
communicationsmedicine Article

https://doi.org/10.1038/s43856-024-00446-6

Generalisable deep learning method
for mammographic density prediction
across imaging techniques and
self-reported race

Check for updates

Galvin Khara 1 , Hari Trivedi2, Mary S. Newell2, Ravi Patel1, Tobias Rijken 1, Peter Kecskemethy1 &
Ben Glocker 1,3

Abstract

BackgroundBreast density is an important risk factor for breast cancer complemented by a
higher risk of cancers being missed during screening of dense breasts due to reduced
sensitivity of mammography. Automated, deep learning-based prediction of breast density
could provide subject-specific risk assessment and flag difficult cases during screening.
However, there is a lack of evidence for generalisability across imaging techniques and,
importantly, across race.
Methods This study used a large, racially diverse dataset with 69,697 mammographic
studies comprising 451,642 individual images from 23,057 female participants. A deep
learningmodel was developed for four-class BI-RADS density prediction. A comprehensive
performance evaluation assessed the generalisability across two imaging techniques, full-
field digital mammography (FFDM) and two-dimensional synthetic (2DS) mammography. A
detailed subgroup performance and bias analysis assessed the generalisability across
participants’ race.
Results Here we show that a model trained on FFDM-only achieves a 4-class BI-RADS
classification accuracy of 80.5% (79.7–81.4) on FFDM and 79.4% (78.5–80.2) on unseen
2DS data. When trained on both FFDM and 2DS images, the performance increases to
82.3% (81.4–83.0) and 82.3% (81.3–83.1). Racial subgroup analysis shows unbiased
performance across Black, White, and Asian participants, despite a separate analysis
confirming that race can be predicted from the images with a high accuracy of 86.7%
(86.0–87.4).
Conclusions Deep learning-based breast density prediction generalises across imaging
techniques and race. No substantial disparities are found for any subgroup, including races
that were never seen during model development, suggesting that density predictions are
unbiased.

Mammographic density is one of the strongest risk factors for breast cancer,
with an almost five-fold increase in risk for women in the highest breast
density group compared to women of similar age in the lowest group1.

Breast density also affects the accuracy of breast cancer detection in
screening mammography, as normal but dense parenchymal breast tissue
can have similar radiographic appearance as cancerous tissue2,3. The
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Plain language summary

Womenwith dense breasts have a higher risk
of breast cancer. For dense breasts, it is also
more difficult to spot cancer in
mammograms, which are the X-ray images
commonly used for breast cancer screening.
Thus, knowing about an individual’s breast
density provides important information to
doctors and screening participants. This
study investigated whether an artificial intelli-
gencealgorithm (AI) canbeused toaccurately
determine the breast density by analysing
mammograms. The study tested whether
such an algorithm performs equally well
across different imaging devices, and impor-
tantly, across individuals from different self-
reported race groups. A large, racially diverse
dataset was used to evaluate the algorithm’s
performance. The results show that there
were no substantial differences in the accu-
racy for any of the groups, providing impor-
tant assurances that AI can be used safely
and ethically for automated prediction of
breast density.
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reduced sensitivity of mammography to detect cancer in highly dense
breasts makes mammographic density an important risk factor for interval
cancers4.Automating the assessmentof breast density frommammographic
images would not only provide important information about subject-
specific cancer risk, but could be used to flag difficult cases during screening
which may require additional attention. Breast density in mammographic
images is commonly assessed following The Breast Imaging Reporting and
Data System (BI-RADS) standard5, which defines four levels of density: A,
almost entirely fatty; B, scattered areas of fibroglandular density; C, het-
erogeneously dense; and the highest level D, extremely dense. Despite this
widely used reporting standard, human readers exhibit high inter-rater
variability in breast density classification, questioning its utility for clinical
considerations and health policy6–8. Given its clinical relevance and the
recent US federal mandate requiring all screeningmammograms to include
a density assessment9, improving its reliability and reproducibility could
contribute to a decrease in breast cancer mortality10.

