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Abstract

Background Mechanistic modelling of normal tissue toxicities is unfolding as an alternative

to the phenomenological normal tissue complication probability models. The latter, currently

used in the clinics, rely exclusively on limited patient data and neglect spatial dose dis-

tribution information. Among the various approaches, agent-based models are appealing as

they provide the means to include patient-specific parameters and simulate long-term effects

in complex systems. However, Monte Carlo tools remain the state-of-the-art for modelling

radiation transport and provide measurements of the delivered dose with unmatched

precision.

Methods In this work, we develop and characterize a coupled 3D agent-based –Monte Carlo

model that mechanistically simulates the onset of the radiation-induced lung fibrosis in an

alveolar segment. To the best of our knowledge, this is the first such model.

Results Our model replicates extracellular matrix patterns, radiation-induced lung fibrosis

severity indexes and functional subunits survivals that show qualitative agreement with

experimental studies and are consistent with our past results. Moreover, in accordance with

experimental results, higher functional subunits survival and lower radiation-induced lung

fibrosis severity indexes are achieved when a 5-fractions treatment is simulated. Finally, the

model shows increased sensitivity to more uniform protons dose distributions with respect to

more heterogeneous ones from photon irradiation.

Conclusions This study lays thus the groundwork for further investigating the effects of

different radiotherapeutic treatments on the onset of radiation-induced lung fibrosis via

mechanistic modelling.

https://doi.org/10.1038/s43856-024-00442-w OPEN

1 Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany. 2 Institute for Condensed Matter Physics,
Technische Universität Darmstadt, 64289 Darmstadt, Germany. 3 Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical
School, Boston, MA, USA. 4Department of Computer Science, University of Surrey, Guildford GU2 7XH, UK. 5 Department of Physics “Ettore Pancini”,
University Federico II, Naples, Italy. ✉email: m.durante@gsi.de

Plain language summary
Lung cancer leads to a significant

number of deaths each year. Radio-

therapy is known to be effective in

treating lung cancer. However, it can

also damage healthy tissue and this

limits the dose that can be delivered

to the cancer. To estimate the risk of

harming healthy tissues in the lung

with radiotherapy, mathematical

models can be used. We propose a

computer-based model to overcome

some of the limitations of existing

approaches currently used in the

clinic. The model incorporates spatial

information about the radiation dose

and replicates findings observed in

mice and humans on lung scarring

caused by radiation. With further

testing, our model may allow clin-

icians to better minimize harm to

healthy tissues in patients with lung

cancer.
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Precision, efficacy, and non-invasiveness have made radio-
therapy (RT) a first-choice treatment option nowadays for a
large portion of cancer patients. Nevertheless, the risk of

developing radiation-induced pathologies remains substantial,
and the number of reported injuries increases concurrently with
the number of treatments. Notably, more than 50% of cancer
patients are treated with RT1, and previous studies reported that
thorax irradiation led to radiation-induced lung injuries (RILI—
namely, pneumonitis and fibrosis) in up to 30% of the cases2.
These pathological conditions are thought to be triggered mainly
by the damaged alveolar epithelium, and the resulting inflam-
mation, if not resolved within a few weeks’ time, can lead to lung
stiffening and eventually death3. Consequently, greater efforts are
required to improve our understanding of the mechanisms
underlying the paths that link radiation damage and toxicity in
normal (i.e., non-tumoural) tissues, with the ultimate goal of
widening the therapeutic window.

To this aim, normal tissue complication probability (NTCP)
models have been implemented that estimate the probability of
developing new pathologies as a function of the delivered dose for
a given organ4–6. However, NTCP models widely employed in
clinical practice restrict the set of inputs to the delivered dose
distribution and a few macroscopic organ-specific parameters
that fail to enfold a mechanistic description of the pathways
involved. Moreover, the lack of spatial information in the dose-
volume histograms (DVHs) that encode the dose distributions’
data results in incomplete descriptions of the treatment plans and
subsequent erroneous shifts of the NTCP curves7,8.

By combining agent-based (AB) modeling and a Monte Carlo
(MC) simulator we propose, to the best of our knowledge, an
innovative approach in an attempt to address the aforemen-
tioned shortcomings. AB modeling is a powerful and relatively
recent set of computational techniques that allows simulations
of concurrent and independent entities, namely, the agents9.
Each agent is initialized at the beginning of a new simulation
with a set of rules, encoded into its behaviors, and positioned in
an environment that can be sensed by and react to the agent
itself. The interactions among different agents and between the
surrounding environment and the agents themselves can lead to
the emergence of elaborated dynamics and provide a framework
to model complex systems, such as biological ones. MC meth-
ods, on the other hand, have been extensively used to simulate
the interaction of radiation with matter10 and can provide
accurate estimates of, among others, dose depositions in bio-
logical structures.

In what follows, we provide insights into the onset of radiation-
induced lung fibrosis (RILF) in a coupled 3D AB (ABM)—MC
model of an alveolar segment. We updated our existing ABM of
RILF11,12 and implemented the alveolar segment geometry within
the TOPAS-nBio MC extension13. As a result, our coupled model
is now able to provide a mechanistic description of the depletion
of the functioning distal airways of the lung as well as 3D spatial
information about the delivered dose distributions. More speci-
fically, in this work, we develop the coupled model and provide a
comparison between the ABM and the ABM-MC models’ results.
Moreover, the effects of different radiation qualities, as well as the
impact of a few damage-associated parameters on the outcomes,
are shown. Finally, we demonstrate how the use of a multi-
fractionation scheme affects the model’s predictions. Temporal
fractionation techniques are widely adopted in the clinics14–16

due to their ability to spare normal tissues without losing efficacy
in tumor cell killing17. Our results, in agreement with previous
experimental studies18, show a right shift toward higher doses for
the same amount of damage when using 5 fractions with respect
to a single fraction.

