropped the image
to a smaller size to use it as a form of augmentation as well19,26. In our work,
we chose to use the 3D image as a whole, decreasing the resolution of the
input (EVAC uses a 2mm cube per voxel) to a usable dimension.

Models that work with damaged brains and multiple modalities have
also been proposed. BrainMaGe27 was trained to be more specific to brains
with tumors. HD-BET19 was trained with brains with glioblastoma along
with healthy subjects from public datasets to provide a generalized brain
extraction method. Both were created to work with any of the 4 structural
modalities. Synthstrip20 created synthesized images by augmenting not just
the image itself but on each part of the known whole-head anatomical
segmentation. The synthesized images were used to train the model to be
generalizable to multiple modalities.

While there are multiple types of architectures proposed in the lit-
erature, this paper will focus on one of the most utilized types of models,
U-net. The popularity of U-net comes from its clever architecture of forcing
themodel to learnmulti-scale featuresbyusing amaxpooling layer for every
block of layers and using an autoencoder-like structure with skip connec-
tions. These skip connections between the encoder and decoder part of the
model add an additional pass of information on each scale, making the
model more segmentation friendly than classic autoencoders.

Since U-net was introduced, many DL methods that train on medical
images now use it as their base architecture19–22,28. Though the base model
was created for 2D medical image segmentation, there is a wide range of
models that modify this architecture to work for 3D19,29,30. Other improve-
ments have been introduced as well. Li et al.31 added cascade networks to
U-net to help segmentation on data where the background occupy a major
proportion of the image. W-Net32 used two U-net structures to do unsu-
pervised segmentation of images. HD-BET19 weighted the complexity of the
model to be heavier in the encoder along with loss calculation for each level
of the decoder to facilitate training.

Conditional random fields
CRFs were originally used for segmenting and labeling sequence data33. The
method is based on assuming the label’s probability distribution to be a
Markov Random Field (MRF), e.g. affected by only its neighbors. Various
approaches have been conducted to use CRFs in image segmentation. The
major difference in thesemethods are (a) the initial segmentation algorithm
for the prior distribution (probability of a pixel belonging to a certain label)
and (b) how the graph is constructed. Shotton et al.34 used texture/color/
spatial information to create an initial map with four neighboring pixels for
the graph structure. Fulkerson et al.35 created superpixels, a small group of
pixels, and calculated the histogram of them to define the initial prior.
Enhancing theCRF itself was also suggestedusing ahierarchical strategy36,37.

Krähenbühl and Koltun38 suggested an efficient way of calculating
CRFs so that the model could use a fully connected graph instead of just
neighboringpairs. Theirmethoduses thepositionand intensity information
of the pixels to create an energy function, which is minimized to reduce the
difference between the same labels. The initial segmentation is done by
following the feature extraction concept from Shotton et al.34. We will
explain more about the theorem behind their model.

Let us considerX =X1,X2,…,XN to be a vector of label assignments on
eachpixel 1 toN, where the value of eachelement iswithin thepossibilities of
the label. In our case, since brain extraction is a binary segmentation pro-
blem, it would be either 0 or 1. Since we are assuming an MRF, it can be
approximated as a Gibbs distribution with neighboring interactions. Thus,
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given image I, we can write a Gibbs distribution PðX ¼ xjIÞ ¼ expð�EðxjIÞÞ
ZðIÞ .

Z(I) is the denominator dependent on only the image itself, so can be
ignored. The model aims to find the maximum x that has the highest
probability, thus the lowest energy function. Krähenbühl and Koltun38

defines the Gibbs energy as

EðxÞ ¼
X

i

ψuðxiÞ þ
X

i<j

ψpðxi; xjÞ ð1Þ

where ψu is the unary potential (potential of a single pixel/voxel) and ψp is
the pairwise potential (potential from its neighboring information). Note
that the dependency on the image I was omitted for convenience. In our
case, the unary potential will be our base architecture’s output. The pairwise
potential is defined as

ψpðxi; xjÞ ¼ μðxi; xjÞ
XK

m¼1

wðmÞkðmÞðf i; f jÞ ð2Þ

where μ is the compatibility function that serves as a penalty between dif-
ferent labels with similar features and k(m) is the kernel that utilizes feature
fi, fj information. The paper uses position (smoothness) and intensity/
position (appearance) kernels as the feature information. They are defined
below.

kðf i; f jÞ ¼ wð1Þ exp �
jpi � pjj2

2θ2α
� jIi � Ijj2

2θ2β

 !
þ wð2Þ exp �

jpi � pjj2
2θ2γ

 !