Computational methods for image-based density assessment could
provide more objective and reliable measurements, and thus, improve its
value in clinical decision making. Early approaches for interactive density
quantification showed potential, enabling research into better under-
standing the association of breast density and cancer risk11. One study found
excellent reproducibility of automated methods12, arguing that computer
algorithms could bewell suited for inclusion in breast cancer risk prediction
models13.

More recently, deep learning-based methods have been proposed for
full four-class BI-RADS classification14–18, and binary dense/non-dense
classification using full-field digital mammography (FFDM)19,20, with pro-
misingperformance andgoodagreementwithexpert radiologists. In clinical
practice, both FFDM and two-dimensional synthetic (2DS) images gener-
ated from digital breast tomosynthesis (DBT) are used in screening and
diagnostic imaging. Previous research highlighted human perceptible dif-
ferences, and higher signal-to-noise ratio, for 2DS images, when viewing
parenchymal tissue, a key contributor to the BI-RADS classification21.
Automatedsystems fordensity classification shouldbe accurate and reliable,
independent of the underlying imaging technique. A recentmulti-site study
demonstrated that a deep learning system trained on FFDMcould achieve a
good level of accuracy when tested on 2DS images17. However, a model
adaptation step was required where the FFDMmodel had to be fine-tuned
using 2DS training data. This may limit its clinical adoption as different
models would need to be deployed depending on the imaging technique
used at a local site.

Tobe clinically effective and ethical to use inpractice, automatedbreast
density prediction should not only be robust to changes in the image
acquisition, but more importantly, it should generalise across different
patient populations. Differences in breast density across race and its asso-
ciation with cancer risk has been the subject of many research studies22–26.
Despite its clinical and societal relevance, performance across race has not
been studied in the context of automated breast density prediction. None of
the recent works on deep learning-based methods have evaluated the
potential effect of race nor provided any assurances that the proposed
methods are unbiased and yield equitable performance across subgroups.
This is concerning in the light of recent work that has demonstrated that AI
systems can predict race frommammograms27. The ability of deep learning
models to recognise such protected attributes exposes the models to
potentially harmful shortcuts that could be exploited during model
training28. Existing biases in the training data related to race could be picked
up and encoded in the model, possibly leading to disparate performance
across subgroups. The presented workmakes an important contribution by
validating the generalisability of a deep learning-based breast density pre-
diction method across imaging techniques and race.

This study used a large, racially diverse dataset to assess the perfor-
mance of a deep learningmodel for four-class BI-RADS density prediction.
A comprehensive performance evaluation assessed the generalisability
across FFDM and 2DS images. A detailed subgroup performance analysis
assessed the generalisability across participants’ self-reported race.

The racial subgroup analysis shows unbiased performance across Black,
White, andAsian participants. The study results suggest that deep learning-
based breast density prediction generalises across imaging techniques and
race, including races that were never seen during model development. The
study provides important assurances that AI can be used safely and ethically
for automated prediction of breast density from mammographic images.

Methods
Study population
We used a large scale representative dataset with 69,697 mammographic
imaging studies with a total of 451,642 individual images from a cohort of
23,057 female participants, collected from four hospital sites at Emory
University (Atlanta, GAUSA) between 2013 and 2020 as part of the EMory
BrEast imaging Dataset (EMBED)29. The retrospective data was collected
with the approval of the Emory University’s institutional review board. The
need for written informed consent from patients was waived because of the
use of de-identified data. The EMBED dataset is made publicly available for
research. The presented study is exempt from ethical approval as the ana-
lysis is based on this publicly available, fully anonymized data. All imaging
studies were acquired on a variety of Hologic Selenia and Selenia Dimen-
sionsmachines, consisting of standard FFDMonly systems, aswell as newer
systemswith combo imaging capability,which containbothFFDMand2DS
images.Only images taggedwith laterality left or right, andcraniocaudal and
mediolateral oblique views were included. All studies required a historical
BI-RADS density assessment (5th edition) by a human expert, and a cor-
responding self-reported race. Images flagged as having implants, or having
a prior history of breast cancer, were not included. A valid study was
composed of any images that satisfy all the above criteria. The historical BI-
RADS assessments were made by 57 historical Mammography Quality
Standards Act and Program (MQSA) certified, fellowship-trained breast
radiologists, with 13 of these having read over 90% of the studies. A detailed
breakdown of the population characteristics is provided in Table 1.