Methods
The agent-based model. Our 3D ABM of RILF in an alveolar
segment was developed using the open-source platform
BioDynaMo19, and its implementation was detailed in our pre-
vious works11,12. The model replicates a small section of the distal
airways in the human lungs, namely, an alveolar segment, where
three layers of alveoli are stacked in a cylindrical shape. Each layer
includes six alveoli, which are modeled as hollow spheres. The
surface of each sphere, in turn, is lined by three main cell types:
the mesenchymal cells (fibroblasts and myofibroblasts) in the
outer layer, the M1 and M2 in the inner layer, and the epithelial
cells (types 1 and 2) in the middle layer. Following radiation-
induced damage in the epithelial layer, AEC2s can either become
apoptotic or turn into a damaged and eventually senescent state.
By secreting multiple chemokines and cytokines20, the senescent
cells can both damage the surrounding healthy AEC2 (where the
minimum number of senescent cells needed to damage a healthy
one is regulated by the bystander threshold parameter) and
trigger an immune response led by M1 and M2. Provided by the
capillaries (which are not simulated by our model), M1 and M2
(whose phagocytic fraction and phagocytic index are set with
custom parameters) are gathered in the alveoli and remove the
senescent cells21,22. At the same time, the healthy AEC2 increase
their proliferation and differentiation rates in an attempt to
replenish both their own population and the type 1 alveolar
epithelial cells (AEC1)23,24. Ultimately, the disruption of the
healthy epithelium and the secretion of growth factors from the
type 2 macrophages concurrently stimulate the expansion of the
mesenchymal compartment, which, in turn, saturates the alveolus
with ECM components. The severity of the damage at later time
points (e.g., months/years after the treatment) is measured via the
RSI, whose definition (proposed in our previous work11) was
inspired by the concept of FSU in the critical volume model of
NTCP25,26 and by the FI introduced in the work of Zhou et al.18.
The RSI reads as follows:

RSI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 �ECMconc " � 4V surv;FSU #

q
g1=2

� �
ð1Þ

Where the two factors describe the average increase in the
concentration of the ECM across the whole simulation space (in
g/cm3) and the decrease in the volume of surviving FSUs (in
cm3), represented by the alveoli. More specifically, 4V surv;FSU # is
computed as the total segment volume (assuming a spherical
shape for the alveoli) times the surviving fraction of the FSUs.

Other equations of note (which were described in more detail
in our previous work and were used to fit the simulations’ output
in the section “Results”) include the increase in the average ECM
concentration across the whole simulation space for the early and
late components (where 4ECMmax, γ and D50 represent the
saturation value for the ECM increase, the steepness of the
sigmoid and dose at 50% of the 4ECMmax, respectively)

27–29,
given by the following

4ECM Dð Þ ¼ ΔECMmax

1þ e
4�γ� 1� D

D50

� � g
cm3

� �
ð2Þ

The RSI (whereA, γ and ED50 represent the saturation value for the
RSI, the steepness of the sigmoid and dose at 50% of the maximum
RSI, respectively, and erf is the error function)18 is expressed as

RSIðDÞ ¼ 1
2
� A � 1� erf

ffiffiffi
π

p � γ � 1� D
ED50

� �� �� �
g1=2

� �

ð3Þ
It’s worth noting that Eq. (3) was used in our previous work11

to fit the late component of the increase in the average ECM
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concentration as well. However, given its similarity with Eq. (2),
in this work, the latter has been used for both the early and the
late components so as to improve the overall readability and have
a dedicated equation for the RSI. Finally, the FSU survival
probability, derived from the LQ and critical volume NTCP
models25,26 (where NAEC2 is the total number of healthy AEC2 in
an alveolus in homeostatic conditions), can be written as

Psurv;FSU ðDÞ ¼1� Pkill;FSU ¼ 1�
YNAEC2

i¼1
Pkill;cell

¼1� Pkill;cell

� �NAEC2 ¼ 1� 1� e�αD�βD2
� �NAEC2

ð4Þ
With respect to the previous version, the current model brings

with it new features and noteworthy changes that will be detailed
in what follows. Among them, modeling of the apoptotic AEC2s
has been implemented to increase the accuracy of the simulations.
Once an AEC2 has changed its state to apoptotic (either due to
irradiation damage or aging), free movement is hampered, and
the time to removal from the simulation is drawn from a Poisson
distribution30.

It is worth emphasizing that the weakening of the immune
system due to radiation-induced damage is not simulated by our
model. In fact, to avoid additional complexity and potential
uncertainty in the parameters, it is assumed that only the AEC2
cells can be damaged by the radiation, while all the other cell
populations, including M1 and M2, are left unaffected. However,
by tuning the aforementioned parameters that regulate the
phagocytic fraction (i.e., the fraction of macrophages that can
phagocyte senescent cells) and index (i.e., the maximum number
of senescent cells that can be phagocyted by a macrophage) the
damage to the immune system could be easily implemented.

At the beginning of a new simulation, each alveolus is
initialized with the three cell compartments described before.
Cells (i.e., the agents) are distributed at random positions on the
alveolar surface and assigned type-specific behaviors. Among
them, cell migration plays an important role and has been
optimized in our latest model (see our previous work for
additional details11). Macrophages and mesenchymal cells travel
along spherical arcs in random directions to patrol the alveolar
space and maintain homeostatic ECM concentrations, respec-
tively. AEC1 and AEC2, however, are capable of neighborhood-
informed migration and thus move preferentially towards
depleted zones in order to repopulate them. Finally, damaged
and senescent epithelial cells move in random directions at a
slower speed than the healthy ones but might not be able to move
at all at times. In our updated model, every cell movement is
followed by a check on the cell’s final position. If the cell does not
happen to be located on the spherical surface it belongs to
(mainly due to approximation errors when the spherical arc is
computed), the cell is translated to the appropriate radial distance
while keeping the polar and azimuthal angles fixed.

As in our previous model, the simulations run in a closed cubic
space of side 2000 µm that encompasses the whole alveolar
segment. A diffusion grid overlaps the simulation space and
dissects it into smaller cubic voxels, whose number can be
adjusted by the user. The simulated cells can both measure and
change the concentration of the substances in the voxel they are
located in. Once secreted, substances can both diffuse and decay
and, in some cases, be depleted by other substances. Our model
simulates, among others, such coupled substances, i.e., matrix
metalloproteinases (MMP), tissue inhibitors of metalloprotei-
nases (TIMP), and ECM (interaction mechanisms are outlined in
our previous works11,12). The system of reaction-diffusion partial
differential equations (PDEs) for all the involved substances is
then solved using a forward in time—central in space (FCTS)

method with user-defined boundary conditions (BC). In its
updated version, both the binding coefficients, the target, and the
BC for the substances in the model can be specified in the
initialization phase. In particular, we set Neumann BC (as
opposed to our previous model) with a constant value to ensure a
net zero flux and mimic inter-compartmental communication.
Moreover, we increased the duration of one time-step for the
solution of the system of PDEs in the diffusion grid to 20 s. By
doing so, we could shorten simulation times while still fulfilling
both the stability (i.e., Courant–Friedrichs–Lewy) and positivity
conditions.

The model simulates the diffusion, decay, and, in some
instances, the depletion of ten different substances (their time
evolution following the irradiation in a single fraction can be
found in Supplementary Fig. 1). These extracellular substances
altogether constitute a network that serves as an interface between
the cell populations11,12 which, for instance, senescent AEC2 can
use to gather the monocytes and M2 to increase the proliferation
of the mesenchymal cells as well as regulate the concentration of
the ECM. Although simulating such a number of extracellular
substances doesn’t come without disadvantages (such as a
decrease in the model’s performance), it provides a more accurate
representation of the mechanisms that underlie the RILF and
allows the users to test the outcomes of new therapies by
adjusting the model’s parameters.