ð3Þ

pi and Ii are each the spatial and intensity information of pixel i. θα, θβ, θγ
controls the degree of each feature.

Krähenbühl and Koltun38 also provide a way of efficiently approx-
imating the posterior distribution (essentially the probability map) using
mean field approximation. A quick summary of the method is described
here. It assumes an independent relationship between the latent variables, in
our case the true labels of each pixel/voxel. This creates an optimizable
approximation of the true posterior. Our goal is to find the closest
approximation of the posterior, the true label distribution. Thus, we aim to
minimize the KL-Divergence, a measure of distance between two dis-
tributions, between the posterior and its approximation. Through Bayesian
inference, one can calculate that the prior is a sumof theKL-Divergence and
negative variational free energy. As mentioned in the previous paragraph,
Krähenbühl and Koltun38 showed that this can be written in the form of the
unary potential and the pairwise potential. The assumption on the inde-
pendence of the latent variables lets each variable be updated separately
treating the other variables and the prior as constant. Thus, each iteration of
the latent variable update that increases the negative variational free energy
is guaranteed to decrease the KL-Divergence. Optimally, the converged
output would be the true segmentation probability map of the image. More
details on the method can be found in Krähenbühl and Koltun 38.

The Deep Learning model’s image segmentation output is mainly a
softmax result of thefinal layer. Since this gives aprobability distributionof a
pixel belonging to a certain label, using CRFs after a Deep Learning model
would be a good way of improving the final result beyond the base model.
CRFasRNN39 integrated the iteration process from Krähenbühl and
Koltun38 as a Recurrent Layer. Unlike the original, fully connected CRF
model including the CRF process in the model architecture itself increases
optimization efficiency and reduces the number of hyperparameters. Since
then, there have been suggestions to improve the model 40, but not for
volumetric medical images. While both the manual and Recurrent Layer
approaches have been utilized inmanymedical imaging domains 41–46, it has
been suggested that using naive CRFasRNN layerwithin theDeep Learning
architecture does not help much with the volumetric segmentation 47.

The reasoning behind this lack of performance could be several rea-
sons, but in this work, we focus on the single-channel problem.WhenCRFs

are used in Computer Vision, the feature space is constructed using color
channels. However, many medical images do not have multiple channels.
Thus, the CRF algorithm will not have enough information to refine the
initial segmentation output.

Summary of our work
This paper aims to improve V-net 30, a variant of U-net 17 for 3D medical
image segmentation. V-net has several advantages compared to U-net,
which include residual layers, replacing pooling layers with convolutional
layers and utilizing Dice Loss instead of Binary Crossentropy. While most
recent U-nets do share the characteristics that V-net proposed, V-net is
specifically calibrated towards volumetric medical image segmentation.
Using V-net as base architecture, we focus on two things which, if solved,
cangreatly improve its performance inbrain extraction. First, the lower scale
layer’s information is highly dependent on features from a higher scale.
Thus, at the beginning of a training phase, lower layers will not have ade-
quate information to process. This inefficiency of training is especially
problematic in brain extraction tasks since training speed is slow due to the
limitedmini-batch size. Second, imperfect training data labels can introduce
unnecessary biases or errors for the model to learn, limiting the model’s
generality. Our work suggests three ways to resolve these problems: (1)
multi-scale inputs, (2) a unique utilization of the Conditional Random
Fields as a Recurrent Layer (CRFasRNN) 39 and (3) a loss function to further
remove potential errors introduced by non-DL methods that were used in
creating training labels.

Results indicate ourmodel’s highperformance inmultiple test datasets,
both quantitatively and qualitatively. The performance is best highlighted in
how it provides the most accurate boundaries along the brain mask. We
additionally include prediction masks of unseen non-adult or patient T1
images to emphasize the generalizability of our model. Validation loss plot
during training indicates that our proposed approach also increases training
efficiency.

Methods
Due to the size and complexity of brain MRI and the lack of accurate
public data, it is incredibly important to have a robust and efficient model
that works with limited resources. This paper will propose three ways to
enhance Deep Learning architectures for brain extraction: (1) multi-scale
inputs for the efficiency of the model, (2) a distinctive usage of the Con-
ditional Random Field Recurrent Layer and (3) a matching loss function
to get a finer segmentation result. The overall architecture is shown in
Fig. 1. We would like to emphasize that all of these approaches have
minimal to no effect (ranging up to 0.3% change) in the number of
parameters. To be more specific, the base V-net model has 27,008,316
parameters, the multi-scale input adds 88,032 parameters and the CRF
layer adds 32,052.