Race subgroups
Self-reported race was available for all participants. This study focused on
three racial groups with participants who identified as either ‘White or
Caucasian’ (shortened to ‘White’ in the following), ‘Black or African
American’ (shortened to ‘Black’ in the following) and ‘Asian’. Participants
were randomly assigned to training, validation, and test sets in approxi-
mately a 50/10/40% ratio. Training and validation sets were used for model
development, and the test set was solely used for the final model perfor-
mance evaluation.All participantswith race reported asAsianwere assigned
to the test set, maximising the sample size and reliability of performance
metrics on this underrepresented subgroup. This also facilitated the
assessment of the generalisability of the density predictionmethod on a race
never seen during model development. A breakdown of the characteristics
of the training, validation and test sets is provided in Table 2.

Density prediction models
To study the generalisability of breast density prediction, we trained several
models on different subsets of the training and validation data. All models
were based on the ResNet-34 architecture, a widely used deep learning
model for image classification30. The final output layer was adapted for the
prediction of four BI-RADS density classes. To obtain a density prediction
per imaging study, averaging was applied to the class probabilities obtained
for the individual images.

Figures 1 and 2 highlight the substantial qualitative and quantitative
differences between FFDM and 2DS images respectively. To assess the
generalisability across these imaging techniques, we compared two density
predictionmodels, one trainedonFFDMstudies only andone trainedon all
available studies, which included combination studies, containing both
FFDM and 2DS images. The FFDM-only model was developed with
training and validation sets consisting of 19,323 and 2929 studies, respec-
tively. The training and validation sets for the second model included an
additional 16,770 and 3053 combination studies for a total of 36,093 and
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5982 studies, respectively. Both models were then evaluated on the same
FFDM-only and 2DS-only test sets with 13,335 and 14,287 studies,
respectively. This allowedus to assess twodifferent aspects of generalisation.
First, we evaluated the performance of the FFDM-only model on 2DS
imaging in comparison to its performance on an FFDM test set. Second, we
evaluated the added benefit of training on both FFDM and 2DS images in
comparison to a model trained on FFDM-only.

To investigate the generalisation across races, we compared three
breast density prediction models; model A trained on studies from Black
patients only; model B trained on studies from White patients only; and

model C trained on studies from both Black and White patients. Here, all
three models were trained on both FFDM and 2DS images, and model C is
identical to the FFDM/2DSmodel described above. The three models were
then evaluated on the same large scale, diverse test set including participants
that self-identified as either Black,White or Asian. This experimental setup
allowed us to assess the robustness of the density prediction across race, and
the generalisability of models when tested on patient subgroups that were
not seen during development. Details about the BI-RADS proportions
across subgroups in the test set are provided in Table 3.

Bias analysis and model inspection
To further investigate potential biases in the density prediction models, we
conducted a comprehensive analysis following a recently proposed frame-
work for model inspection31. The objective was to better understand whe-
ther race information may be used for making predictions for
mammographic breast density. Firstly, we first trained a model for pre-
dicting race to confirm whether the mammographic images encode this
protected characteristic, as reported in a recent study27. We used a ResNet-
34 architecture with a final layer adjusted for binary classification. Here, we
focused on the two classes of images from Black and White participants,
which puts our results into context of previous work25,27.