The Monte Carlo model. TOPAS-nBio is built on top of the
Geant4-DNA31 toolkit and extends the functionalities of the
TOPAS platform32. It allows MC simulations at the microscopic
and nanoscopic scale while simplifying the modeling of biological
structures as well as consistent measurements of radiobiological
quantities.

To investigate the effect of realistic dose distributions on our
model of the alveolar segment, we reimplemented its structure
from scratch using the TOPAS-nBio platform. Our extension
consists of 3 new classes that are used to both build the geometry
of the cylinder and score the dose delivered to its building blocks.

When a new simulation is performed, an envelope for the
alveolar segment is first built as a cubic box with a side of 900 µm.
A for loop runs then through a vector containing the centers of
the 18 alveoli (whose positions can be either hard coded or
provided in a separate file) and smaller containment boxes are
generated. The modeling proceeds by instantiating a generic
spherical structure with a temporary radius for the cells, and a
second loop runs through all the alveoli positions. Within its
body, the alveoli are built by placing the cells on three spherical
surfaces (as described in the section “The agent-based model”).
More specifically, parameters for each cell (i.e., position in 3D,
color that indicates the cell type and size) are loaded from
external files and, given the inherent repetitive nature of the
geometry, the parameterization technique33 is used to allow for
faster rendering and simulation times (see Fig. 1). As opposed to
those in the ABM, cells in this model do not have behaviors, are
static and differ only by color and size.

Hits within cells are processed using a custom scorer that
provides both the total dose deposited within the cells as well as
the average dose for each alveolus. By checking the cells’ size,
non-epithelial cells are filtered out, and the computation of the
dose is skipped. For the epithelial cells, however, the total energy
deposited by the hitting particles is summed and converted to Gy
units. At the end of a simulation, the total dose delivered to each
cell is exported to a text file along with a unique identifier and the
identifier of the alveolus to which the cell belongs. Moreover, the
average dose delivered to (the epithelial cells of) each alveolus is
computed and exported together with the alveolus identifier to a
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second file. Given that our previous work identified the alveoli as
the FSU of the lung, the latter can be useful to, for example,
characterize the dose distribution on a bigger scale than the
cellular one.

Finally, simulations can be run using the parameter control
system as described in work by Schuemann et al.13. In the
parameter file, the total world volume is defined as a cubic box
with the same size as the simulation space of the ABM. The
alveolar duct is then placed at its center, and the envelope
material is set to vacuum, while we assumed that water is the sole
component for the cells. With regard to the particle sources, we
tested both an isotropic source located at the center of the
alveolar duct and an external beam with one to four coplanar
fields. Following the measurements of the average delivered dose
per alveolus and outlined in the section “Results”, the
homogeneity of the dose distribution was maximized by the
external beam with four fields. The motion of the beam was
implemented by using a step function with variable positions on
the XZ plane and 90° rotations about the y-axis, while the cut-off
shape was set to “rectangle”. The energy and type of the particles
to be included in the beam were also set via the parameter file, as
well as the angular and energetic spreads, which were set to zero.
Settings for our custom scorer were also adjusted via the
parameter control system.

Coupling the models. The coupled model consists of the afore-
mentioned AB and MC models, each equipped with import/
export functionalities that allow data exchange. In addition to
this, overall control of the workflow is assigned to a bash script
(see Figs. 2 and 3)

The sequence starts with a 1000-step long run of the ABM that
does not require any external data to generate the alveolar
segment structure in healthy conditions. We tuned our ABM by
running 20-day-long simulations in homeostatic conditions and
ensuring that both the number of cells and the average
concentration of the substances remained constant and matched
previously published results (more details on the tuning
procedure as well as the parameters can be found in our previous
work11). To ensure the consistency of the results, 10 independent

experiments are performed for each parameter set, and the output
is used to feed the next step. In particular, we implemented a
BioDynaMo standalone operation19 that can be activated using a
parameter and is triggered at the end of each simulation. With it,
the cells’ parameters, together with the position and the diameter
of the alveoli and the concentration per voxel of all the simulated
substances, can be exported. The data files for the cells contain
the cells’ position, their radius, an RGB color code that identifies
the type and additional type-specific parameters, such as the
number of phagocyted cells for the macrophages or the number
of steps spent above the bystander damage threshold for the
healthy AEC2. Moreover, the identifier of the alveolus each cell
belongs to is used to generate a new file for each alveolus.

Subsequently, the control script is used to set the total number
of fractions as well as the steps for the ABM, the number of
repeated experiments (where a new seed is selected for each run),
and the target dose (through the number of histories of the MC
model). The MC simulation is then run: TOPAS-nBio builds a
new structure for the alveolar segment (using the data files
mentioned above and the procedure described in the section “The
Monte Carlo model”), irradiates it and generates a summary of
the dose deposited in each epithelial cell and the average dose per
alveolus. It is worth noting that the duration of the irradiation is
orders of magnitude shorter than the average cell’s behavior time,
and therefore, it is assumed that cells don’t change their position
and/or state within it.

The workflow proceeds with a new run of the ABM, and
custom parameters are used to enable the reading of the external
damage files. However, the concentration data are read in
subsequent runs only as the duration of the preparatory
simulation does not ensure steady-state values for all the
substances. Cells’ data are read sequentially as well and used to
rebuild the alveolar segment structure and assign the type-specific
behaviors to the agents. For each epithelial cell, the external
damage file from the last step is checked, and if a match is found,
the LQ model is used to determine the fate of the cell, which will
either remain healthy or become senescent or apoptotic. More
specifically, the MC simulator provides the delivered dose per
AEC2. The selected number of histories is sufficiently small so

Fig. 1 Alveolar segment model in TOPAS-nBio. Alveolar segment model built with TOPAS-nBio and irradiated with 10 keV gamma particles. The 18-alveoli
structure is inscribed in a cubic box, while each alveolus has a spherical envelope. Cells have a spherical shape and differ by size and color. The outer space
is empty, while cells are filled with water. The side of the outer box is 900 µm long, while the diameter of each alveolus measures 260 µm.
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that the resulting dose is lower than those simulated but large
enough such that the differences between the average doses per
alveolus are small. Assuming a constant LET, the delivered dose
per cell depends only on the particle fluence and thus grows
linearly with the number of histories. Therefore, prior to
establishing the damage, the ABM computes the average dose
per cell and a scale factor to align it with the desired dose.
Subsequently, for each cell, the scaled dose is computed, and a
random number, drawn from a uniform distribution, is compared
against the AEC2 LQ survival curve value at that dose (whose
parameters were derived from previously published experimental
data34, as detailed in our previous works11,12). A new simulation
is then performed (whose duration is set in the bash script), and
depending on the number of fractions, the output is used to feed
either a longer run of the ABM or a new irradiation phase via the
MC simulator.