Multi-scale
We first propose feeding rawmulti-scale inputs to the model, as previously
suggested by other segmentationmodels 48,49.We add the lower-scale inputs
by concatenating them to the output of each downsampling convolutional
layer as shown in Fig. 1. We revisit the reasoning behind this as it has a
synergistic effect with our other improvements.

We can write a general equation for the output of a layer in the
model as

y ¼ σðzÞ ð4Þ

z ¼ wx þ b ð5Þ

where w is the weight, x is the input, b is the bias and σ is any non-
linear function. The gradient of w is calculated through back-
propagation to update the weight (kernel in convolutional layers). By
the chain rule, we know that the gradient value is a multiplication of
the gradients of the deeper layers, the non-linear function and the
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input to the current layer. We can write this as

δL
δw

¼ G
δx0

δz
δz
δw

ð6Þ

whereL is the loss function,G is the previous gradients in the chain rule, x0 is
the input to the next layer. There are twomajor changes one canmake in the
layer to modify the target gradient. One is altering the non-linear function,
hence changing δx0

δz . We aim to change δz
δw which is the input to the layer. In

other words, we are defining x to be

x ¼ xprev þ xraw ð7Þ

xprev stands for the input fromtheprevious layer that reduces the feature size.
This is present in anyU-net-type architecture.xraw is the raw input resized to
match the layer’s feature shape. It forces the weight to update using
meaningful information even if the xprev provides a non-important feature,
especially when training from a randomly initialized model.

The lower scale inputs will ultimately reinforce themulti-scale scheme
ofV-net so that each endof the encoder structurewill containmore accurate
corresponding scale features. We utilize this in our next proposed change.

Enhanced CRFasRNN
While the multi-scale inputs provide good results alone, they can still
contain some bias from the non-human-made prior labels. We need our
output to follow the complex, intricate and detailed structure of the brain,
which is often not captured in the ground truth. Many features are con-
sidered when calculating a brain mask, but one cannot deny the fact that
continuity in intensity and structure is an important factor. As CRFs are
known to minimize the discrepancies in labels between neighboring pixels
with similar intensity and spatial information, they can be used to create a
fine-grained segmentation result.

Previous work have shown the effectiveness of the CRF method as a
post-processing step after the deep-learning step41. However, the number of
hyperparameters of themethod can limit the flexibility of the overallmodel.
Hence, as implemented in Monteiro et al.47, we add a Recurrent Layer that

essentially does the matrix factorization optimization iteration step of the
CRF. The layer is added right after the output of the multi-scale model part
of the network.

Two ways of training were tested. (1) Training the whole model from
scratch. (2) Pre-training and fixing the weights of the base architecture,
followed by training the CRF layer. Though fixing the weights can prevent
anyunnecessary change in the optimizedweights of the basemodel, training
all the weights from scratch provided better results. This is possibly due to
the fact that the previous model already learned a stable local minimum.
This couldhave limited theCRF layer’s ability to correct theoutput.Weused
CRFasRNNLayer as provided inMonteiro et al.47 andAdams et al.50, which
provides an efficient way of calculating the kernel features. Instead of 10
iterations recommended in the previous studies, we found 20 iterations to
give much better results, which could be decreased back to fewer iterations
during prediction as suggested in Zheng et al.39.

However, this does not solve the single-channel problem of gray-scale
volumetric medical images. Thus, one of our major contributions is adding
learned features within the network along with the image intensity to
improve theCRF layer. Specifically, we used the last layer of the highest scale
output of the encoder in the model. While our ablation study shows that it
alone has a beneficial effect on the model’s performance, the more accurate
features created fromthemulti-scale inputshave a synergistic effectwithour
modified CRFasRNN layer.

Loss for CRFasRNN
While in practice, we also encountered problems where sometimes the
CRFasRNN layers fail to create a meaningful change in the model output,
even when trained together from scratch, on certain areas more stable
intensity-wise than the others. Hence, we propose adding a second loss
function, negative Dice Loss between the original model’s output and the
CRF layer’s output. Given a good loss weight, this can enforce the base
model to give a more stable crude segmentation while the CRFasRNNlayer
improves the segmentation result by a reasonable amount.We canwrite the
proposed loss function as this

Dðy; y0Þ � λDðz; yÞ ð8Þ

Fig. 1 | Summary of the model architecture. The architecture uses V-net as its base
model with the following important changes: multi-resolutional raw inputs, mod-
ified CRFasRNN and additional Dice Loss. The CRF layer uses the rear layer of the

first level of the encoder. A negative Dice Loss is calculated between the base model’s
output and CRF layer’s output.
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WhereD is Dice Loss y the final prediction, y0 the provided ground truth, λ
the additional loss weight and z the prediction before the Recurrent layer.