In addition, we investigated whether the density prediction models
retained race information in the learned feature representations. For this
purpose,we followed the standard transfer learning approachof freezing the
densitymodel backbone that generates the imaging features and replace the
final prediction layer with a new prediction layer that is fine-tuned for the
task of race classification27. Comparing the predictive performance on race
when using density model backbones trained on different population sub-
groups allowedus to identify potential biases. Inparticular,we compared the
race classification performance when using density backbones trained on
single races (modelsA andB fromabove) versus a backbone trained on data
from multiple races (model C). If the density model trained on multiple
races had picked up race information during training, we may expect to see
higher performance for a fine-tuned race prediction layer compared to the
density models trained on a single race only. If we find no substantial
differences between the performance on race classification when using
density backbones that have and have not been exposed to race variations,
we may conclude that race information has not been picked up during
training31.

To further assess whether any biases related to race encoded in the
feature representations were learned by a density prediction model, we
performed a visual model inspection. We utilised t-distributed stochastic
neighbour embedding (t-SNE)32, an algorithm for visualising high-
dimensional data, to analyse the feature space of different density models.
We processed all images in the test sets with the different density prediction
models and retained the feature vectors produced for each image by the
global averagepooling layer (the last layerbefore theprediction layer).Using
t-SNE for dimensionality reduction, we then visualised the feature
embeddings for individual images processed by single and multi-race
density models to investigate whether any distinct race clusters emerge.
Finally, we constructed a t-SNE visualisation for the model trained speci-
fically for race prediction. Overlaying BI-RADS and race information onto
the various two-dimensional scatter plots, allowed us to assess whether any
obvious associations between the two types of information had been
encoded in the feature representations.

Statistics and reproducibility
Model performance was reported as class-wise classification accuracy and
area under receiver operating characteristic curve (AUROC). The primary
metric of clinical relevance for density prediction is accuracy. AUROCwas
reported where we directly compare to performance reported in the lit-
erature, both for density prediction and race classification. All performance
metrics were calculated using bootstrapping with 1000 samples and 95%
confidence intervals (CI) based on a continuous linear percentile
approach33. Each bootstrapped sample consisted of 5000 studies (except

Table 1 | Characteristics of the study population

Variable All Black White Asian

Cases Participants 23,057 11,663 9824 1570

Studies 69,697 36,501 29,612 3584

Images 451,642 242,911 185,368 23,363

Age (years) <40 1967 (3) 1071 (3) 728 (2) 168 (5)

40–49 15,386
(22)

8307 (23) 5687 (20) 1392 (39)

50–59 18,756
(27)

10,256
(28)

7472 (25) 1028 (29)

60–69 19,436
(28)

10,270
(28)

8470 (29) 696 (19)

70–79 11,502
(16)

5436 (15) 5790 (20) 276 (8)

80–89 2496 (4) 1084 (3) 1388 (5) 24 (1)

90+ 154 (<1) 77 (<1) 77 (<1) 0 (0)

Imaging
technique

FFDM 35,587 18,158 15,825 1604

FFDM+ 2DS 34,110 18,343 13,787 1980

BI-RADS
density

A 7945 (11) 5261 (14) 2599 (9) 85 (2)

B 29,102
(42)

16,627
(46)

11,599
(39)

876 (25)

C 28,725
(41)

13,087
(36)

13,543
(46)

2095 (58)

D 3925 (6) 1526 (4) 1871 (6) 528 (15)

Breakdown for BI-RADS density and imaging technique is given as the number of studies. Per-
centages are given in brackets. All numbers above are study counts, unless explicitly stated.
FFDM full-field digital mammography, 2DS two-dimensional synthetic.

Table2 |Characteristicsof the training, validationand test sets

Variable Training Validation Test

Cases Participants 11,832 1912 9313

Studies 36,093 5982 27,622

Images 230,954 39,494 181,194

BI-RADS
density

A 4132 (11) 720 (12) 3093 (11)

B 15,433 (43) 2660 (44) 11,009 (40)

C 14,749 (41) 2266 (38) 11,710 (42)

D 1779 (5) 336 (6) 1810 (7)

Imaging
technique

FFDM 19,323 (53) 2929 (49) 13,335 (48)

FFDM+ 2DS 16,770 (47) 3053 (51) 14,287 (52)

Race Black 19,152 (53) 3404 (57) 13,945 (50)