In terms of statistical sampling, all the simulations presented
throughout this work were performed 10 times for each set of
parameters, including the dose, the bystander threshold, the
phagocytic fraction, and the index of the macrophages. To ensure
independence between different runs, a new seed was selected in

the control script at the beginning of each run and used to
initialize the MC simulator. This resulted in different damage
distributions that, in turn, led to variations among the initial
conditions of the ABM. For the ABM, a constant seed was set.
However, BioDynaMo compensated by automatically providing
random number generators whose seed was linked to the
identifier of the thread in use to simulate an agent, thus ensuring
independence between and within runs. Each ABM simulation
was run for 5.184.000 steps, resulting in a total simulation time of
1200 days (given the 20 s-long time steps). Additionally, 24 h
were simulated in the ABM between the delivery of each dose for
the multi-fractionation schemes (thus adding 5 simulated days for
the delivery of 5 fractions), while single fractions were assumed to
be instantaneous.

A notable feature of our framework is its ease of use and
customization. Besides BioDynaMo and TOPAS-nBio, users only
need an executable file to simulate the ABM and text files that
conform to the TOPAS Parameter Control System. As mentioned
above, parameters such as the number of fractions, the number of
time steps, and dose per fraction, as well as the number of
experiments, can be defined in the custom control script. If there

Fig. 2 Agent-based - Monte Carlo model (ABM-MC) schematic workflow. Schematic representation of the implemented workflow. The agent-based
model (ABM) is used to generate the alveolar segment structure in homeostatic conditions. The data are then fed into the Monte Carlo (MC) model, which
replicates the geometry and irradiates it. Information about the dose delivered to each cell is then loaded into the ABM, which simulates the evolution of
the system. If a multi-fractionation scheme is set up, the data exported from the ABM are used as input to the MC. If not, the data can be directly analyzed
to determine whether radiation-induced lung fibrosis (RILF) onsets and, if so, its severity.

Fig. 3 Agent-based - Monte Carlo model (ABM-MC) interaction algorithm. BioDynaMo runs the agent-based model (ABM) for 1000 steps, generates
the healthy structure, and exports the alveoli positions and the cells’ data. The number of fractions, the number of steps for the ABM, and the irradiation
parameters are then set into the control script, which triggers the first run of the Monte Carlo (MC) model using TOPAS-nBio. The structure is loaded from
the data exported during the previous step, and the alveolar segment is irradiated. Consequently, the dose distribution is exported, and the data is used as
input for the ABM to determine the cells’ fate. A new run of the ABM is then performed and the segment structure, together with the cells’ state and their
position, are exported. If a new fraction is to be delivered, the data are fed into the MC model. Otherwise, the workflow terminates.
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is no need to update the agents’ behaviors or the structure of the
alveolar segment in the ABM, it’s enough to compile the provided
C++ code with BioDynaMo to generate the executable file (the
healthy structures are included as text files in the Supplementary
Software 1). As for the TOPAS-nBio parameters that define, for
example, the particle type and energy, the number of histories,
and the configuration of the particle source, they do not need to
be compiled and are already included in Supplementary Soft-
ware 1. Once the location of the aforementioned files, the control
script can be executed from a shell to perform both the AB and
the MC simulations sequentially. The simulations’ output is
ROOT35 files that contain the number of cells and the
concentration of each substance at multiple time points and
locations, stored for further analysis.

Preparatory simulations of the ABM used to generate the
healthy structures, as well as those in between fractions, were run
on a MacBook Pro laptop with a 2.3 GHz Quad-Core Intel Core
i5 processor and 8 GB RAM. For longer (requiring more than 1 h)
or parallel simulations, however, a compute node of the
Lichtenberg HPC system with 2 × 2.3 GHz Intel Cascade-Lake
AP 48-cores processor (96 total cores) and 384 GB RAM was
used. Besides, the average runtime required to perform 1200-day-
long simulations was 3 h. The reduced simulation times (enabled
mainly by the optimizations made in the BioDynaMo
framework36 and the longer simulation steps) allowed us to
perform longer simulations (with respect to our previous model,
up to 1200 days) and improve the statistics by performing more
experiments.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Results
Characterization of the dose distributions in the alveolar seg-
ment. Before running the full ABM-MC model, different setups
of the photon source for the irradiation of the alveolar segment
were tested, and the corresponding dose distributions were
compared. More specifically, doses were delivered using both an
external beam with 4 coplanar fields and an isotropic source
located at the center of the alveolar segment. Multiple particle
energies Eγ were tested in a range that included both high cross
sections and more realistic/clinically plausible values. The total
number of histories (i.e., emitted particles per field) was set to 10
million, which ensured both reasonable simulation times and hits
even at the energies associated with the lowest cross sections.
Finally, each experiment was performed 10 times, and the results
were averaged.

As can be seen from Fig. 4, while the dose delivered with the
external beam at Eγ= 1 keV and Eγ= 10 keV could be fitted to
Gaussian distributions, the dose distribution from the isotropic
irradiation and those obtained for higher Eγ showed multiple
distinct peaks, long right tails and high counts at 0 Gy.

Given the symmetry of the resulting dose distribution and its
closer resemblance to the beam setups used in the clinics, the
external beam was used in all the experiments performed in this
study. Among the energies tested, Eγ= 10 keV was selected as the
standard due to its more realistic homogeneity compared to the
distribution obtained with Eγ= 1 keV. This notwithstanding, the
effect of the latter dose distribution on the model’s outcomes was
also investigated (see the next section).

We further analyzed the effect of an increase in the number of
histories in the dose distribution delivered by the external beam.
Raising the number of particles from 40 million (for 4 fields) to
120 million did not alter the shape of the dose distribution

substantially but required a much higher computational cost.
Therefore, the lower value was set in the parameter file of the MC
model and used in the following simulations.

Simulation outcomes: ABM-MC vs. ABM. To characterize the
coupled ABM-MC model, we compared the main simulation
outcomes for Eγ= 1 keV and Eγ= 10 keV against those from our
previous ABM model11. In particular, we evaluated the surviving
fraction of the functional subunits (FSUs), the RILF severity index
(RSI), and the early and late extracellular matrix (ECM) fluc-
tuations in the ECM concentration as a function of the delivered
dose. To ensure that the system reached the steady state (both in
terms of cell number and substance concentration, see Supple-
mentary Figs. 1 and 2), we simulated 1200 days. In the ABM-MC
model, the dose was delivered once at the beginning of the
simulation, and the parameters were set to the same values as
those in the ABM model (specifically: phagocytic fraction=
100%, phagocytic index= 1, apoptotic-to-senescent ratio= 0 and
bystander threshold= 2).