Additional processing. For all the methods tested, including ourmodel,
we have removed small segmentation errors that might be present in the
result. Using prior information about the brain structure, we have limited
the segmentation result to the largest connected component, while filling
the black spaces within the segmentation.

Training and testing details
Our models were trained using two Tesla V100s. All the models compared
in the ablation study were trained until convergence. More specifically,
EVAC, EVAC+, V-net with CRF layer, V-net with multi-scale inputs and
baseV-net were respectively trained for 18, 18, 18, 32, 40 epochs. A learning
rate of 0.01wasused.Dropout rate of 0.2wasused for the initial layer and0.5
was used for the rest.

1438 T1 MR images were used for training from the following public
datasets: the Human Connectome Project(HCP)16, CC35915 and NFBS14.
The provided labels of the datasets were used for training. All training data
used were healthy adults, without any known abnormalities. CC359 and
NFBS had a resolution of 1mm3 while data fromHCPhad 0.7mm3. 10% of
the training data was used for validating the model’s performance. For
testing purposes, 39 images from the LPBA40 dataset51 and 30 images from
the Hammers dataset52,53 were used. Both datasets contain healthy adult
brains that were not seen by the model during training. To show the per-
formance as images, IXI dataset54 was used as healthy adult qualitative
analysis data. Clinical (Alzheimer and Parkinson) and pediatric data from
OASIS313, FCP-INDI55 and HBN56 were used to test the robustness. Note
that unlike many state-of-the-art methods, it was trained only on public
datasets of healthy adults with minimal augmentation sampling, described
below. More details on the datasets are available from each corresponding
paper. DIPY Horizon57 was used for visualization.

Each image was loaded to a common space of 1mm cube per voxel
using the affinematrix accompanied by thefile. The imagewas translated so
that the center of the imagewould be the voxel coordinate of (128, 128, 128).
The image was padded or cropped to have a size of (256, 256, 256). No
additional registration to the template process was required.

Augmentation has been known to force the model to learn structural
components. It is particularly important for medical images due to the lack
of data. The image was first normalized to a range of 0 to 1. For intensity
augmentation, we have used scaling (range of 0.9 to 1.1) and shifting (range
of -0.1 to 0.1) of values to add/multiply random noise. For transformation
augmentation, random rotation (maximum 15 degrees) and translation
(maximum range of 10mm) were used. This was to compensate formost of
the minor differences T1 weighted images might have when in the same
coordinate space. On every epoch, a single random augmentation method
was chosen for each image. We only trained on the augmented images, i.e.
did not increase the size of the training dataset per epoch. This was done to
improve generality without increasing the time complexity of training. We
would like to emphasize EVAC+ was able to work with the more extreme
range of augmentations while models without the modified CRFasRNN
layer could not.

More details on the training environment and the exact parameters for
the model architecture can be found in our code https://github.com/
pjsjongsung/EVAC.

Statistics and reproducibility
The Dice Coefficient and Jaccard Index were calculated by replicating
the equations using the Python package Numpy58. Scikit-image59

python package was used for calculating Hausdorff Distance. All
models were run through the default parameters given in their corre-
sponding software or repository to collect their predicted masks. P
values were calculated using Wilconxon’s method implemented in the
Python package Scipy60.

Ethics
Institutional Review Board approval was waived for our study because we
used publicly available datasets.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Evaluation between models was done with three metrics. The Dice Coeffi-
cient and Jaccard Index were selected to measure the similarity of the pre-
diction to the ground truth.While both are used for the evaluation of image
segmentation, the Dice Coefficient adds more weight to the True Positives
than the Jaccard Index. Hausdorff Distancewas used tomeasure the surface
distance error. Higher scores are better for the Dice Coefficient and Jaccard
Index. For Hausdorff Distance, lesser scores are better.

In the figure descriptions, EVAC and EVAC+ refers to our model
without and with the additional loss. V-net+multi refers to a V-net model
with the multi-resolution scheme and V-net+CRF refers to V-net with the
CRFasRNNLayer but without the multi-scale inputs.

Ablation study
We first compare results from V-net30, V-net with multi-scale inputs or
CRFasRNN layer, EVAC, and EVAC+ with the proposed loss function to
show the development of results per each change in the model. Figure 2
provides a summary of what each enhancement to the model does in terms
of output. Ground truth image is also provided in the figure for overall
performance evaluation.