White 16,941 (47) 2578 (43) 10,093 (37)

Asian 0 (0) 0 (0) 3584 (13)

Breakdown for BI-RADS density, imaging technique, and races is given as the number of studies.
Percentages are given in brackets.
FFDM full-field digital mammography, 2DS two-dimensional synthetic.
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when evaluating on the Asian subgroup, which due to fewer overall parti-
cipants, consisted of 500 studies), sampled with replacement. A ‘two-one-
sided t-tests’ (TOST) procedure was used to test equivalence of perfor-
mance, with an absolute equivalence margin of 2% for the difference in the
average 4-class accuracy of compared groups. In this setup, the null

hypothesis assumes that the difference in the mean accuracy between
populations is larger than the 2% bound. A p-value less than 0.05 (at a
confidence levelof 95%) suggests rejecting thenull hypothesis, implying that
the performance across both populations lies within this margin of
equivalence. The single p-value reported was the largest value from either
side of the TOST. All equivalence p-values were calculated from the boot-
strapped samples. The implementation details provided next aim to facil-
itate reproducibility of the presented work.

Implementation details
All deep learning models in this work were based on the ResNet-34
architecture30, implemented in TensorFlow 2. The same architecture was
used in a recent studydemonstrating state-of-the-art performance for breast
density prediction17. The input to amodel is a singlemammographic image
downsampled to 512 × 384 pixel resolution. Each model was trained for
200k iterations, with model checkpointing every 1000 iterations, using a
batch size of 32 images. Training was performed on a single NVIDIA T100
GPU with 16GB RAM. We used the Adam optimizer with default para-
meters and a learning rate of 0.00130,34. The final inference model used a
linear stochastic weight average of the last 25% of training iterations35.

Fig. 1 | Qualitative differences between FFDM and 2DS images. Examples of the
differences in image characteristics for FFDM in (a, c, e, g) and 2DS in (b, d, f, h) for
image pairs from four participants. Columns show examples for the different BI-
RADS density classes from A, almost entirely fatty in (a, b); B, scattered areas of

fibroglandular density in (c, d); C, heterogeneously dense in (e, f); and the highest
level D, extremely dense in (g, h). FFDM full-field digital mammography, 2DS two-
dimensional synthetic.

Fig. 2 | Pixel intensity distributions for FFDM and 2DS images. Average pixel
intensity distributions on an 8-bit intensity range for FFDM and 2DS images on the
same subset of combination studies. 2DS images are generally skewed towards the
highest and lowest intensity values. FFDM full-field digital mammography, 2DS
two-dimensional synthetic.

Table 3 | BI-RADS density proportions across races in the
test set

Variable Black White Asian

BI-RADS density A 2108 (15) 900 (9) 85 (2)

B 6177 (44) 3956 (39) 876 (25)

C 5059 (37) 4556 (45) 2095 (58)

D 601 (4) 681 (7) 528 (15)

Breakdown for BI-RADS density is given as the number of studies. Percentages are given in
brackets.
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This has the advantages of ensembling over multiple models, without any
increase inmodel complexity, trainingor inference time.Whenadapting the
densitymodels to perform race prediction, we froze all trainable parameters
in the ResNet-34 up to and including the global average pooling layer, re-
initialised the final dense layer to perform binary classification, and fine-
tuned using the Adam optimizer, with default parameters, and a learning
rate of 0.01. To generate the t-SNEplots,we used the openTSNE librarywith
default parameters36.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Density prediction performance
Our primary model for mammographic density prediction that was
developed on comprehensive training and validation sets, included both
FFDM and 2DS images, and studies from Black and White participants,
achieved a state-of-the-art 4-class accuracy for predicting BI-RADS density
of 82.4% (95% CI 81.5–83.4) with a macro-AUROC of 96.0% (95.7–96.3).
This is comparable or slightly better than previously reported performance
of deep learning-based density prediction models (Table 4)14–16,18.