As can be seen from Fig. 5, both the early and the late
components of the ΔECM (i.e., the increase in the average ECM
concentration across the whole simulation space for the ABM-
MC model) could be fitted with the Eq. (2) and are qualitatively
in agreement with experimental data27–29. In particular, the
ΔECM in Fig. 5a, c exhibits a sigmoidal response to the delivered
dose, as shown by Defraene et al.27,29, with the highest values
reached within the first 3–4 months following the irradiation, as
in Konkol et al.28 (see also Supplementary Fig. 1). As expected,
the ΔECM increases as a function of the dose and reaches a
plateau around 20 Gy for the early component and 25 Gy for the
late component. Due to the higher fraction of mesenchymal cells
in the inflammatory phase (i.e., before the macrophages are able
to clean the senescent cells), the ΔECMmax of the early phase is
more than twice as much as that in the late phase, and the plateau
is reached at lower doses as the total amount of ECM that can be
stored in the alveolar space is limited.

Figure 5c shows the surviving fraction of the FSUs as a
function of the dose. For doses equal to or smaller than 7.5 Gy in
the ABM-MC model, the survival is close to 100%, which implies
that no alveolus is fully depleted from the healthy type 2 alveolar
epithelial cells (AEC2), neither directly or indirectly. Similarly,
Citrin et al.37 observed full recovery in AEC2 cells of mice
irradiated at doses ≤ 5 Gy. Moreover, fitting of the dataset with
Eq. (4) shows better agreement for both values of Eγ than that
observed for the results from the ABM model alone, as well as
improved consistency at the lower doses.

Finally, the late component ΔECM and the FSU surviving
fraction were combined into the RSI, a surrogate measure of the
RILF severity, presented in Fig. 5d. Both the datasets obtained
from the ABM-MC model could be fitted using Eq. (3) with
trends in agreement with experimental findings about the fibrosis
index (FI) from Zhou et al.18 (see the next section for a direct
comparison), and, interestingly, close saturation values
(D ~ 25 Gy for photons in one fraction).

Overall, the outcomes from the ABM-MC model are
qualitatively in agreement with experimental results found in
the literature18,27–29, as similar trends were observed. However, a
quantitative assessment could not be achieved, mainly because of
the nature of the FI and ΔECM, originally expressed in terms of
quantities that can’t be discerned from our model (such as the
functioning volume and the variation in the radiodensity), but
also partly due to the microscopic scale of our model. Notably,
our previous model showed increased damage (i.e., lower
surviving fractions and higher ΔECM) at the same doses for
both Eγ values, and we argue that the reason behind that lies in
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the heterogeneity of the different dose distributions. In fact, using
the dose distribution obtained with the higher Eγ (narrower and
thus more similar to that used in our older model) resulted in all
the dose-response curves shown above being shifted toward the
old model’s results.

Temporal fractionation. To assess the ability of the alveolar
segment model to repair the damaged tissue in between irradia-
tions, we implemented a 5-fraction scheme using the ABM-MC
model. The temporal fractionation involved the delivery of rela-
tively small doses (see Table 1) 24 h apart, thus allowing the type
1 and 2 macrophages (M1 and M2) to gather (triggered by the
secretion of monocyte chemoattractant protein 1, MCP-1, by the
damaged AEC2) and start removing the senescent cells. More-
over, the healthy AEC2 could replenish the depleted alveoli. After
a 1-day simulation, the system was “frozen,” and the structure of
the alveolar segment was loaded into TOPAS-nBio for the fol-
lowing irradiation.

The number of fractions and the doses were matched to those
used in the experiments presented in the work by Zhou et al.18,
which was used to evaluate our previous ABM model.

Figure 6 presents a comparison of the main outcomes from the
ABM-MC model, using 1 and 5 fractions as a function of the total
delivered dose. The results were fitted using Eqs. (3) and (4).

As expected, a right shift in both the late component ΔECM
and in the FSU survival was observed. Consequently, an isoeffect
was measured at higher total doses for the RSI when using 5
fractions with respect to 1 fraction. Similar RSI values for the two
fractionation schemes were measured for total doses equal to or
lower than 10 Gy and above 35 Gy due to the high variability in
the FSU survival at low doses and the formulation of the RSI,
which forces it to saturate at high doses. Of note, the FSU survival
data for both the single and 5 fractions were accurately described
by the linear quadratic (LQ)38—critical volume model (i.e., Eq.
(4)), even at high doses.

The results for the early and late ΔECM from our ABM-MC
model with five fractions not only could be fitted using the
equations provided by previous experimental studies by Defraene
et al.27,29 and Konkol et al.28 for the dose-density increase
response but also matched the observations from Zhou et al.18

about the right shift of the RSI (a surrogate of the severity of the
RILF, as is the FI) when the number of fractions increased from 1
to 5. Although the study of Zhou et al.18 was performed on mice
and the RSI can exclusively be regarded as an approximation of
the FI, Fig. 6c shows that γ and ED50 for the two indexes (rescaled
to the same saturation value) are consistent. Concerning the RSI
and FI for 5 fractions, an agreement was not observed for ED50,
but the fit curves showed a comparable steepness, as confirmed by
the γ values and close saturation doses. In a different study by
Citrin et al.37, mice irradiated at 17.5 Gy, 5 × 5 Gy, and 5 × 6 Gy
developed lung fibrosis and exhibited poor survival. These
findings strongly correlated with a low AEC2 survival and high
senescence, similar to what we observed.

Targeted response assessment. Although performing a full sen-
sitivity analysis on the ABM-MC model would be intractable due
to the high number of parameters (see Supplementary Data 1)
and long runtimes, a targeted one aimed at key parameters can
provide insights into the model’s function.

The majority of the model’s parameters (excluding those that
govern the reaction-diffusion equations and those that determine
the geometry of the model, found in the literature11,12) are
related to the cells’ turnover and secretion rates. These, in
particular, were tuned in our first ABM12, which identified the
parameter that controls the influx of macrophages as the most
influential among those analyzed. Other damage-associated
parameters were introduced in our second ABM11, which
modeled mechanistically the onset of RILI. In that study, we
determined the optimal values for the phagocytic fraction and
phagocytic index, i.e., 100% and 1. Moreover, we showed how

Fig. 4 Photons dose distribution histograms. Dose distribution histograms for different setups in the alveolar segment model irradiated with photons. On
the x-axis, doses are shown as percentages of the maximum delivered dose, and the blue curves are the best Gaussian fits for the histogram data. Panels
a through e correspond to 4-field external beams with 40 million histories (i.e., particles) for different photon energies. In panel f, the dose distribution
resulting from an isotropic source (i.e., a point source located at the center of the alveolar duct) is reported.
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different values of the apoptotic-to-senescent ratio affected the
survival of the FSUs. We assessed the best value for the bystander
threshold as well (i.e., 2), but given that the results from the
ABM-MC model exhibited decreased damage for the same doses
with respect to our previous model, we evaluated the impact of a
faster spread of the indirect damage (by setting the bystander
threshold to 1) to determine if the effects could offset each other.
The bystander threshold dictates the minimum number of
senescent AEC2 necessary to damage a healthy AEC2 that is
located in their neighborhood. It is, therefore, the main regulator
for controlling the speed of the spread of indirect damage. In fact,
the probability that a healthy AEC2 will be indirectly damaged
depends on the time spent in the neighborhood of senescent
cells, and this, in turn, increases only if the number of senescent
neighbors exceeds the bystander threshold (as introduced in the
work by McMahon et al.39).