Each improvement (multi-scale input, theproposedCRF layer and loss
function) of the architecture corresponds to an improvement of accuracy.
Themulti-scale input enforces themodel to use large-scale features, which is
missed in theV-net output.However, this also introduces non-brain regions
to the segmentation result. The proposed CRF layer corrects most of the
falsepositives.However, it is not completely free fromthebasemodel having
major influence over the CRF layer.We can see that the proposed change in
loss function projects additional importance to the CRF layer, inducing
greater correction in the segmentation output. To show that the proposed
CRF layer is beneficial even without the multi-scale scheme, we compare
V-net likemodelwith the samemodel plus theCRF layer. You can see that it

Fig. 2 | Qualitative ablation study. Blue represents a model without a certain
change, green the model with one of the proposed changes and teal the overlapping
regions. Ground truth is added for reference. We can see that while both multi-scale

inputs and conditional randomfields do a great job of recovering FalseNegatives and
removing False Positives, a combination of them gives a better segmentation. The
additional loss function also fine-tunes the output closer to the ground truth.

https://doi.org/10.1038/s43856-024-00452-8 Article

Communications Medicine |            (2024) 4:29 5

https://github.com/pjsjongsung/EVAC
https://github.com/pjsjongsung/EVAC


oversegments some regions, but recovers important brain regions as
expected.

The improvement is not only in the accuracy but the efficiency of
training. Figure 3 shows how the loss changes with the number of epochs.
Note that the training environment is identical between models except the
proposed changes (e.g. CRF layers, additional loss). The plot clearly shows
the learning efficiency increase per enhancement of the model. Another
important phenomenon is that even though the regularizing Dice Loss is
applied at the model level, it still leads to faster convergence of the origi-
nal loss.

We further show integrated gradients61 to provide an explanation of
how our changes are improving themodel. Figure 4 shows that our changes
lead the model to focus less on unimportant regions within the image.
Comparison between EVAC and V-net+multi-scale suggests that our
proposed CRF layer pushes the model toward better usage of multi-scale
inputs. The difference in feature importance within the brain between
EVACandEVAC+ is possibly due to theCRF layer’s refining step playing a
major role, thus needing less focus on low-level features. This can be ben-
eficial when dealing with abnormal or noisy images.

Quantitative results on the test dataset is shown inTable 1 to emphasize
the synergistic effect. While the proposed changes individually do not help
the model’s accuracy, EVAC and EVAC+ in the end manage to get lower
Hausdorff Distance, indicating that the proposed changes have a positive
effect in refining the cortical surface regions.

We would like to emphasize that besides some minor details (e.g.
number of epochsuntil convergence) themodelswereunchanged except for
the major proposed changes. Thus, the increase in accuracy would have
been purely from the improvement of the model architecture.

We also show Fig. 5 to emphasize the robustness of our methods. The
images are from the OASIS3 dataset13, Parkinson’s from FCP-INDI55 and
pediatric brains from theHealthy Brain Network dataset56. It is evident that
our method is robust in a wide area of clinical/pediatric data, even though
such data were never introduced during training.

Comparison
We compare our EVAC model to other publicly available state-of-the-art
methods. The models were chosen based on the accessibility. For Deep
Learning models, only pre-trained models for brain extraction were chosen
for two reasons. First, the training dataset is a critical part of DLmethods in
brain extraction. Thus, it is not reasonable to train the models again with a
fixeddataset.Also, sincewe are planning to release thepre-trainedmodel for
actual use, it is more reasonable to compare to themodels that are provided
for the same purpose.

Figure 6 shows the results of each model on an image from the IXI
dataset. Both the EVACmodelwith andwithout the proposed loss function
were included to emphasize its effects. While most methods fail to remove
the dura mater on the surfaces of the brain or over-segment, both of our
models are mostly free from that problem. BEaST is anothermethod that is
free from this issue but is known to have problems around the cerebellum,
which our models do not. Additionally, by using the additional loss func-
tion, our model returns segmentation outputs with higher detail.

Figure 7 shows the average of each metric on the test datasets as box
plots. Our method has a stable accuracy in both datasets. Table 2 shows the
significance of the difference between the averages through p values. The
values were calculated through Wilcoxon’s signed rank test method. Red
shows cases where our method has a higher average score than the com-
pared method. Gray indicates insignificant p values.