The model trained on FFDM studies only achieved a 1.8% lower
accuracy compared to the model trained on FFDM and 2DS data. The
training set for FFDM-only was much smaller, constituting 53% of all
training data. The FFDM-only showed no substantial differences in accu-
racy when comparing performance on different test sets. The 4-class
accuracy on the FFDM test set was 80.5% (79.7–81.4), and for the unseen
2DS test set it was 79.4% (78.5–80.2), demonstrating good generalisability
across imaging techniques. Previous work reported drops in accuracy of
3.2–6.2%when training on FFDM and testing on 2DS17. The model trained
on both FFDMand 2DS images showed an improved performance on both
test sets, withan accuracy of 82.3% (81.4–83.0) onFFDMimages, and82.3%
(81.3–83.1) on 2DS, demonstrating that adding 2DSdata to the trainingwas
also beneficial for the FFDM performance. The density prediction results
across imaging techniques are summarised in Table 5.

Comparing the density prediction across race, we found that the per-
formance was comparable between all subgroups, while also consistent
across the three models trained on different populations. We observed
4-class accuracies ranging between 80.2% (78.7–81.6) and 83.3%
(80.6–86.8). Slight variations in the overall performance between models
was observed in line with the changes in training set size.Models A (trained
on Black-only) and B (trained on White-only) were each trained on only
53% and 47%, respectively, of the training data used for model C (which is
our primary density prediction trained on data from Black and White
participants). All three models generalised consistently to studies from the
Asian subgroup, which was completely unseen duringmodel development.
The 4-class accuracies for Asian women were comparable to the perfor-
mance on Black and White subgroups across all three density prediction
models, despite the substantially different distributions across BI-RADS
density classes (cf. Table 3).Thedensityprediction results across racegroups
are summarised in Table 6. The results from the statistical tests for per-
formance equivalence are reported in the Supplementary Tables 1–6, con-
firming the equitable performance across models and racial subgroups.

Bias analysis results
The model trained specifically for race prediction achieved a classification
accuracy of 86.7% (86.0–87.4) with an AUROC of 95.1% (94.7–95.5),
confirming that race information is strongly encoded in themammographic
images. The race prediction models that were built upon the backbones of
the density models A, B, and C showed substantially lower classification
performancewith each showing a drop in accuracy of about 10% and a drop
in AUROC of about 15%. When comparing the absolute performance
across the three race models built from fine-tuning density models, we
observed comparable performance with no substantial differences across all
three, indicating that the race prediction performance was independent of
whether the density model had been exposed to race variation during
training or not. The race prediction results are summarised in Table 7.

When inspecting the t-SNE plots for the three density prediction
models, we observed a clear alignment of the feature representations with the
BI-RADS density classes (cf. Fig. 3a–f). For all three models, there was a
gradual transition from non-dense to extremely dense samples. When
overlaying race information, no obvious associations were found between
race and density, independent of whether the underlying density model had
been trained on a single or multiple racial groups. Samples from different
races are distributed across the density feature space, with no evident

Table 4 | Density prediction performance in comparison to
previous work

Model 4-Class Accuracy (95% CI) AUROC (95% CI)

Wu et al.14 76.7% (??.?–??.?) 91.6% (??.?–?.??)

Lehman et al.16 77.?% (76.?–78.?) ??.?% (??.?–?.??)

Matthews et al.17 82.2% (81.6–82.9) 95.2% (95.0–95.4)

Magni et al.18 78.2% (??.?–??.?) ??.?% (??.?–?.??)

Our model
(FFDM/2DS)

82.4% (81.5–83.4) 96.0% (95.7–96.3)

Performance comparison is indicative only as each evaluation was done on different test sets. The
‘?’ indicates unknown values that were not reported in the literature.
FFDM full-field digital mammography, 2DS two-dimensional synthetic.

Table 5 | Generalisation of density prediction performance
across imaging techniques

Training set 4-Class Accuracy (95% CI)

FFDM test set 2DS test set

FFDM-only 80.5% (79.7–81.4) 79.4% (78.5–80.2)

FFDM/2DS 82.3% (81.4–83.0) 82.3% (81.3–83.1)

First row shows performance for a model trained on FFDM studies only. Second row is a model
trained on FFDM and 2DS.
FFDM full-field digital mammography, 2DS two-dimensional synthetic.