As can be seen from Fig. 7, even though the ABM-MC model
showed reduced damage with respect to the ABM alone, it could
not compensate for the increased spread of the indirect damage.
In fact, lowering the bystander threshold led to FSU survivals
<100% and ΔECM > 0, even at very low doses. As a consequence,
the RSI never dropped to 0, and the FSU survival showed poor
agreement with Eq. (4). Therefore, the impact on the overall
model’s predictions was substantial.

To further investigate the sensitivity of our model to the
damage-associated parameters, we altered the rate at which
radiation-damaged cells turn into senescent as well as their
radiosensitivity. Specifically, to see if lowering these parameters
could compensate for the effect of the bystander threshold
highlighted above, we halved the damaged-to-senescent rate and
reduced the α and β parameters of the LQ model for the cell
survival by 10%. The amount of change for the LQ parameters

Fig. 5 Agent-based model (ABM) vs. ABM - Monte Carlo (ABM-MC) outcomes comparison. Comparison of the major outcomes from the agent-based
model (ABM) (cyan markers, black fit curves) and the ABM - Monte Carlo (MC) model using photons in one fraction with Eγ= 1 keV (black markers, red fit
curves) and Eγ= 10 keV (red markers, blue fit curves). Panels a and b show the increase in the average extracellular matrix (ECM) concentration across the
whole simulation space after 90 days (early component) and 1200 days (late component). In panel c, the surviving fraction of the alveoli (i.e., the
functional subunits (FSUs)) in logarithmic scale at the end of the simulation is reported. In panels a–d, the error bars represent the standard error of the
mean (SEM) for n= 10 (ABM+MC model) and n= 6 (ABM model) independent experiments. The late ΔECM and the FSU survival are combined to
provide the radiation-induced lung fibrosis severity index (RSI), outlined in panel d, where the error bars were obtained by propagating the error from the
FSU survival and the ΔECM increase measurements.

Table 1 Fractionation scheme doses.

Dose per fraction (Gy) 0.5 1.1 1.5 2 4 5 6 7 8.5
Total dose (Gy) 2.5 5.5 7.5 10 20 25 30 35 42.5

Doses per fraction and corresponding total doses delivered in 5 fractions to gauge the ability of the model to simulate normal tissue-sparing effects.
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was chosen so as to remain within the error bars computed in our
previous work11, while that of the damaged-to-senescent rate,
intrinsically uncertain, was reduced as much as the bystander
threshold. As expected, these changes affected the model’s
outcome by shifting all the curves to higher doses, as shown in
Fig. 7. In fact, the lower LQ parameters resulted in fewer cells
being damaged by the irradiation, while a smaller damaged-to-
senescent rate provided the M1 and M2 with more time to
remove the senescent cells, resulting in an enhanced damage
mitigation. However, the extent of the shift was marginal and
could not balance the impact of the bystander threshold,
highlighting the low sensitivity of the model to small variations
in the aforementioned parameters.

Radiation qualities. The use of charged particles in the clinical
setting has seen rapid spread in recent times due to the increased
conformality of the dose deposition to the target volume with
respect to the photons40. Moreover, experimental studies41

reported differences in the dynamics of the normal tissue
response between lung cancer patients treated with photons and
protons. We used TOPAS-nBio, coupled to our ABM model, to
compare the effects of different radiation qualities on the alveolar
segment. In particular, we simulated the irradiation of the lung
structure with 2 million protons delivered with an external beam
using 4 coplanar fields in one fraction.

TOPAS-nBio can generate standard DNA damage files for each
cell that is hit by one or more particles, thus providing punctual
information about each and every interaction between the particle
and the DNA. However, the process on a common laptop is
relatively slow, and the amount of data that is stored for each cell
can be very large, thus making it prohibitive for thousands of cells
as those in the alveolar segment. Therefore, our simulations did
not take into account the differences in the patterns generated by
photons and protons when damaging the DNA of the AEC2 cells.
Different simulation outcomes are thus solely the result of
different dose distributions.

We simulated 60MeV protons as previous studies have reported
negligible differences in the DNA damage response between proton
and photon irradiations in the plateau region for this energy42 and
very low linear energy transfer (LET, <2.5 keV/µm) at short
distances (<5mm)43. This requirement ensured very small LET
variations along the proton tracks (as the diameter of the alveolar
segment is <1mm) and allowed us to use the LQ parameters derived
from the survival curve of the AEC2 irradiated with photons.

Figure 8 shows the dose distribution for the protons expressed
as a fraction of the maximum delivered dose. When compared
with the photon histograms in Fig. 4, the distribution of the
proton exhibits a more pronounced and narrower peak, and the
data points align well with a Gaussian distribution.

When comparing the main simulation outcomes from the
different radiation qualities, a noticeable shift towards lower doses

Fig. 6 Model outcomes comparison for different fractionation schemes. Comparison of the major outcomes from the agent-based - Monte Carlo model
(ABM-MC) using photons in 1 fraction (black markers, red fit curves) and 5 fractions (red markers, green fit curves). Panels a–c show the increase in the
average Extracellular Matrix (ECM) concentration (late component), the surviving fraction of the functional subunits (FSU), and the radiation-induced lung
fibrosis severity index (RSI), respectively, at the end of the simulation. The error bars in panels a and b are the Standard Error of the Mean (SEM) for n= 10
in dependent experiments, while those in panel c were obtained by propagating the errors in the RSI definition. In panel c, the Fibrosis Index (FI) from Zhou
et al.18 for photons in 1 fraction (blue dashed curve) and 5 fractions (fuchsia dashed curve) rescaled to the RSI at saturation is plotted for comparison.
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for the same effect (i.e., same ΔECM and FSU surviving fraction),
shown in Fig. 9, was observed for the protons. This, in turn,
resulted in higher RSI at the same dose, similar to what was found
when comparing different fractionation schemes for the photons
(see Fig. 6), although of a smaller extent.