Discussion
Our model provides a robust and efficient DL model for brain extraction
with limited data and augmentations. Results clearly show the stable
accuracy compared to other methods, especially in the cortex/dura mater
interface. The ablation study performed suggests that Deep Feature
CRFasRNN layer with multi-scale inputs and negative Dice Loss have
synergistic effects. The improvement can be seen not only in accuracy but
also in efficiency during training.

Despite ourmodel’s performance in the evaluation dataset, it is limited
toT1weightedMRIdata unlike other proposedmethods19,20,27.However, we
believe when provided with enough variety in images, the model would be
able to train up to a state where it canprovide output for abnormal brains, as
themodel utilizes features from the image, which is more robust to the type
of image. The additional loss would also help correct local issues with the
segmentation. This is evident in the robustness analysis results, where our
model succeeds in brain extraction of clinical or pediatric brains. The results

Fig. 3 | Dice Loss comparison for ablation study. The original Dice Loss plot. The
values in the plot do not include the proposed regularizing negative Dice Loss of our
model. It clearly shows an efficiency increase in training for each improvement. Note
that ourmodel (EVAC+) with the additional Dice Loss trains better even in terms of
the original Dice Loss.

Fig. 4 | Important image features highlighted
through integrated gradients. Larger value indi-
cates a larger gradient within that region, suggesting
higher importance in prediction. Note that our
model is not affected by most non-brain regions
such as dura mater and neck regions. The figure also
shows that EVAC+ has less important features
within the brain, suggesting that the proposed CRF
layer is contributing more to the model.
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are important because these populations were not included in the training
dataset. This suggests themodel’s capability to train and perform on limited
and biased data, which is one of the major issues in the medical imaging
field. Themodel can be, however, negatively affected by artifacts that are not
evident by large intensity differences (e.g. artifacts in the skull connected to
the brain structure with similar intensity). This can only be avoided by
anatomical priors (e.g. overall atlas shape of the brain). Further work would
be extending thedataset for general use by addingmore variety inmodalities
or clinical cases of the training data and balancing between feature-based
segmentation refinement and anatomical priors.

Our model provides a precise semantic segmentation output near the
outer surface of the brain. This can be beneficial in any further analysis or
clinical steps that are highly dependent on the boundaries of the brain (e.g.
cortical thickness). For example, due to the difference in the portion of gray
matter and whitematter, methods trained on adult brains can easily over or
under-segment pediatric brain images, leading to errors in tractography or
surgical procedures.

This work limits themodel’s goal to T1 brain extraction task. However,
in theory, the samemodel canbe trainedwith othermodalities. In addition, a
wide range of medical images share the characteristic that neighboring
regions have fairly consistent features. Therefore, while not currently tested,
the proposed changesmight be beneficial in a variety ofmedical image tasks.
Another direction the model can take is moving from brain extraction to
general-purposemedical image segmentation (e.g. multi-label). In principle,
this version shouldbe comparedwithmethods such asnn-Unet28 andCotr62.

For the past few years, BEaST had the top accuracy among both tra-
ditional and Deep Learning methods. However, the time complexity of the
method has prevented it from being widely used in the field. Thus, even
though it is often problematic, BET has been the top-used Skullstripping
method.Ourmethod however clearly shows comparable or higher accuracy
and does not suffer from such problems as it is a Deep Learning model.
Therefore, we believe our method could be not just for the medical image
segmentation community but all fields that could benefit from an accurate
Brain Extraction.

Table 1 | Quantitative ablation study comparing metrics (mean ± standard deviation) between models with different levels of
change in the architecturea

Model type LPBA40 (n = 39) Hammers (n = 30)

Dice Score Jaccard Index Hausdorff distance Dice Score Jaccard Index Hausdorff distance

V-net 0.964 ± 0.007 0.931 ± 0.013 12.5 ± 5.15 0.928 ± 0.011 0.866 ± 0.019 14.3 ± 3.20

V-net +MSb 0.948 ± 0.010 0.901 ± 0.017 54.0 ± 14.5 0.927 ± 0.014 0.865 ± 0.024 13.3 ± 2.50

V-net + CRF 0.913 ± 0.020 0.840 ± 0.033 51.4 ± 10.3 0.920 ± 0.014 0.865 ± 0.024 13.3 ± 2.50

EVAC 0.958 ± 0.007 0.920 ± 0.012 11.4 ± 4.61 0.940 ± 0.005 0.887 ± 0.009 9.78 ± 2.43

EVAC+ 0.958 ± 0.006 0.919 ± 0.011 9.54 ± 4.59 0.947 ± 0.006 0.900 ± 0.011 8.75 ± 2.16
aLPBA40 and Hammers used as test datasets.
bMultiscale.