Table 6 | Generalisation of density prediction performance across races

4-Class accuracy (95% CI)

Model (Training set) Black White Asian

Model A (Black-only) 81.6% (80.4–82.6) 82.5% (81.4–83.6) 82.6% (80.3–84.6)

Model B (White-only) 80.2% (78.7–81.6) 82.0% (80.5–83.1) 81.7% (79.7–83.6)

Model C (Black/White) 81.9% (80.8–83.3) 83.0% (82.1–84.5) 82.2% (80.4–84.0)

Model A is trained on data from Black participants only; Model B is trained on data from White participants only; Model C is trained on data from both Black and White participants.
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grouping. The t-SNE plots for the model trained from scratch for race pre-
diction demonstrated a clear separation of data samples from Black and
White participants, highlighting that race informationwas generally encoded
in the input images. When overlaying breast density, however, no obvious
associations between race and breast density were observed (cf. Fig. 3g, h).

Discussion
In this study, we aimed to develop and evaluate a deep learning-based
BI-RADS density prediction model that generalises across imaging tech-
niques and, importantly, across race. Our primary model trained on both
FFDM and 2DS images and data from Black and White participants
achieved state-of-the-art performance compared to prior work14–16,18.While
a direct comparison to previously reported results is indicative only, due to
the use of different datasets, we are confident that our results on large scale,
racially and ethnically diverse test sets are representative of real-world
populations and would translate to clinical settings. Previous work found
2DS images to provide poorer quality for assessing parenchymal tissue in
comparison to standard FFDM21. Nonetheless, our models showed robust
performance across both imaging types. We believe this is due to the

inherent generalisability of the model being trained on large scale, diverse,
and heterogeneous data allowing it to pick up consistent anatomical pat-
terns present in both imaging techniques. It is also important to note that
this is the first deep learning-basedmodel that generalises across FFDMand
2DS without any modifications. This implies that a single model could be
deployed, independent of the imaging technique used at a specific clinical
site. Previous work required additional fine-tuning to achieve a similar level
of generalisation which would result in different models being used for
different imaging techniques17. Interesting to note that we observed an
overall improvement in performance on FFDM when including 2DS
training data. This suggests that there is a mutual benefit of training jointly
on both imaging techniques. The robust performance of our model could
address the substantial inter-reader variability observed in human readers7,8.

A key strength of our study is the comprehensive performance andbias
analysis. Firstly, our quantitative analysis of breast density prediction using
different models showed consistent performance across race, including
subgroups that were never seen during model development. Our experi-
ments with models trained on different subsets of the population suggest
that the density prediction performance is unbiased and equitable across
groups. This is important for the trustworthy and ethical use of such AI
technology, and an important finding in the context of recent concerns that
AI may amplify health disparities37–39. Previous studies have shown dis-
parities in the provision of breast cancer care related to race, ethnicity, and
other demographic characteristics40–43. Here, an automated, objective
method for breast density prediction could alleviate some of these dis-
parities, for example, when assessing personalised cancer risk.

In our bias investigation, we confirmed that race information is
strongly encoded in the input images by demonstrating that a model spe-
cifically trained for race prediction obtains very high accuracy. The ability to
predict race from the mammographic images poses a risk as such infor-
mation could be exploited in downstream model development27. Previous
studies observed spurious and non-spurious correlations between breast
density and race in data collections22–26. Asian participants tend to have
more dense breasts than either Black orWhite participants22, which we also

Fig. 3 | t-SNE plots for density and race prediction models. a–f Feature embed-
dings for different density predictionmodels. a, bModel Awas trained on data from
Black participants; c, d Model B was trained on data from White participants;
e, fModel C was trained on data from both Black and White participants.
a, c, e t-SNE plots with BI-RADS information overlaid. b, d, f t-SNE plots with race
information overlaid. The density models encode a gradual transition across BI-

RADS density classes while no obvious relationships appear between density and
race information. g, h Feature embeddings for the race prediction model. g t-SNE
plots with BI-RADS information overlaid. h t-SNE plots with race information
overlaid. Here, race is well separated in the model’s feature space, but no obvious
associations appear between race and breast density.