Given that the FSU survivals could be fitted by the LQ—critical
volume model from Eq. (4) for both the photons and the protons,
we introduced a relative biological effectiveness44 relative to the
FSU survival (RBEFSU). The RBEFSU was defined as the ratio of
the absorbed dose from the photons to the absorbed dose from
the protons, resulting in the same effect, and provides a
quantitative measure of the relative effectiveness of the different
radiations in depleting the FSUs. The definition reads as follows:

RBEFSU ¼ Dγ

Dpþ

					
sf γ¼sf pþ

ð5Þ

As can be seen from Fig. 9b, small variations were observed for
the RBEFSU at the 3 isoeffects considered. While it is generally
assumed an RBE= 1.1 for protons relative to photons at the same
cell survivals45, with lower RBEs for higher reference doses, we
measured slightly increasing values: 1.12, 1.12, and 1.15 for 50%,
37%, and 10% survival, respectively. Although these values closely
match the clinical assumptions, it’s worth noting that, as shown

Fig. 7 Model outcomes comparison for different parameter values. Comparison of the major outcomes from the agent-based - Monte Carlo model
(ABM-MC) using photons in 1 fraction with bystander threshold= 2 (i.e., standard conditions, cyan markers, black fit curve), bystander threshold= 1
(black markers, red fit curves), halved damaged-to-senescent rate (red markers, blue fit curves) and 10% lower radiosensitivity (blue markers, cyan
curves). Panels a–c show the increase in the average extracellular matrix (ECM) concentration (late component), the surviving fraction of the functional
subunits (FSUs), and the radiation-induced lung fibrosis severity index (RSI), respectively, at the end of the simulation. The error bars in panels a and b are
the standard error of the mean (SEM) for n= 10 independent experiments, while those in panel c were obtained by propagating the errors in the RSI
definition.

Fig. 8 Dose distribution histogram for the alveolar segment model
irradiated with protons. The dose was delivered using 4 fields from an
external beam and 2 million histories in total. On the x-axis, doses are
shown as percentages of the maximum delivered dose, and the green curve
is the best Gaussian fit for the histogram data.
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previously in Fig. 5, our model is strongly affected by the
broadness of the dose distributions used. Therefore, the
differences observed in Fig. 9b might just reflect heterogeneities
in the dose distribution at a scale that would hold little relevance
in a clinical setting. Moreover, it should be emphasized that the
RBEFSU is not an RBE in the traditional sense, as it’s defined in
terms of the survival of the FSUs fitted with a LQ—critical
volume model (given by Eq. (4)). As a side note, using the
universal survival curve46 and the linear-quadric-linear47 form-
alism to model the 1− Pkill, cell= Psurv, cell in Eq. (4) resulted in
almost identical FSU survival curves and thus no difference in the
resulting RBEFSU (see Supplementary Fig. 3).

Discussion
Despite being a crucial component in a large variety of cancer
treatments, the efficacy of RT is intrinsically hindered by normal
tissue toxicities48. Increasingly sophisticated NTCP models7 have
been implemented to estimate risk probabilities from patients’
DVH, but the lack of mechanistic information constrains
superficial representations of the underlying mechanisms and
prevents patients-specific parameters from being taken into
account.

To address the aforementioned shortcomings, we have pre-
viously implemented an ABM that simulates the onset of RILF in
an alveolar segment11. In this work, we outlined the development

of a coupled ABM-MC model, where the alveolar segment
structure was rebuilt using TOPAS-nBio13 and linked to an
updated version of our previous model, with a custom interface to
handle the communication between the simulation engines. As
discussed in our former work, the ability of the model to replicate
experimental results was assessed via dose–response curves for
the FSU (i.e., the alveoli) survival, the ECM increase, and the RSI,
while the output datasets were fitted using Eqs. (3) and (4).

More specifically, in the new implementation, the ABM is used
to generate the initial structure in healthy conditions, and after-
ward, the cells’ position, type, and size are exported. Using this
data as input, the MC tool builds the structure in real time, and
irradiation is simulated based on the information provided via the
parameter control system. Accordingly, realistic dose distribu-
tions can be simulated and dose depositions at the cell scale
registered. The generated data are then sent back into the ABM,
where the absorbed doses are used to determine the fate of each
cell using the LQ model. Subsequently, the ABM model is run,
and the onset of RILF is simulated. Finally, to replicate temporal
fractionation schemes, the workflow can be executed multiple
times by setting the number of fractions in the control script.

We compared different setups of the photons’ source and
energy (Eγ) by characterizing the resulting relative dose dis-
tributions in the alveolar segment. Our results indicated that
combining an external source with 4 coplanar fields and Eγ=
10 keV maximized the dose homogeneity. Therefore, this

Fig. 9 Model outcomes comparison for different radiation types. Comparison of the major outcomes from the agent-based - Monte Carlo model (ABM-
MC) using protons (black markers, red fit curves) and photons (cyan markers, black fit curves), both in 1 fraction. Panels a–c show the increase in the
average extracellular matrix (ECM) concentration (late component), the surviving fraction of the functional subunits (FSUs), and the radiation-induced lung
fibrosis severity index (RSI), respectively, at the end of the simulation. Panel b also provides the relative biological effectiveness (RBE) values for the
surviving fraction of the FSUs (RBEFSU) at 50%, 37%, and 10% survival. The error bars in panels a and b are the standard error of the mean (SEM) for
n= 10 independent experiments, while those in panel c were obtained by propagating the errors in the RSI definition.
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configuration was selected as the default for the following
simulations.

In accordance with the results from our previous model, the
outcomes of the ABM-MC approach (for a single fraction) qua-
litatively matched published experimental results. In particular,
the ΔECM showed two distinct components, an early one that
peaked at around 3 months from the irradiation and a late one as
the model reached the steady state, as outlined by Konkol et al.28

and Bernchou et al.49. Both the datasets exhibited a sigmoidal
response as the dose increased and could be fitted using Eq. (2), as
observed by Defraene et al.27,29. The surviving fraction of the
FSUs was fitted using Eq. (4) and showed good agreement with
the LQ–LQ-critical volume model at all doses. Finally, Eq. (3)
accurately described the RSI, which mimics the FI introduced by
Zhou et al.18 and provides a surrogate measure of the RILF. Of
note, despite showing consistency with the previous ABM model,
it can be seen from Fig. 5 that all the curves were shifted towards
higher doses for the same outcomes. We attributed these differ-
ences to the heterogeneity of the dose distributions and proved
our assumptions by showing that the broader dose distribution
obtained with 1 keV photons resulted in even more shifted
curves. It is worth noting that in the old model, the delivered dose
was used to determine the initial damaged fraction, which was the
same for all the cells in an alveolus. Conversely, the ABM-MC
simulates an actual dose distribution using the TOPAS-nBio
module, and each cell, given the absorbed dose, has a certain
probability of being damaged in accordance with the LQ model.
This notwithstanding, the high sensitivity to the shape of the dose
distribution shown by our model urges readers to approach these
findings with a degree of skepticism.