Fig. 5 | Qualitative robustness analysis of the compared methods. The images are fromOASIS, Parkinson’s dataset from the FCP-INDI project and pediatric brains from
the Healthy Brain Network dataset. Red marks the segmentation results of each method.
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Fig. 6 | Qualitative comparison between models. The image shows comparison
between our models with (EVAC+) and without the additional Dice Loss (EVAC)
and other established state-of-the-art models. Specific regions were zoomed in to
emphasize the improvements our model is achieving. Results show that our models

get an accurate local segmentation on the surface, whereasmost of the othermethods
either under-segment or include the duramater. Similar accuracy improvements are
also visible near the central sulcus and the cerebellum. T1 images from the IXI
dataset.

Fig. 7 | Quantitative analysis between models. The plots indicate (a) Dice Coef-
ficient, (c) Jaccard Index, and (e)Hausdorff Distance for the LPBA40 dataset (n=39)
and (b) Dice Coefficient, (d) Jaccard Index and (f) Hausdorff Distance for the

Hammers Atlas dataset (n = 30). Our models with (EVAC+) and without the
additional Dice Loss (EVAC) have a stable near-top accuracy in both datasets and
metrics, while others have either lower scores in a dataset or unstable results.

https://doi.org/10.1038/s43856-024-00452-8 Article

Communications Medicine |            (2024) 4:29 8



Medical image processing has developed rapidly since DL was first
introduced in the field. Despite the common elements betweenusingDL for
computer vision images and medical images, crucial factors such as the
quality/quantity of training data, different weights on false positives/nega-
tives and bias in labels have pushed the field to have more carefully and
ethically designed methods. For instance, techniques such as One or Few
shot learning63,64 fine-tune a pre-trained model with a limited number of
data. Federated learning65 proposes indirectly using non-public datasets to
improve the generalizability of the method while not raising privacy con-
cerns. Tversky Loss66 has been helpful in solving some of these problems by
weighting Dice Loss based on the portion of foreground and background
segmentation. We aim to contribute to this field by introducing the
robustness of our model to bias and unseen data. Brain extraction is a
mandatory pre-processing step for a majority of methods. Over or under
segmentation of the brain can be one of the leading factors towards an
inaccurate analysis. Thus, our model’s robustness is critical in numerous
clinical and research tasks.

The paper emphasizes the enhancement of the overall architecture, but
keeps the changes in the base architecture minimal. However, there are
various changes we can make to the base V-net architecture. Instance
Normalization was proposed in StyleGAN67 and had cases where it per-
formed reasonably well in medical imaging tasks68. Many losses have been
proposed as alternatives to Dice Loss20,66. Even though we are not using the
whole Vision Transformer11 architecture, it has been reported that just
applying self-attention to the Convolutional Neural Networks could be
beneficial to its robustness69. Future work would be refining ourmodel with
these techniques for better quality outputs.

It is still controversial on whether a segmentation model should be
based on Vision Transformers or Convolutional Networks. Despite the
recent advancements in Vision Transformers, we did not focus on or
use themethod in this paper as they tend to be trained onmore training data
and training epochs70, which is often not suitable for large volumetric
medical images. Also, despite the efforts to combine U-net and Transfor-
mers to utilize more global contextual info71, our model focuses more on
correcting local errors, which is where the errors frommethods are in Brain
extraction tasks. Thus, it relies on local contextual info. UsingCRF layers on
global info with Transformers needs more investigation.

While CRFasRNN has lower hyperparameters compared to the ori-
ginal CRF model, it can still increase the complexity of choosing an ideal
model for a specific task. In our work, we pre-process the images so that the
voxel resolutions of the training and test dataset are equal or resized to be
equal. Though this does not completely remove the need to tune the
hyperparameters, it should minimize the parameter space. More investi-
gation should be done on different segmentation tasks.

Despite the fast speed of the Deep Learning prediction using GPUs,
CRFasRNNLayer with more features can still be relatively time consuming
(About a 2.5-fold increase in GPU calculation time). One possible

workaround can be reducing the time complexity by using fewer iterations
within the CRF layer as the original paper suggests. However, training
simplermodelswith thehighly accurate predictions from the originalmodel
can completely remove the time-consuming step during inference. This can
also solve some issues with implementing the model since the original code
has a sub-optimal CPU implementation and recent package support due to
compiler changes. Futureworkwould be retraining the outputs of themodel
with a simpler model to keep the benefits of the CRF layer’s output
refinement while reducing time complexity.