Table 7 | Race prediction performance across different
models

Model Accuracy (95% CI) AUROC (95% CI)

Race predic-
tion model

86.7% (86.0–87.4) 95.1% (94.7–95.5)

Fine-tuned Model A 74.2% (73.3–75.3) 80.8% (80.0–81.9)

Fine-tuned Model B 75.8% (74.8–76.8) 82.8% (81.9–83.6)

Fine-tuned Model C 73.2% (72.2–74.3) 79.2% (78.4–80.3)

First row shows the performanceof amodel trained specifically for raceprediction. Rows two to four
show the performance for race prediction of models that were built by fine-tuning the model
backbones of breast density prediction models. Density models A and B were originally trained for
density prediction using data from a single race group only.
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observed in our study data (cf. Table 3). Given the ability of deep learning
models to recognise race, a density prediction model may pick up such
correlations from the historic training data. To investigate this, we con-
ducted a detailed analysis of race prediction from fine-tuned densitymodels
where the results suggest that there is no difference in performance between
a density backbone that is trained on a single race compared to a density
backbone that was exposed to race variation during training. This may
suggest that while some imaging information that can be leveraged for race
prediction is present in the density feature representations, this exists even
for models trained on a single race. Our model inspection on the feature
embeddings did not detect direct associations between density and race.
Together with the equitable prediction performance across races observed
fordifferently traineddensitymodels, thesefindingsprovide confidence that
racial information is not utilised for the density prediction task31.

Our work has a number of limitations. First, while the imaging studies
were collected on different devices these were from a single hardware
vendor. Demonstrating generalisability across multiple hardware vendors,
and also to fullDBT scans,will be the focusof futurework. Second,while our
cohort was large and racially and ethnically diverse, all of our participants’
data were from one clinical institute operating across several hospitals but
within a single national breast cancer screeningprogramme.Demonstrating
generalisability on a large scale, international cohort, where geographic
characteristics and specifics in the local healthcare provisionmay contribute
additional variability, would complement the evidence presented in this
work.We should note that for the purpose of this study it was important to
isolate the effects of imaging technique and participant’s race, and therefore
the use of an otherwise homogeneous dataset where the factors of variation
were limited was beneficial. Lastly, we should highlight the inherent lim-
itations when studying the role of race. We used three self-reported racial
groupings based on the data available in electronic health records. These
groups may exhibit some level of inconsistency due to racial identity being
influenced by an interaction between social, political, and legal constructs.
Furthermore, future work should attempt to include other under-
representedgroups, and collect detailed information aboutother factors that
may impact subgroupperformance44.Webelieve that adetailedbias analysis
is instrumental andmandatory to gain the trust of the relevant stakeholders
for the use of automated computational tools in the provision of healthcare.

Data availability
This study made use of a data sample from the EMory BrEast imaging
Dataset (EMBED). Access to this data is provided upon request. Contact
email: hari.trivedi@emory.edu. More details can be found on https://
registry.opendata.aws/emory-breast-imaging-dataset-embed/. Source data
for generating Figs. 2 and 3 are provided as SupplementaryData. Additional
information related to this study is available on request to the corresponding
author.

Code availability
Thecodeused toprocess the rawdataand todevelop thedeep learningmodels
is integratedwithin a commercial production system and therefore cannot be
released in full. The implementation details provided in the Methods section
are sufficient to replicate the deep learning models with open-source frame-
works such as TensorFlow or PyTorch. We provide an example imple-
mentation published on Zenodo45 which demonstrates the training and
testing of state-of-the-art convolutional neural networks which build the core
component of most commercially available breast imaging AI systems.
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