Temporal fractionation schemes as a way to spare the normal
tissue as sublethal damages are repaired and depleted areas
repopulated are widely employed in clinics14–16. Accordingly, we
compared the results from 1-fraction with those from 5-fractions
using the ABM-MC model. As expected, the outcomes in Fig. 6
show a shift towards higher total doses for the alveolar segment
irradiated with 5 fractions and could be fitted using Eqs. (3) and
(4) for the ΔECM and RSI. Notably, the transition of the RSI to
higher total doses from 1 to 5 fractions mimics the findings by
Zhou et al.18 for the photons, although the experiments were
performed on mice. Quantitative agreement between the RSI and
the FI was observed, as the scaled fit curves showed comparable
values for γ (for both 1 and 5 fractions) and ED50 (for 1 fraction).
The model is thus able to replicate normal tissue sparing as the
macrophages clean the senescent cells and prevent excessive
spread of the damage via bystander mechanisms while the AEC2
repopulates the depleted alveoli. It is worth noting that the actual
DNA damage is not taken into account by our model, and
therefore, the repair of sublethal damages was not simulated.
However, it was recently shown by Liberal et al.50 that residual
DSBs in normal tissue cells exhibit low predictive power for cell
survival, and thus our assumptions remain valid.

A targeted response assessment performed on the model as an
alternative to a computationally intractable full sensitivity analysis
revealed insights into the model’s function. Given that the ABM-
MC model showed lower damage for the same dose with respect
to our previous ABM alone, we investigated the effect of an
increase in the speed of the damage spread on the model out-
comes by lowering the bystander threshold. Moreover, we
reduced the cells’ radiosensitivity and damaged-to-senescent rate
to see whether these parameters could shift the model’s predic-
tions toward higher doses to the same extent as the bystander
threshold. As shown by Fig. 7, the reduced damage of the ABM-
MC could not compensate for the increase in the bystander effect,
which affected all the response curves substantially and prevented
full recovery even at the lowest doses. Conversely, lowering the

radiosensitivity and damaged-to-senescent rate had a marginal
effect on the results, assessing the model’s resilience to their
changes.

To further characterize the ABM-MC model, we simulated a
monoenergetic 60MeV proton irradiation using the same setup
for the source as that previously described for the photons. Dif-
ferences with respect to the photon irradiation were found in the
resulting dose distribution (see Fig. 8), which exhibited a nar-
rower peak at 80% of the maximum delivered dose. As a result,
despite the DNA damage and repair mechanisms were not taken
into account, the model outcomes differed substantially from
those obtained when the alveolar segment was irradiated with
photons. Figure 9 shows increased ΔECM and lower FSU survival
for the same doses when protons were used, resulting in a higher
RSI and similar to what Zhou et al.51 observed when mice were
irradiated using high LET particles. Furthermore, we compared
the ability of the different radiation qualities to deplete the alveoli
from the AEC2 by computing the RBE at different FSU survivals
(that thus differs from the traditional RBE), a metric that
accounts for long-term effects as it was computed when the
model reached the steady state and the alveolar segment was thus
allowed to recover. Given that for the organs with parallel
architecture, such as the lungs, the FSU survival plays a key role
when estimating the probability of radiation-induced toxicity,
future studies could benefit from the RBEFSU as a tool for the
comparison of different radiation qualities on the NTCP.
Although we measured an average RBEFSU= 1.13, considerably
close to the value used in clinical practice, it’s crucial to
acknowledge that the use of 10 keV photons has resulted in
heterogeneous dose distributions. This, in turn, could be the
underlying reason for the RBE effects observed in this study,
which may not be seen in real exposures.

Overall, these findings capture the unique feature of the model
(and, more generally, the added value that ABMs can bring to the
field of radiation oncology) to be susceptible not only to varia-
tions in the average values (i.e., different average doses, as
equation-based models would be) but also to local changes (i.e.,
different dose distributions). This feature, in turn, could be
exploited to overcome the lack of sensitivity of the DVH para-
meters to spatial heterogeneities. Moreover, the influence of
changes at multiple scales (such as in the tissue architecture or
number of cells of a certain type) on the long-term evolution of
the disease can be incorporated and simulated without the need
to pause the model. For instance, the key role played by the
bystander effect in the onset of RILF has been emphasized by
multiple studies37,52,53, and earlier works highlighted that when
radiation-induced lung toxicities are modeled mechanistically,
inflammation-induced tissue damage should be taken into
account54. Such radiation-triggered paracrine senescence could
not be integrated into the traditional NTCP models. Additionally,
in the same model, both normal tissue and cancer responses to
irradiation could be simulated, together with, for instance, the
effect of an immunotherapeutic treatment performed at different
points in time55. Furthermore, our model could be promptly
adapted to include subcellular networks, possibly modeled with
ODEs, to simulate more accurately the cell dynamics, such as
DNA damage and repair mechanisms or senescence-associated
pathways. Conversely, at a larger scale, the whole model could be
used as a single agent in a multi-agent system to simulate
radiation-induced damages at the tissue level. If the local inter-
action dynamics implemented in this work were extended to such
a higher scale, per-voxel dose distributions from clinical treat-
ment plans could be used as an input, and the results compared
against those of the current ABM-MC. As shown previously, our
ABM-MC predicted slightly different outcomes when the AEC2
radiosensitivity was lowered by 10%. Analogously, the model
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could be used to simulate the impact of interpatient variability in
radiosensitivities or heterogeneous radiosensitivity distributions
on a treatment outcome. Further, given that our model simulates
the diffusion of multiple substances, the effect of spatial hetero-
geneities in the substance’s concentration (such as oxygen, which
plays an important role in cell survival56) due to different treat-
ments or concurrent conditions could be investigated.

In conclusion, this work could serve as a framework to investigate
the effect of different fractionation schemes and dose distributions
on the severity of RILF while taking into account individualized
parameters in the perspective of advancing precision medicine in
RT treatments. At the same time, it provides a preliminary valida-
tion of the proposed approach, highlighting the potential of ABM
combined with MC to inform radiobiological studies. Future
developments might concentrate on taking into account the DNA
damage and repair mechanisms in order to estimate the fractions of
healthy, apoptotic, and senescent cells more accurately.

Data availability
Source Data for the main figures in the manuscript with statistical analyses are provided
in Supplementary Data files 2–4. Raw simulation results are available from the
corresponding author on reasonable request.

Code availability
The code used to implement the ABM-MC model can be found in Supplementary
Software 1 and is also available at https://doi.org/10.5281/zenodo.1018563757. Open
source software used for the ABM model: BioDynaMo, version 1.04, available at https://
github.com/BioDynaMo/biodynamo. Open source software used for the MC model:
TOPAS-nBio, version 2.0, available at https://github.com/topas-nbio/TOPAS-nBio.
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