The Deep Learning in medical imaging community has developed
variousways to solve problems such as bias and transparency of the training
data. Public datasets for several different tasks are being released72,73, open-
source packages such as MONAI74 are pushing federated learning (training
across sites without directly accessing private patient data) and transparent
models. We envision our addition to the field by introducing a flexible
model that can overcome bias in training data and perform on unseen data
as well could further improve the field, reducing dangers of wrong and
biased predictions and privacy concerns from requiring numerous data.

Removing non-brain tissues from MRI data is a necessary step for
nearly all forthcoming analyses of these images. Various Deep-learning
approaches have been considered in the literaturewith limitedoutcomes.To
resolve this issue, we propose EVAC+, a DL architecture that combines a
V-net architecturewithCRF layers andmulti-scale inputs. Results show that
the proposed CRF layer with a negative Dice Loss for refining the seg-
mentation can significantly improve results. The improvements are espe-
cially profound in cortical surfaces, which most methods fail to achieve a
precise segmentation. The accuracy is also profound in clinical data and
pediatric brains, even though those were not included in the training data.
We additionally show that this ready-to-go approach can efficiently reach
higher accuracy with fewer epochs. We believe it is exciting and refreshing
that a revisit to CRFs in medical imaging can be used in tandem, creating a
compound effect with Neural Networks, and further improving crucial
medical imaging problems. A version of our model is currently open-
sourced via DIPY57 to disseminate its use to the wider medical imaging
community via a stable platform.

Data availability
We used public datasets available online. The following datasets could be
accessed at the stated url: NFBS http://preprocessed-connectomes-project.
org/NFB_skullstripped/14, CC359 https://sites.google.com/view/calgary-
campinas-dataset/home15, FCP-INDI https://fcon_1000.projects.nitrc.org/55,
HBN https://github.com/richford/hbn-pod2-qc56, IXI https://brain-
development.org/ixi-dataset/54, Hammers https://brain-development.org/
brain-atlases/52,53, LPBA40 https://www.loni.usc.edu/research/atlas_
downloads51 The remaining datasets were accessed by registering an
account and/or agreeing and following the stipulated requirements to use the
requested dataset: HCP https://www.humanconnectome.org/study/hcp-

Table 2 | P-values from the quantitative comparison between models calculated using Wilcoxon’s signed rank test methoda,b

Model compared against EVAC+ LPBA40 (n = 39) Hammers (n = 30

Dice Score Jaccard Index Hausdorff distance Dice Score Jaccard Index Hausdorff distance

BEaST 5.26e−08 5.26e−08 1.80e−07 9.27e−03 9.27e−03 1.98e−01*

BET 0.01e−02 9.88e−05 1.11e−06 1.73e−06 1.73e−06 8.94e−04

BrainMaGe 5.26e−08 5.26e−08 5.26e−08 1.73e−06 1.73e−06 1.73e−06

EVAC 1.20e−02 1.15e−02 9.29e−05 1.73e−06 1.73e−06 1.57e−02

HD-BET 5.68e−08 5.68e−08 4.08e−05 6.98e−06 6.98e−06 1.44e−01*

Nobrainer 5.26e−08 5.26e−08 1.78e−04 1.73e−6 1.73e−06 2.35e−6

ROBEX 5.26e−08 5.26e−08 5.26e−08 1.73e−06 1.73e−06 2.84e−05

Synthstrip 9.83e−03 1.07e−2 1.25e−03 1.73e−06 1.73e−06 1.73e−06
aLPBA40 and Hammers used as test datasets.
bBold values indicate comparisons where EVAC+ had a superior average value
*Insignificant p values.
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young-adult/document/1200-subjects-data-release16, OASIS3 https://www.
oasis-brains.org/13 Comparison data used in creating the plots are provided
in this link: https://figshare.com/articles/dataset/Metric_scores_used_in_b_
Multi-scale_V-net_architecture_with_deep_feature_CRF_layers_for_brain_
extraction_b_/2446362775. Any image data can be recreated by gathering
predicted masks from the available code or the corresponding model’s
software/repository.

Code availability
Code and tutorials for EVAC+ are publicly available in GitHub and can be
found here https://github.com/pjsjongsung/EVAC76. Code is written using
Python language with dependencies in DIPY57 and Tensorflow77. The
CRFasRNN layer skeleton was adapted from https://github.com/
MiguelMonteiro/CRFasRNNLayer. A version of EVAC+ is publicly
available through DIPY57 at https://github.com/dipy/dipy.
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